The American Civil War is the conflict with the largest number of American military fatalities in history. In fact, the Civil War's death toll is comparable to all other major wars combined, the deadliest of which were the World Wars, which have a combined death toll of more than 520,000 American fatalities. The ongoing series of conflicts and interventions in the Middle East and North Africa, collectively referred to as the War on Terror in the west, has a combined death toll of more than 7,000 for the U.S. military since 2001. Other records In terms of the number of deaths per day, the American Civil War is still at the top, with an average of 425 deaths per day, while the First and Second World Wars have averages of roughly 100 and 200 fatalities per day respectively. Technically, the costliest battle in U.S. military history was the Battle of Elsenborn Ridge, which was a part of the Battle of the Bulge in the Second World War, and saw upwards of 5,000 deaths over 10 days. However, the Battle of Gettysburg had more military fatalities of American soldiers, with almost 3,200 Union deaths and over 3,900 Confederate deaths, giving a combined total of more than 7,000. The Battle of Antietam is viewed as the bloodiest day in American military history, with over 3,600 combined fatalities and almost 23,000 total casualties on September 17, 1862. Revised Civil War figures For more than a century, the total death toll of the American Civil War was generally accepted to be around 620,000, a number which was first proposed by Union historians William F. Fox and Thomas L. Livermore in 1888. This number was calculated by using enlistment figures, battle reports, and census data, however many prominent historians since then have thought the number should be higher. In 2011, historian J. David Hacker conducted further investigations and claimed that the number was closer to 750,000 (and possibly as high as 850,000). While many Civil War historians agree that this is possible, and even likely, obtaining consistently accurate figures has proven to be impossible until now; both sides were poor at keeping detailed records throughout the war, and much of the Confederacy's records were lost by the war's end. Many Confederate widows also did not register their husbands death with the authorities, as they would have then been ineligible for benefits.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a source dataset for a Let's Get Healthy California indicator at https://letsgethealthy.ca.gov/. Infant Mortality is defined as the number of deaths in infants under one year of age per 1,000 live births. Infant mortality is often used as an indicator to measure the health and well-being of a community, because factors affecting the health of entire populations can also impact the mortality rate of infants. Although California’s infant mortality rate is better than the national average, there are significant disparities, with African American babies dying at more than twice the rate of other groups. Data are from the Birth Cohort Files. The infant mortality indicator computed from the birth cohort file comprises birth certificate information on all births that occur in a calendar year (denominator) plus death certificate information linked to the birth certificate for those infants who were born in that year but subsequently died within 12 months of birth (numerator). Studies of infant mortality that are based on information from death certificates alone have been found to underestimate infant death rates for infants of all race/ethnic groups and especially for certain race/ethnic groups, due to problems such as confusion about event registration requirements, incomplete data, and transfers of newborns from one facility to another for medical care. Note there is a separate data table "Infant Mortality by Race/Ethnicity" which is based on death records only, which is more timely but less accurate than the Birth Cohort File. Single year shown to provide state-level data and county totals for the most recent year. Numerator: Infants deaths (under age 1 year). Denominator: Live births occurring to California state residents. Multiple years aggregated to allow for stratification at the county level. For this indicator, race/ethnicity is based on the birth certificate information, which records the race/ethnicity of the mother. The mother can “decline to state”; this is considered to be a valid response. These responses are not displayed on the indicator visualization.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data was reported at 4.700 Ratio in 2023. This stayed constant from the previous number of 4.700 Ratio for 2022. Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data is updated yearly, averaging 7.000 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 28.600 Ratio in 1960 and a record low of 4.700 Ratio in 2023. Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Canada – Table CA.World Bank.WDI: Social: Health Statistics. Under-five mortality rate, female is the probability per 1,000 that a newborn female baby will die before reaching age five, if subject to female age-specific mortality rates of the specified year.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Weighted average;Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys. Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation. This is a sex-disaggregated indicator for Sustainable Development Goal 3.2.1 [https://unstats.un.org/sdgs/metadata/].
