This graph shows the educational attainment of the U.S. population from in 2018, according to ethnicity. Around 56.5 percent of Asians and Pacific Islanders in the U.S. have graduated from college or obtained a higher educational degree in 2018.
In 2022, about 37.7 percent of the U.S. population who were aged 25 and above had graduated from college or another higher education institution, a slight decline from 37.9 the previous year. However, this is a significant increase from 1960, when only 7.7 percent of the U.S. population had graduated from college. Demographics Educational attainment varies by gender, location, race, and age throughout the United States. Asian-American and Pacific Islanders had the highest level of education, on average, while Massachusetts and the District of Colombia are areas home to the highest rates of residents with a bachelor’s degree or higher. However, education levels are correlated with wealth. While public education is free up until the 12th grade, the cost of university is out of reach for many Americans, making social mobility increasingly difficult. Earnings White Americans with a professional degree earned the most money on average, compared to other educational levels and races. However, regardless of educational attainment, males typically earned far more on average compared to females. Despite the decreasing wage gap over the years in the country, it remains an issue to this day. Not only is there a large wage gap between males and females, but there is also a large income gap linked to race as well.
In 2023, the mean income of Black Bachelor's degree holders was ****** U.S. dollars, compared to ****** U.S. dollars for White Americans with a Bachelor's degree.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Researchers have examined racial and gender patterns of intergenerational education mobility, but less attention has been given to the ways that race and gender interact to further shape these relationships. Based on data from the General Social Survey, this study examined the trajectories of education mobility among Blacks and Whites by gender over the past century. Ordinary least squares and logistic regression models revealed three noteworthy patterns. First, Black men and women have closed substantial gaps with their White counterparts in intergenerational education mobility. At relatively low levels of parental education, these gains have been experienced equally among Black men and women. However, Black men are most disadvantaged at the highest levels of parental education relative to Black women and Whites in general. Finally, the advantages in education mobility experienced by White men in the early and midpart of the 20th century have largely eroded. White women, in contrast, have made steady gains in education mobility across a variety of parental education levels.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Consumer Unit Characteristics: Percent White, Asian, and All Other Races, Not Including African American by Highest Education: College Graduate: Master's, Professional, Doctoral Degree (CXUWHTNDOTHLB1409M) from 2012 to 2023 about doctoral degree, consumer unit, professional, asian, tertiary schooling, white, education, percent, and USA.
This layer shows education level for adults (25+) by race by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of adults age 25+ who have a bachelor's degree or higher as their highest education level. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, C15002I (Not all lines of these ACS tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
The American Community Survey (ACS) is designed to estimate the characteristic distribution of populations and estimated counts should only be used to calculate percentages. They do not represent the actual population counts or totals. Beginning in 2019, the Washington Student Achievement Council (WSAC) has measured educational attainment for the Roadmap Progress Report using one-year American Community Survey (ACS) data from the United States Census Bureau. These public microdata represents the most current data, but it is limited to areas with larger populations leading to some multi-county regions*. *The American Community Survey is not the official source of population counts. It is designed to show the characteristics of the nation's population and should not be used as actual population counts or housing totals for the nation, states or counties. The official population count — including population by age, sex, race and Hispanic origin — comes from the once-a-decade census, supplemented by annual population estimates (which do not typically contain educational attainment variables) from the following groups and surveys: -- Washington State Office of Financial Management (OFM): https://www.ofm.wa.gov/washington-data-research/population-demographics -- US Census Decennial Census: https://www.census.gov/programs-surveys/decennial-census.html and Population Estimates Program: https://www.census.gov/programs-surveys/popest.html **In prior years, WSAC used both the five-year and three-year (now discontinued) data. While the 5-year estimates provide a larger sample, they are not recommended for year to year trends and also are released later than the one-year files. Detailed information about the ACS at https://www.census.gov/programs-surveys/acs/guidance.html
In an impressive increase from years past, 39 percent of women in the United States had completed four years or more of college in 2022. This figure is up from 3.8 percent of women in 1940. A significant increase can also be seen in males, with 36.2 percent of the U.S. male population having completed four years or more of college in 2022, up from 5.5 percent in 1940.
