100+ datasets found
  1. Cities with the highest altitudes in the world

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest altitudes in the world [Dataset]. https://www.statista.com/statistics/509341/highest-cities-in-the-world/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    World
    Description

    The highest city in the world with a population of more than one million is La Paz. The Capital of Bolivia sits ***** meters above sea level, and is more than 1,000 meters higher than the second-ranked city, Quito. La Paz is also higher than Mt. Fuji in Japan, which has a height of 3,776 meters. Many of the world's largest cities are located in South America. The only city in North America that makes the top 20 list is Denver, Colorado, which has an altitude of ***** meters.

  2. Global elevation spans by select country

    • statista.com
    Updated Nov 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2018). Global elevation spans by select country [Dataset]. https://www.statista.com/statistics/935722/highest-and-lowest-elevation-points-worldwide-by-select-country/
    Explore at:
    Dataset updated
    Nov 26, 2018
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2018
    Area covered
    World
    Description

    This statistic displays the countries with the greatest range between their highest and lowest elevation points. China and Nepal share the highest elevation point worldwide, which ascends to an amount of 8848 meters above sea level. Near the city Turpan Pendi, Xinjiang, China's elevation reaches *** meters below sea level.

  3. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    • +1more
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/surging-seas-risk-zone-map
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  4. United States: average elevation in each state or territory as of 2005

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, United States: average elevation in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325529/lowest-points-united-states-state/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.

  5. a

    Coastal Sea Level Rise Trends for U.S. Cities

    • oceans-esrioceans.hub.arcgis.com
    • hub.arcgis.com
    Updated Apr 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Maps for the Nation (2018). Coastal Sea Level Rise Trends for U.S. Cities [Dataset]. https://oceans-esrioceans.hub.arcgis.com/maps/c49c78fb1ef34fbb970c2286aff122e2
    Explore at:
    Dataset updated
    Apr 26, 2018
    Dataset authored and provided by
    ArcGIS Maps for the Nation
    Area covered
    Description

    Many of the U.S.’s most populated areas are within miles of the coast. As the sea level rises in many areas, these cities are being exposed to more and more nuisance floods - not just from extreme events like Hurricane Sandy, but also when routine rain storms occur. This map plots data from NOAA showing the results of an analysis of tide gauge and satellite data from around the country. City locations colored in blue-green are experiencing positive sea level rise, whereas areas colored in light brown are experiencing negative sea level rise. This feature service includes pop-ups that indicate the city, the rate of sea level rise (feet per century) and the statistical 95% confidence level. The latter gives an indication of how much more or less rise can be expected from the average. Original data from NOAA: https://tidesandcurrents.noaa.gov/sltrends/

  6. United States: highest point in each state or territory

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). United States: highest point in each state or territory [Dataset]. https://www.statista.com/statistics/203932/highest-points-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 20,310 feet (6.2km) above sea level, the highest point in the United States is Denali, Alaska (formerly known as Mount McKinley). The highest point in the contiguous United States is Mount Whitney, in the Sierra Nevada mountain range in California; followed by Mount Elbert, Colorado - the highest point in the Rocky Mountains. When looking at the highest point in each state, the 13 tallest peaks are all found in the western region of the country, while there is much more diversity across the other regions and territories.

    Despite being approximately 6,500 feet lower than Denali, Hawaii's Mauna Kea is sometimes considered the tallest mountain (and volcano) on earth. This is because its base is well below sea level - the mountain has a total height of 33,474 feet, which is almost 4,500 feet higher than Mount Everest.

  7. Covid-19 Highest City Population Density

    • kaggle.com
    zip
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity
    Explore at:
    zip(4685 bytes)Available download formats
    Dataset updated
    Mar 25, 2020
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

  8. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, geotif +5
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  9. Cities with most skyscrapers over 150 meters high worldwide 2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with most skyscrapers over 150 meters high worldwide 2024 [Dataset]. https://www.statista.com/statistics/1298984/cities-with-most-skyscrapers-among-the-highest-worldwide/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    World
    Description

    As of 2024, Hong Kong was the city in the world with the most skyscrapers that were at least *** meters high. The next city in the ranking was Shenzhen with *** buildings exceeding that height, followed by New York City with *** buildings. Some of the other cities on the list were Dubai and Guangzhou. The Burj Khalifa in Dubai was the highest building in the world.

  10. Crescent City, California 1/3 arc-second MHW Coastal Digital Elevation Model...

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2024). Crescent City, California 1/3 arc-second MHW Coastal Digital Elevation Model [Dataset]. https://catalog.data.gov/dataset/crescent-city-california-1-3-arc-second-mhw-coastal-digital-elevation-model1
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    Crescent City, California
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and warning efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to a variety of vertical datums and horizontal datum of World Geodetic System of 1984 (WGS84). Cell size for the DEMs ranges from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).