This multi-scale map shows life expectancy - a widely-used measure of health and mortality. From the 2020 County Health Rankings page about Life Expectancy:"Life Expectancy is an AverageLife Expectancy measures the average number of years from birth a person can expect to live, according to the current mortality experience (age-specific death rates) of the population. Life Expectancy takes into account the number of deaths in a given time period and the average number of people at risk of dying during that period, allowing us to compare data across counties with different population sizes.Life Expectancy is Age-AdjustedAge is a non-modifiable risk factor, and as age increases, poor health outcomes are more likely. Life Expectancy is age-adjusted in order to fairly compare counties with differing age structures.What Deaths Count Toward Life Expectancy?Deaths are counted in the county where the individual lived. So, even if an individual dies in a car crash on the other side of the state, that death is attributed to his/her home county.Some Data are SuppressedA missing value is reported for counties with fewer than 5,000 population-years-at-risk in the time frame.Measure LimitationsLife Expectancy includes mortality of all age groups in a population instead of focusing just on premature deaths and thus can be dominated by deaths of the elderly.[1] This could draw attention to areas with higher mortality rates among the oldest segment of the population, where there may be little that can be done to change chronic health problems that have developed over many years. However, this captures the burden of chronic disease in a population better than premature death measures.[2]Furthermore, the calculation of life expectancy is complex and not easy to communicate. Methodologically, it can produce misleading results caused by hidden differences in age structure, is sensitive to infant and child mortality, and tends to be overestimated in small populations."Click on the map to see a breakdown by race/ethnicity in the pop-up: Full details about this measureThere are many factors that play into life expectancy: rates of noncommunicable diseases such as cancer, diabetes, and obesity, prevalence of tobacco use, prevalence of domestic violence, and many more.Data from County Health Rankings 2020 (in this layer and referenced below), available for nation, state, and county, and available in ArcGIS Living Atlas of the World
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of deaths per day in the United States from 1950 to 2025. The x-axis represents the years, abbreviated from '50 to '24, while the y-axis indicates the daily number of deaths. Over this 75-year period, the number of deaths per day ranges from a low of 4,054 in 1950 to a high of 9,570 in 2021. Notable figures include 6,855 deaths in 2010 and 8,333 in 2024. The data shows a general upward trend in daily deaths over the decades, with recent years experiencing some fluctuations. This information is presented in a line graph format, effectively highlighting the long-term trends and yearly variations in daily deaths across the United States.
The displayed data on important values in life shows results of the Consumer Insights Global survey conducted in the United States in 2024. As of March 2024, some 50 percent of respondents stated that a happy relationship is among their 3 most important aspects in life. The survey was conducted in 2024, among 60,327 respondents.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of tornado-related fatalities in the United States from 2008 to 2024. The x-axis represents the years, abbreviated from ’08 to ’24, while the y-axis shows the number of deaths each year. Fatalities range from a low of 10 in 2018 to a peak of 553 in 2011. Most years have fatalities between 18 and 126, with notable exceptions in 2020 (76 deaths), 2021 (101 deaths), and 2023 (83 deaths). The data is presented in a bar graph format, highlighting the significant spike in fatalities in 2011 and the overall variability in tornado-related deaths over the 16-year period.
A collection of population life tables covering a multitude of countries and many years. Most of the HLD life tables are life tables for national populations, which have been officially published by national statistical offices. Some of the HLD life tables refer to certain regional or ethnic sub-populations within countries. Parts of the HLD life tables are non-official life tables produced by researchers. Life tables describe the extent to which a generation of people (i.e. life table cohort) dies off with age. Life tables are the most ancient and important tool in demography. They are widely used for descriptive and analytical purposes in demography, public health, epidemiology, population geography, biology and many other branches of science. HLD includes the following types of data: * complete life tables in text format; * abridged life tables in text format; * references to statistical publications and other data sources; * scanned copies of the original life tables as they were published. Three scientific institutions are jointly developing the HLD: the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, the Department of Demography at the University of California at Berkeley, USA and the Institut national d''��tudes d��mographiques (INED) in Paris, France. The MPIDR is responsible for maintaining the database.