4- and 2-year colleges
In the United States, college students are able to choose between attending a 2-year postsecondary program and a 4-year postsecondary program. Generally, attending a 2-year program results in an Associate’s Degree, and 4-year programs result in a Bachelor’s Degree.
Many 2-year programs are designed so that attendees can transfer to a college or university offering a 4-year program upon completing their Associate’s. Completion of a 4-year program is the generally accepted standard for entry-level positions when looking for a job.
Earnings after college
Factors such as gender, degree achieved, and the level of postsecondary education can have an impact on employment and earnings later in life. Some Bachelor’s degrees continue to attract more male students than female, particularly in STEM fields, while liberal arts degrees such as education, languages and literatures, and communication tend to see higher female attendance.
All of these factors have an impact on earnings after college, and despite nearly the same rate of attendance within the American population between males and females, men with a Bachelor’s Degree continue to have higher weekly earnings on average than their female counterparts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundLife expectancy at birth in the United States will likely surpass 80 years in the coming decade. Yet recent studies suggest that longevity gains are unevenly shared across age and socioeconomic groups. First, mortality in midlife has risen among non-Hispanic whites. Second, low-educated whites have suffered stalls (men) or declines (women) in adult life expectancy, which is significantly lower than among their college-educated counterparts. Estimating the number of life years lost or gained by age and cause of death, broken down by educational attainment, is crucial in identifying vulnerable populations.Methods and FindingsUsing U.S. vital statistics data from 1990 to 2010, this study decomposes the change in life expectancy at age 25 by age and cause of death across educational attainment groups, broken down by race and gender. The findings reveal that mortality in midlife increased for white women (and to a lesser extent men) with 12 or fewer years of schooling, accounting for most of the stalls or declines in adult life expectancy observed in those groups. Among blacks, mortality declined in nearly all age and educational attainment groups. Although an educational gradient was found across multiple causes of death, between 60 and 80 percent of the gap in adult life expectancy was explained by cardiovascular diseases, smoking-related diseases, and external causes of death. Furthermore, the number of life years lost to smoking-related, external, and other causes of death increased among low- and high school-educated whites, explaining recent stalls or declines in longevity.ConclusionsLarge segments of the American population—particularly low- and high school-educated whites under age 55—are diverging from their college-educated counterparts and losing additional years of life to smoking-related diseases and external causes of death. If this trend continues, old-age mortality may also increase for these birth cohorts in the coming decades.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset includes the attendance rate for public school students PK-12 by student group and by district during the 2022-2023 school year.
Student groups include:
Students experiencing homelessness Students with disabilities Students who qualify for free/reduced lunch English learners All high needs students Non-high needs students Students by race/ethnicity (Hispanic/Latino of any race, Black or African American, White, All other races)
Attendance rates are provided for each student group by district and for the state. Students who are considered high needs include students who are English language learners, who receive special education, or who qualify for free and reduced lunch.
When no attendance data is displayed in a cell, data have been suppressed to safeguard student confidentiality, or to ensure that statistics based on a very small sample size are not interpreted as equally representative as those based on a sufficiently larger sample size. For more information on CSDE data suppression policies, please visit http://edsight.ct.gov/relatedreports/BDCRE%20Data%20Suppression%20Rules.pdf.
https://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm
The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACS
County-level race and ethnicity estimates for populations 25 years of age and over, cross-tabulated with educational attainment estimates for populations that have less than a high school diploma. Race and ethnicity estimates include the following categories: White alone, Black or African American alone, American Indian or Alaska Native alone, Native Hawaiian or Other Pacific Islander alone, Some Other Race alone, Two or More Races, White alone and Not Hispanic or Latino, Hispanic or Latino, and people of color. Estimates are accompanied by margins of error, coefficients of variation, and percentages. Geometry source: 2020 Census. Attribute source: 2019-2023 American Community Survey 5-year estimates, tables B06009, C15002A, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, and C15002I. Date of last data update: 2024-01-11 This is official RLIS data. Contact Person: Joe Gordon joe.gordon@oregonmetro.gov 503-797-1587 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/3846 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use
In 2024, most people in the United States perceived the price of college to be appropiate for the price paid, independently of their ethnicity. ** percent of black people considered the price of their education appropiate for the price paid.