  11. a

    Data from: SurveyControl

    • hub.arcgis.com
    • data.cityofsalem.net
    Updated Jan 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Salem, Oregon (2018). SurveyControl [Dataset]. https://hub.arcgis.com/maps/salem::surveycontrol
    Explore at:
    Dataset updated
    Jan 26, 2018
    Dataset authored and provided by
    City of Salem, Oregon
    Area covered
    Description

    This map represents City of Salem, Oregon, Survey Benchmarks. The Survey Section of the Public Works Department establishes and maintains horizontal and vertical survey control throughout the City for most public and private projects. Vertical datum is NGVD 1929-47. Horizontal datum is NAD 1983-91. The map references detailed GIS data provided by the City of Salem Public Works Department. Contact the City of Salem City Surveyor (503-588-6211) for questions and the most up-to-date information, or gis@cityofsalem.net.

  12. C

    Elevation Benchmarks

    • chicago.gov
    • data.cityofchicago.org
    • +3more
    csv, xlsx, xml
    Updated Sep 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2011). Elevation Benchmarks [Dataset]. https://www.chicago.gov/city/en/depts/water/dataset/elevation_benchmarks.html
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Sep 29, 2011
    Dataset authored and provided by
    City of Chicago
    Description

    The following dataset includes "Active Benchmarks," which are provided to facilitate the identification of City-managed standard benchmarks. Standard benchmarks are for public and private use in establishing a point in space. Note: The benchmarks are referenced to the Chicago City Datum = 0.00, (CCD = 579.88 feet above mean tide New York). The City of Chicago Department of Water Management’s (DWM) Topographic Benchmark is the source of the benchmark information contained in this online database. The information contained in the index card system was compiled by scanning the original cards, then transcribing some of this information to prepare a table and map. Over time, the DWM will contract services to field verify the data and update the index card system and this online database.This dataset was last updated September 2011. Coordinates are estimated. To view map, go to https://data.cityofchicago.org/Buildings/Elevation-Benchmarks-Map/kmt9-pg57 or for PDF map, go to http://cityofchicago.org/content/dam/city/depts/water/supp_info/Benchmarks/BMMap.pdf. Please read the Terms of Use: http://www.cityofchicago.org/city/en/narr/foia/data_disclaimer.html.

  13. Atlantic City, New Jersey Coastal Digital Elevation Model

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2024). Atlantic City, New Jersey Coastal Digital Elevation Model [Dataset]. https://catalog.data.gov/dataset/atlantic-city-new-jersey-coastal-digital-elevation-model1
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    Atlantic City, New Jersey
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and warning efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).

  14. Statistical results for the six cities, listed (left to right) from highest...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard W. Hill; Timothy E. Muhich; Murray M. Humphries (2023). Statistical results for the six cities, listed (left to right) from highest to lowest average annual temperature. [Dataset]. http://doi.org/10.1371/journal.pone.0076238.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Richard W. Hill; Timothy E. Muhich; Murray M. Humphries
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    TLC and TUC are listed only if defined by convergence and significance in multi-phase regression. RMRs and slopes are expressed per utility account (i.e., per separately billed house or other living unit) and per person on the assumption of 2.6 people per account [40].

  15. Record High Temperatures for US Cities

    • kaggle.com
    zip
    Updated Jan 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Record High Temperatures for US Cities [Dataset]. https://www.kaggle.com/datasets/thedevastator/record-high-temperatures-for-us-cities-in-2015
    Explore at:
    zip(9955 bytes)Available download formats
    Dataset updated
    Jan 18, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Record High Temperatures for US Cities

    Clearly Defined Monthly Data

    By Gary Hoover [source]

    About this dataset

    This dataset contains all the record-breaking temperatures for your favorite US cities in 2015. With this information, you can prepare for any unexpected weather that may come your way in the future, or just revel in the beauty of these high heat spells from days past! With record highs spanning from January to December, stay warm (or cool) with these handy historical temperature data points

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains the record high temperatures for various US cities during the year of 2015. The dataset includes columns for each individual month, along with column for the records highs over the entire year. This data is sourced from www.weatherbase.com and can be used to analyze which cities experienced hot summers, or compare temperature variations between different regions.