National Records of Scotland Guidance;What is ‘period’ life expectancyAll of the estimates presented in this report are ‘period’ life expectancy. They are calculated assuming that mortality rates for each age group in the time period (here 2021-2023) are constant throughout a person’s life. Period life expectancy is often described as how long a baby born now could expect to live if they experienced today’s mortality rates throughout their lifetime. It is very unlikely that this would be the case as it means that future changes in things such as medicine and legislation are not taken into consideration.Period life expectancy is not an accurate prediction of how long a person born today will actually live, but it is a useful measure of population health at a point in time and is most useful for comparing trends over time, between areas of a country and with other countries.How national life expectancy is calculatedThe latest life expectancy figures are calculated from the mid-year population estimates for Scotland and the number of deaths registered in Scotland during 2021, 2022, and 2023. Life expectancy for Scotland is calculated for each year of age and represents the average number of years that someone of that age could expect to live if death rates for each age group remained constant over their lifetime. Life expectancy in Scotland is calculated as a three-year average, produced by combining deaths and population data for the three-year period. Three years of data are needed to provide large enough numbers to make these figures accurate and lessen the effect of very ‘good’ or ‘bad’ years. Throughout this publication, the latest life expectancy figures refer to 2021-2023 period. How sub-national life expectancy is calculatedWe calculate life expectancy for areas within Scotland using a very similar method to the national figures but with a few key differences. Firstly, we use age groups rather than single year of age. This is to increase the population size of each age group to reduce fluctuations and ensure accurate calculation of mortality rates. Secondly, we use a maximum age group of 90+ whereas the national figures are calculated up to age 100. These are known as ‘abridged life tables.’ Because these methods produce slightly different figures, we also calculate a Scotland figure using the abridged method to allow for accurate comparisons between local areas for example. This Scotland figure is only for comparison and does not replace the headline national figure. You can read more information about the methods in this publication in our methodology guide on the NRS website. Uses of life expectancyLife expectancy at birth is a very useful indicator of mortality conditions across a population at a particular point in time. It also provides an objective means of comparing trends in mortality over time, between areas of a country and with other countries. This is used to monitor and investigate health inequalities and to set public health targets. Life expectancy is also used to inform pensions policy, research and teaching.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Observers have long debated how societies should invest resources to safeguard citizens and property, especially in the face of increasing shocks and crises. This article explores how social infrastructure -the spaces and places that help build and maintain social ties and trust, allowing societies to coordinate behavior -plays an important role in our communities, especially in mitigating and recovering from shocks. An analysis of quantitative data on more than 550 neighborhoods across the three Japanese prefectures most affected by the tsunami of 11 March 2011 shows that, controlling for relevant factors, community centers, libraries, parks, and other social infrastructure measurably and cheaply reduced mortality rates among the most vulnerable population. Investing in social infrastructure projects would, based on this data, save more lives during a natural hazard than putting the same money into standard, gray infrastructure such as seawalls.Decision makers at national, regional, and local levels should expand spending on facilities such as libraries, community centers, social businesses, and public parks to increase resilience to multiple types of shocks and to further enhance the quality of life for residents.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
ART not only saves lives but also gives a chance for people living with HIV/AIDS to live long lives. Without ART very few infected people survive beyond ten years.1
Today, a person living in a high-income country who started ART in their twenties can expect to live for another 46 years — that is well into their 60s.2
While the life expectancy of people living with HIV/AIDS in high-income countries has still not reached the life expectancy of the general population, we are getting closer to this goal.3
The combination of antiretroviral drugs which make-up ART have progressively improved. Recent research shows that a person who started ART in the late 1990s would be expected to live ten years less than a person who started ART in 2008.4 This increase goes beyond the general increase in life expectancy in that period and reflects the improvements in ART — fewer side effects, more people following the prescribed treatment, and more support for the people in need of ART.