https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy
Diversity in Tech Statistics: In today's tech-driven world, discussions about diversity in the technology sector have gained significant traction. Recent statistics shed light on the disparities and opportunities within this industry. According to data from various sources, including reports from leading tech companies and diversity advocacy groups, the lack of diversity remains a prominent issue. For example, studies reveal that only 25% of computing jobs in the United States are held by women, while Black and Hispanic individuals make up just 9% of the tech workforce combined. Additionally, research indicates that LGBTQ+ individuals are underrepresented in tech, with only 2.3% of tech workers identifying as LGBTQ+. Despite these challenges, there are promising signs of progress. Companies are increasingly recognizing the importance of diversity and inclusion initiatives, with some allocating significant resources to address these issues. For instance, tech giants like Google and Microsoft have committed millions of USD to diversity programs aimed at recruiting and retaining underrepresented talent. As discussions surrounding diversity in tech continue to evolve, understanding the statistical landscape is crucial in fostering meaningful change and creating a more inclusive industry for all. Editor’s Choice In 2021, 7.9% of the US labor force was employed in technology. Women hold only 26.7% of tech employment, while men hold 73.3% of these positions. White Americans hold 62.5% of the positions in the US tech sector. Asian Americans account for 20% of jobs, Latinx Americans 8%, and Black Americans 7%. 83.3% of tech executives in the US are white. Black Americans comprised 14% of the population in 2019 but held only 7% of tech employment. For the same position, at the same business, and with the same experience, women in tech are typically paid 3% less than men. The high-tech sector employs more men (64% against 52%), Asian Americans (14% compared to 5.8%), and white people (68.5% versus 63.5%) compared to other industries. The tech industry is urged to prioritize inclusion when hiring, mentoring, and retaining employees to bridge the digital skills gap. Black professionals only account for 4% of all tech workers despite being 13% of the US workforce. Hispanic professionals hold just 8% of all STEM jobs despite being 17% of the national workforce. Only 22% of workers in tech are ethnic minorities. Gender diversity in tech is low, with just 26% of jobs in computer-related sectors occupied by women. Companies with diverse teams have higher profitability, with those in the top quartile for gender diversity being 25% more likely to have above-average profitability. Every month, the tech industry adds about 9,600 jobs to the U.S. economy. Between May 2009 and May 2015, over 800,000 net STEM jobs were added to the U.S. economy. STEM jobs are expected to grow by another 8.9% between 2015 and 2024. The percentage of black and Hispanic employees at major tech companies is very low, making up just one to three percent of the tech workforce. Tech hiring relies heavily on poaching and incentives, creating an unsustainable ecosystem ripe for disruption. Recruiters have a significant role in disrupting the hiring process to support diversity and inclusion. You May Also Like To Read Outsourcing Statistics Digital Transformation Statistics Internet of Things Statistics Computer Vision Statistics
This statistic shows the percentage of the White, non-Hispanic population aged between 25 and 29 with a bachelor's or a higher level degree in the United States from 1975 to 2021, by gender. In 2021, about ** percent of white, non-Hispanic females had attained at least a bachelor's degree in the United States.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de434772https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de434772