    Here are some useful tips on how to work with this dataset: - Analyze individual monthly temperatures - this dataset allows you to compare high temperatures across months and locations in order to identify which areas experienced particularly hot summers or colder winters.
    - Compare annual versus monthly data - use this data to compare average annual highs against monthly highs in order to understand temperature trends at a given location throughout all four seasons of a single year, or explore how different regions vary based on yearly weather patterns as well as across given months within any one year; - Heatmap analysis - use this data plot temperature information in an interactive heatmap format in order to pinpoint particular regions that experience unique weather conditions or higher-than-average levels of warmth compared against cooler pockets of similar size geographic areas; - Statistically model the relationships between independent variables (temperature variations by month, region/city and more!) and dependent variables (e.g., tourism volumes). Use regression techniques such as linear models (OLS), ARIMA models/nonlinear transformations and other methods through statistical software such as STATA or R programming language;
    - Look into climate trends over longer periods - adjust time frames included in analyses beyond 2018 when possible by expanding upon the monthly station observations already present within the study timeframe utilized here; take advantage of digitally available historical temperature readings rather than relying only upon printed reports

    With these helpful tips, you can get started analyzing record high temperatures for US cities during 2015 using our 'Record High Temperatures for US Cities' dataset!

    Research Ideas

    • Create a heat map chart of US cities representing the highest temperature on record for each city from 2015.
    • Analyze trends in monthly high temperatures in order to predict future climate shifts and weather patterns across different US cities.
    • Track and compare monthly high temperature records for all US cities to identify regional hot spots with higher than average records and potential implications for agriculture and resource management planning

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    Unknown License - Please check the dataset description for more information.

    Columns

    File: Highest temperature on record through 2015 by US City.csv | Column name | Description | |:--------------|:--------------------------------------------------------------| | CITY | Name of the city. (String) | | JAN | Record high temperature for the month of January. (Integer) | | FEB | Record high temperature for the month of February. (Integer) | | MAR | Record high temperature for the month of March. (Integer) | | APR | Record high temperature for the month of April. (Integer) | | MAY | Record high temperature for the month of May. (Integer) | | JUN | Record high temperature for the month of June. (Integer) | | JUL | Record high temperature for the month of July. (Integer) | | AUG | Record high temperature for the month of August. (Integer) | | SEP | Record high temperature for the month of September. (Integer) | | OCT | Record high temperature for the month of October. (Integer) | | ...

  16. p

    Trends in Two or More Races Student Percentage (2013-2023): Reed City High...

    • publicschoolreview.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review, Trends in Two or More Races Student Percentage (2013-2023): Reed City High School vs. Michigan vs. Reed City Area Public Schools [Dataset]. https://www.publicschoolreview.com/reed-city-high-school-profile
    Explore at:
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Reed City Area Public Schools, Reed City, Michigan
    Description

    This dataset tracks annual two or more races student percentage from 2013 to 2023 for Reed City High School vs. Michigan and Reed City Area Public Schools

  17. United States: lowest point in each state or territory as of 2005

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, United States: lowest point in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325443/lowest-points-united-states-state/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.

  18. Ocean City, Maryland 1/3 arc-second MHW Coastal Digital Elevation Model

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2024). Ocean City, Maryland 1/3 arc-second MHW Coastal Digital Elevation Model [Dataset]. https://catalog.data.gov/dataset/ocean-city-maryland-1-3-arc-second-mhw-coastal-digital-elevation-model1
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    Maryland, Ocean City
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and warning efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS 84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).

  19. Panama City, Florida Coastal Digital Elevation Model

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2024). Panama City, Florida Coastal Digital Elevation Model [Dataset]. https://catalog.data.gov/dataset/panama-city-florida-coastal-digital-elevation-model1
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    Florida, Panama City
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).

  20. Cities with the highest population density globally 2025

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest population density globally 2025 [Dataset]. https://www.statista.com/statistics/1237290/cities-highest-population-density/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    Mogadishu in Somalia led the ranking of cities with the highest population density in 2025, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cities with the highest altitudes in the world [Dataset]. https://www.statista.com/statistics/509341/highest-cities-in-the-world/
Organization logo

Cities with the highest altitudes in the world

Explore at:
Dataset updated
Nov 28, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2020
Area covered
World
Description

The highest city in the world with a population of more than one million is La Paz. The Capital of Bolivia sits ***** meters above sea level, and is more than 1,000 meters higher than the second-ranked city, Quito. La Paz is also higher than Mt. Fuji in Japan, which has a height of 3,776 meters. Many of the world's largest cities are located in South America. The only city in North America that makes the top 20 list is Denver, Colorado, which has an altitude of ***** meters.

Search
Clear search
Close search
Google apps
Main menu