The transition from socialism to a market economy has transformed the lives of many people. What are people's perceptions and attitudes to transition? What are the current attitudes to market reforms and political institutions?
To analyze these issues, the EBRD and the World Bank have jointly conducted the comprehensive, region-wide "Life in Transition Survey" (LiTS), which combines traditional household survey features with questions about respondents' attitudes and is carried out through two-stage sampling with a random selection of households and respondents.
The LiTS assesses the impact of transition on people through their personal and professional experiences during the first 15 years of transition. LiTS attempts to understand how these personal experiences of transition relate to people’s attitudes toward market and political reforms, as well as their priorities for the future.
The main objective of the LiTS was to build on existing studies to provide a comprehensive assessment of relationships among life satisfaction and living standards, poverty and inequality, trust in state institutions, satisfaction with public services, attitudes to a market economy and democracy and to provide valuable insights into how transition has affected the lives of people across a region comprising 16 countries in Central and Eastern Europe (“CEE”) and 11 in the Commonwealth of Independent State (“CIS”). Turkey and Mongolia were also included in the survey.
The LITS was to be implemented in the following 29 countries: Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Former Yugoslav Republic of Macedonia (FYROM), Georgia, Hungary, Kazakhstan, Kyrgyz Republic, Latvia, Lithuania, Moldova, Mongolia, Poland, Romania, Russia, Serbia and Montenegro, Slovak Republic, Slovenia, Tajikistan, Turkey, Turkmenistan, Ukraine and Uzbekistan.
Sample survey data [ssd]
A total of 1,000 face-to-face household interviews per country were to be conducted, with adult (18 years and over) occupants and with no upper limit for age. The sample was to be nationally representative. The EBRD’s preferred procedure was a two stage sampling method, with census enumeration areas (CEA) as primary sampling units and households as secondary sampling units. To the extent possible, the EBRD wished the sampling procedure to apply no more than 2 stages.
The first stage of selection was to use as a sampling frame the list of CEA's generated by the most recent census. Ideally, 50 primary sampling units (PSU's) were to be selected from that sample frame, with probability proportional to size (PPS), using as a measure of size either the population, or the number of households.
The second sampling stage was to select households within each of the primary sampling units, using as a sampling frame a specially developed list of all households in each of the selected PSU's defined above. Households to be interviewed were to be selected from that list by systematic, equal probability sampling. Twenty households were to be selected in each of the 50 PSU's.
The individuals to be interviewed in each household were to be selected at random, within each of the selected households, with no substitution if possible.
ESTABLISHMENT OF THE SAMPLE FRAME OF PSU’s
In each country we established the most recent sample frame of PSU’s which would best serve the purposes of the LITS sampling methodology. Details of the PSU sample frames in each country are shown in table 1 (page 10) of the survey report.
In the cases of Armenia, Azerbaijan, Kazakhstan, Serbia and Uzbekistan, CEA’s were used. In Croatia we also used CEA’s but in this case, because the CEA’s were very small and we would not have been able to complete the targeted number of interviews within each PSU, we merged together adjoining CEA’s and constructed a sample of 1,732 Merged Enumeration Areas. The same was the case in Montenegro.
In Estonia, Hungary, Lithuania, Poland and the Slovak Republic we used Eurostat’s NUTS area classification system.