Abstract (en): The purpose of this data collection was to provide a more accurate measure of the racial/ethnic enrollment in postsecondary institutions in the United States than was previously available. The National Center for Education Statistics (NCES) collects racial/ethnic enrollment data from higher education institutions on an annual basis. Some institutions do not report these data, and their "unknown" categories have previously been distributed in direct proportion to the "knowns." This resulted in lower than accurate figures for the racial/ethnic categories. With the advent of the Integrated Postsecondary Education Data System (IPEDS), NCES has attempted to eliminate this problem by distributing all "race/ethnicity unknown" students through a two-stage process. First, the differences between reported totals and racial/ethnic details were allocated on a gender and institutional basis by distributing the differences in direct proportion to reported distributions. The second-stage distribution was designed to eliminate the remaining instances of "race/ethnicity unknown." The procedure was to accumulate the reported racial/ethnic total enrollments by state, level, control, and gender, calculate the percentage distributions, and apply these percentages to the reported total enrollments of institutional respondents (in the same state, level, and control) that did not supply race/ethnicity detail. In addition, the original "race/ethnicity unknown" data were also left unaltered for those who wish to review the numbers actually distributed. The racial/ethnic status was broken down into nonresident alien, Black non-Hispanic, American Indian or Alaskan Native, Asian or Pacific Islander, Hispanic, and White non-Hispanic. There are six data files. Part 1, Institutional Characteristics, includes variables on control and level of institution, religious affiliation, highest level of offering, Carnegie classification, and state FIPS code and abbreviation. Variables in Part 2 cover total original enrollment by race/ethnicity and sex and by level and year of study of student. Race/ethnicity data were not imputed for institutions that only reported total enrollment. The "race ethnicity unknown" category was not distributed among the race/ethnicity categories. In Part 3, enrollment data are presented by race/ethnicity and sex of student, and by level and year of study for the following selected major field of studies: architecture, education, engineering, law, biological/life sciences, mathematics, physical sciences, dentistry, medicine, veterinary medicine, and business management and administrative services. This file contains data for four-year institutions only. Part 4 provides summary enrollment data by adjusted race/ethnicity and sex of student and by level and year of study of student. The "race/ethnicity unknown" category data were distributed across all known race categories in this file. Also, race data were imputed for institutions that did not report enrollment by race. Part 5, Residence and Migration, contains enrollment data for first-time freshmen, by state of residence. Part 6, Clarifying Questions on Enrollments, provides information on students enrolled in remedial courses, extension divisions, and branches of schools, and numbers of transfer students from in-state, out of state, and other countries. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Checked for undocumented or out-of-range codes.. All postsecondary institutions in operation in 1996 in the United States and its outlying areas. All two-year and over postsecondary institutions were included, along with a probability-of-selection sample of all less-than-two-year private institutions. 2006-01-18 File CB2447.ALL.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads. The codebook and data collection instruments are provided as a Portable Document Format (PDF) file. The PDF file format was developed by Adobe Systems Incorporated and can be accessed using PDF reader software, such as the Adobe Acrobat Reader (version 3.0 or later). Information on how to obtain a copy...
In 2024, white respondents had the highest rates of confidence about being able to meet the costs of a college education in the United States. Meanwhile, ** percent of Hispanic respondents and ** of Black respondents were completely confident about being able to pay the costs of college education. On the other side of the spectrum, *** percent of white and Black respondents were unconfident about being able to meet these costs.