[NOTE: The NUTS (from the French "Nomenclature des territoriales statistiques" or in English ("Nomenclature of territorial units for statistics"), is a uniform and consistent system that runs on five different NUTS levels and is widely used for EU surveys including the Eurobarometer (a comparable survey to the Life in Transition). As a hierarchical system, NUTS subdivides the territory of the country into a defined number of regions on NUTS 1 level (population 3-7 million), NUTS 2 level (800,000-3 million) and NUTS 3 level (150,000-800,000). At a more detailed level NUTS 3 is subdivided into smaller units (districts and municipalities). These are called "Local Administrative Units" (LAU). The LAU is further divided into upper LAU (LAU1 - formerly NUTS 4) and LAU 2 (formerly NUTS 5).]
Albania, Bulgaria, the Czech Republic, Georgia, Moldova and Romania used the electoral register as the basis for the PSU sample frame. In the other cases, the PSU sample frame was chosen using either local geographical or administrative and territorial classification systems. The total number of PSU sample frames per country varied from 182 in the case of Mongolia to over 48,000 in the case of Turkey. To ensure the safety of our fieldworkers, we excluded from the sample frame PSU’s territories (in countries such as Georgia, Azerbaijan, Moldova, Russia, etc) in which there was conflict and political instability. We have also excluded areas which were not easily accessible due to their terrain or were sparsely populated.
In the majority of cases, the source for this information was the national statistical body for the country in question, or the relevant central electoral committee. In establishing the sample frames and to the extent possible, we tried to maintain a uniform measure of size namely, the population aged 18 years and over which was of more pertinence to the LITS methodology. Where the PSU was based on CEA’s, the measure was usually the total population, whereas the electoral register provided data on the population aged 18 years old and above, the normal voting age in all sampled countries. Although the NUTS classification provided data on the total population, we filtered, where possible, the information and used as a measure of size the population aged 18 and above. The other classification systems used usually measure the total population of a country. However, in the case of Azerbaijan, which used CEA’s, and Slovenia, where a classification system based on administrative and territorial areas was employed, the measure of size was the number of households in each PSU.
The accuracy of the PSU information was dependent, to a large extent, on how recently the data has been collected. Where the data were collected recently then the information could be considered as relatively accurate. However, in some countries we believed that more recent information was available, but because the relevant authorities were not prepared to share this with us citing secrecy reasons, we had no alternative than to use less up to date data. In some countries the age of the data available makes the figures less certain. An obvious case in point is Bosnia and Herzegovina, where the latest available figures date back to 1991, before the Balkan wars. The population figures available take no account of the casualties suffered among the civilian population, resulting displacement and subsequent migration of people.
Equally there have been cases where countries have experienced economic migration in recent years, as in the case of those countries that acceded to the European Union in May, 2004, such as Hungary, Poland and the Baltic states, or to other countries within the region e.g. Armenians to Russia, Albanians to Greece and Italy; the available figures may not accurately reflect this. And, as most economic migrants tend to be men, the actual proportion of females in a population was, in many cases, higher than the available statistics would suggest. People migration in recent years has also occurred from rural to urban areas in Albania and the majority of the Asian Republics, as well as in Mongolia on a continuous basis but in this case, because of the nomadic population of the country.
SAMPLING METHODOLOGY
Brief Overview
In broad terms the following sampling methodology was employed: · From the sample frame of PSU’s we selected 50 units · Within each selected PSU, we sampled 20 households, resulting in 1,000 interviews per country · Within each household we sampled 1 and sometimes 2 respondents The sampling procedures were designed to leave no free choice to the interviewers. Details on each of the above steps as well as country specific procedures adapted to suit the availability, depth and quality of the PSU information and local operational issues are described in the following sections.
Selection of PSU’s
The PSU’s of each country (all in electronic format) were sorted first into metropolitan, urban and rural areas (in that order), and within each of these categories by region/oblast/province in alphabetical order. This ensured a consistent sorting methodology across all countries and also that the randomness of the selection process could be supervised.
To select the 50 PSU’s from the sample frame of PSU’s, we employed implicit stratification and sampling was done with PPS. Implicit stratification ensured that the sample of PSU’s was spread across the primary categories of explicit variables and a better representation of the population, without actually stratifying the PSU’s thus, avoiding difficulties in calculating the sampling errors at a later stage. In brief, the PPS involved the
Life expectancy at birth is the average number of years a group of infants would live if they were to experience, throughout their lives, the age-specific death rates prevailing during a specified period. Life expectancy at birth estimates were calculated using abridged period life tables according to the Chiang method. Estimates are based on provisional data and subject to change. Unstable estimates are excluded and are defined as having confidence intervals greater than 6 years, i.e., +/-3.0 years. The average life expectancy of a population is one of the most basic and important measures of the health of a community. Life expectancy is heavily driven by the social determinants of health, including social, economic, and environmental conditions, with Black and low-income individuals experiencing much lower life expectancies compared to White and more affluent individuals.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
The Life in Transition Survey, after the crisis (LiTS II), is the second round of LiTS surveys, previously conducted in 2006 (LiTS I). In late 2006, the EBRD and World Bank carried out the first comprehensive survey of individuals and households across virtually the whole transition region. The purpose was to gain a better understanding of how people's lives had been shaped and affected by the upheavals of the previous 15 years.
Four years later, the EBRD and World Bank commissioned a second round of the survey. The circumstances facing most people were significantly different between the first and second rounds. The Life in Transition Survey I (LiTS I) was carried out at a time when the region's economies were, with few exceptions, growing strongly. In contrast, LiTS II took place in late 2010, at a time when most countries were still facing the aftershocks of a severe global economic crisis.
LiTS II advances and improves on LiTS I in two important ways. First, the questionnaire was substantially revised. The new questionnaire includes sections on the impact of the crisis and on climate change issues, as well as improved and expanded questions in areas such as corporate governance, public service delivery, and economic and social attitudes. Second, the coverage has been expanded to include five western European "comparator" countries - France, Germany, Italy, Sweden and the UK. This allows us to benchmark the transition region against some advanced market economies, thereby giving a clearer perspective on the remaining challenges facing transition countries.
The second Life in Transition Survey (LiTS II) was implemented in 30 transition countries (Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Former Yugoslav Republic of Macedonia (FYROM), Georgia, Hungary, Kazakhstan, Kyrgyz Republic, Latvia, Lithuania, Moldova, Mongolia, Montenegro, Poland, Romania, Russia, Serbia, Slovak Republic, Slovenia, Tajikistan, Turkey, Ukraine, Uzbekistan and Kosovo) as well as five comparator countries in western Europe (France, Germany, Italy, Sweden and the United Kingdom).
Sample survey data [ssd]
The sampling methodology was designed to make the sample nationally representative. In order to achieve this, a two-stage clustered stratified sampling procedure was used to select the households to be included in the sample. In 25 transition countries, France, Germany, Italy and Sweden, the survey was conducted face-to-face in 1,000 randomly chosen households. In Russia, Ukraine, Uzbekistan, Serbia, Poland and the United Kingdom there were 1,500 household interviews in order to allow for a reasonably large sample for a follow-up telephone survey, which will be based on a shortened version of the current questionnaire and which will be conducted one year after the face-to-face survey, i.e., in autumn 2011.
In the first stage of the sampling, sample frame of Primary Sampling Units were established. In all countries, the most recent available sample frame of Primary Sampling Units (PSUs) was selected as the starting point. Local electoral territorial units were used as PSUs wherever it was possible, as they tend to carry the most up-to-date information about household addresses. The following sampling frames were used:
Electoral districts: Bulgaria, Hungary, Poland, Romania, Serbia. Polling station territories: Albania, Armenia, Belarus, Bosnia and Herzegovina, Moldova, Montenegro. Census Enumeration Districts: Slovak Republic, Sweden, Tajikistan, Turkey. Geo-administrative divisions: the remaining countries.