This feature service contains data from the American Community Survey: 5-year Estimates Subject Tables for the greater Bozeman, MT area. The attributes come from the Educational Attainment table (S1501). Processing Notes:Data was downloaded from the U.S. Census Bureau and imported into FME to create an AGOL Feature Service. Each attribute has been given an abbreviated alias name derived from the American Community Survey (ACS) categorical descriptions. The Data Dictionary below includes all given ACS attribute name aliases.For Example: PctPop_45to64_HS is equal to the percentage of the population ages 45 to 64 with the educational attainment of a high school degree or equivalentData DictionaryACS_EST_YR: American Community Survey 5-Year Estimate Subject Tables data yearGEO_ID: Census Bureau geographic identifierNAME: Specified geographyPctPop: Percent of the selected populationRace/Ethnicity:A: AsianAIAN: American Indian or Alaska NativeBAA: Black or African AmericanHL: Hispanic or LatinoNHPI: Native Hawaiian or other Pacific IslanderW: WhiteOther: Some other raceTwo: Two or more racesAge Group:18to24: Ages 18 to 24 years old25to34: Ages 25 to 34 years old35to44: Ages 35 to 44 years old45to64: Ages 45 to 64 years old65andover: Ages 65 and overEducational AttainmentBA: Bachelor's degree or higherHS: High school graduate (includes equivalency)Download ACS Educational Attainment data for the greater Bozeman, MT areaAdditional LinksU.S. Census BureauU.S. Census Bureau American Community Survey (ACS)About the American Community Survey
This web map provides and in-depth look at school districts within the United States. Clicking on a school district in the map will reveal different statistics about each district in the pop-up. The statistics presented in this map are approximations based on summarizing American Community Survey(ACS) data using tract centroids. They may differ from published statistics by school districts found on data.census.gov. A few things you will learn from this map:How many public and private schools fall within a district?Socioeconomic factors about the Census Tracts which fall within the district:School enrollment for grades Kindergarten through 12thDisconnected children in the districtChildren living below the poverty level Children with no internet at home Children without a working parentRace/ethnicity breakdown of population under the age of 19 in the districtFor more information about the data sources:This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases estimates, so values in the map always reflect the newest data available.Current School Districts Layer:The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are single-purpose administrative units designed by state and local officials to organize and provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to support educational research and program administration, and the boundaries are essential for constructing district-level estimates of the number of children in poverty.The Census Bureau’s School District Boundary Review program (SDRP) (https://www.census.gov/programs-surveys/sdrp.html) obtains the boundaries, names, and grade ranges from state officials, and integrates these updates into Census TIGER. Census TIGER boundaries include legal maritime buffers for coastal areas by default, but the NCES composite file removes these buffers to facilitate broader use and cleaner cartographic representation. The NCES EDGE program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to develop the composite school district files. The inputs for this data layer were developed from Census TIGER/Line and represent the most current boundaries available. For more information about NCES school district boundary data, see https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries.Public Schools Layer:This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/ ), National Center for Education Statistics (NCES, https://nces.ed.gov ), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.Private Schools Layer:This Private Schools feature dataset is composed of private elementary and secondary education facilities in the United States as defined by the Private School Survey (PSS, https://nces.ed.gov/surveys/pss/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all prekindergarten through 12th grade schools as tracked by the PSS. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2675 new records, modifications to the spatial location and/or attribution of 19836 records, the removal of 254 records no longer applicable. Additionally, 10,870 records were removed that previously had a STATUS value of 2 (Unknown; not represented in the most recent PSS data) and duplicate records identified by ORNL.Web Map originally owned by Summers Cleary
https://www.icpsr.umich.edu/web/ICPSR/studies/3530/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3530/terms
This file, part of a data collection effort carried out annually from 1968-1974 to look at issues of school desegregation, contains selected school district-level racial and ethnic data about students and staff for the academic year 1970-1971. The data were collected using OCR Form OS/CR 101. Each district record for each separate year of the series is identical, containing fields for all district data elements surveyed in every year. Where a particular item was not surveyed for a specific year, its corresponding field is zero (for numeric fields) or blank (for alphanumeric fields). Counts of students in various racial and ethnic groups are provided and then further categorized across additional dimensions, including whether resident or non-resident, emotionally disturbed, physically or learning disabled, or requiring special education. Other categories include school-age children in public and non-public schools or not in school, dropouts, and those expelled or suspended. Racial and ethnic counts of full-time classroom teachers and full-time instructional staff are also supplied. Other variables focus on the number of schools in the district that used ability grouping, whether a district had single-sex schools, whether students of different sexes were required to take different courses, the number of students whose language was not English, whether bilingual instruction was used, the number of schools being newly built or modified to increase capacity, the racial composition of new schools, and whether there was litigation.
This graph shows the educational attainment of the U.S. population from in 2018, according to ethnicity. Around 56.5 percent of Asians and Pacific Islanders in the U.S. have graduated from college or obtained a higher educational degree in 2018.