The second stage in sampling consisted of selecting households within each PSU. The aim was to make sure that each household was selected with an equal probability within any given PSU and hence all households in the country had the same probability of being selected. Two sampling procedures were used. In the majority of countries, a random walk fieldwork procedure was used: the fieldwork coordinator selected the first address to be sampled, and the interviewer was given clear instructions on how to select remaining addresses within the PSUs. For a small number of countries - Hungary, Lithuania, Slovenia and Sweden and the United Kingdom - the sample was pre-selected to ensure that the probability of any household's inclusion was always equivalent to the probability generated by random selection.
The sampling procedures are more fully described in "Life in Transition Survey 2010 - Final Report" pp.114-115.
Face-to-face [f2f]
The questionnaire of LiST II includes sections on the impact of the crisis and on climate change issues, as well as improved and expanded questions in areas such as corporate governance, public service delivery, and economic and social attitudes.
There are 8 Sections in the questionnaire: Household Roster, Housing and Expenses, Attitudes and Values, Climate Change, Labour, Education and Entrepreneurial Activity, Governance, Miscellaneous Questions, and Impact of the Crisis.
The respondents of the questionnaire are the head of the households or other knowledgeable household members for section 1 and 8. For sections 3-7, the respondents are the people selected randomly by using selection grids.
The standard interview method called for each selected household to be visited at least three times before being replaced. In the majority of cases (79 percent), however, the interviews were completed on the first visit. In 61 percent of cases, the head of the household and the principal respondent were the same person; in the remaining 39 percent, two different interviews were required to be carried out in the same household.
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
The "https://addhealth.cpc.unc.edu/" Target="_blank">National Longitudinal Study of Adolescent to Adult Health (Add Health) is a longitudinal study of a nationally representative sample of adolescents in grades seven through 12 in the United States. The Add Health cohort has been followed into young adulthood with four in-home interviews, the most recent in 2008, when the sample was aged 24-32.* Add Health combines longitudinal survey data on respondents' social, economic, psychological and physical well-being with contextual data on the family, neighborhood, community, school, friendships, peer groups, and romantic relationships, providing unique opportunities to study how social environments and behaviors in adolescence are linked to health and achievement outcomes in young adulthood. The fourth wave of interviews expanded the collection of biological data in Add Health to understand the social, behavioral, and biological linkages in health trajectories as the Add Health cohort ages through adulthood. The fifth wave of data collection is planned to begin in 2016.
Initiated in 1994 and supported by three program project grants from the "https://www.nichd.nih.gov/" Target="_blank">Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) with co-funding from 23 other federal agencies and foundations, Add Health is the largest, most comprehensive longitudinal survey of adolescents ever undertaken. Beginning with an in-school questionnaire administered to a nationally representative sample of students in grades seven through 12, the study followed up with a series of in-home interviews conducted in 1995, 1996, 2001-02, and 2008. Other sources of data include questionnaires for parents, siblings, fellow students, and school administrators and interviews with romantic partners. Preexisting databases provide information about neighborhoods and communities.
Add Health was developed in response to a mandate from the U.S. Congress to fund a study of adolescent health, and Waves I and II focus on the forces that may influence adolescents' health and risk behaviors, including personal traits, families, friendships, romantic relationships, peer groups, schools, neighborhoods, and communities. As participants have aged into adulthood, however, the scientific goals of the study have expanded and evolved. Wave III, conducted when respondents were between 18 and 26** years old, focuses on how adolescent experiences and behaviors are related to decisions, behavior, and health outcomes in the transition to adulthood. At Wave IV, respondents were ages 24-32* and assuming adult roles and responsibilities. Follow up at Wave IV has enabled researchers to study developmental and health trajectories across the life course of adolescence into adulthood using an integrative approach that combines the social, behavioral, and biomedical sciences in its research objectives, design, data collection, and analysis.
* 52 respondents were 33-34 years old at the time of the Wave IV interview.
** 24 respondents were 27-28 years old at the time of the Wave III interview.
Wave IV was designed to study the developmental and health trajectories across the life course of adolescence into young adulthood. Biological data was gathered in an attempt to acquire a greater understanding of pre-disease pathways, with a specific focus on obesity, stress, and health risk behavior. Included in this dataset are the Wave IV live births data.
From 1950 to 2024, the cyclone Bhola that hit Bangladesh in 1970 was the deadliest natural disaster in the world. The exact death toll is impossible to calculate, but it is estimated that over 300,000 lives were lost as a result of the cyclone. The Tangshan earthquake in China in 1976 is estimated to have caused the second-highest number of fatalities. The Haiti earthquake The fifth-deadliest natural disaster during this period was the earthquake in Haiti in 2010. However, death tolls vary between 100,000 and 316,000, meaning that some estimates make it the deadliest natural disaster in the world since 1950, and the deadliest earthquake since 1900. Sixty percent of the country’s hospitals and eighty percent of the country’s schools were destroyed. It was the worst earthquake to hit the Caribbean in 200 years, with a magnitude of 7.0 at its epicenter only 25 kilometers away from Haiti’s capital, Port-au-Prince. Poor construction practices were to blame for many of the deaths; Haiti’s buildings were not earthquake resistant and were not built according to building code due to a lack of licensed building professionals. High population density was also to blame for the high number of fatalities. One fourth of the country’s inhabitants lived in the Port-au-Prince area, meaning half of the country’s population was directly affected by the earthquake. Increasing extreme weather As global warming continues to accelerate climate change, it is estimated that natural catastrophes such as cyclones, rainfalls, landslides, and heat waves will intensify in the coming years and decades. For instance, the economic losses caused by natural disasters worldwide increased since 2015. Moreover, it is expected that countries in the Global South will be affected the most by climate change in the coming years, and many of these are already feeling the impact of climate change.
This multi-scale map shows life expectancy - a widely-used measure of health and mortality. From the County Health Rankings page about Life Expectancy:"Life Expectancy is an AverageLife Expectancy measures the average number of years from birth a person can expect to live, according to the current mortality experience (age-specific death rates) of the population. Life Expectancy takes into account the number of deaths in a given time period and the average number of people at risk of dying during that period, allowing us to compare data across counties with different population sizes.Life Expectancy is Age-AdjustedAge is a non-modifiable risk factor, and as age increases, poor health outcomes are more likely. Life Expectancy is age-adjusted in order to fairly compare counties with differing age structures.What Deaths Count Toward Life Expectancy?Deaths are counted in the county where the individual lived. So, even if an individual dies in a car crash on the other side of the state, that death is attributed to his/her home county.Some Data are SuppressedA missing value is reported for counties with fewer than 5,000 population-years-at-risk in the time frame.Measure LimitationsLife Expectancy includes mortality of all age groups in a population instead of focusing just on premature deaths and thus can be dominated by deaths of the elderly.[1] This could draw attention to areas with higher mortality rates among the oldest segment of the population, where there may be little that can be done to change chronic health problems that have developed over many years. However, this captures the burden of chronic disease in a population better than premature death measures.[2]Furthermore, the calculation of life expectancy is complex and not easy to communicate. Methodologically, it can produce misleading results caused by hidden differences in age structure, is sensitive to infant and child mortality, and tends to be overestimated in small populations."Breakdown by race/ethnicity in pop-up: (This map has been updated with new data, so figures may vary from those in this image.)There are many factors that play into life expectancy: rates of noncommunicable diseases such as cancer, diabetes, and obesity, prevalence of tobacco use, prevalence of domestic violence, and many more.Proven strategies to improve life expectancy and health in general A database of dozens of strategies can be found at County Health Rankings' What Works for Health site, sorted by Health Behaviors, Clinical Care, Social & Economic Factors, and Physical Environment. Policies and Programs listed here have been evaluated as to their effectiveness. For example, consumer-directed health plans received an evidence rating of "mixed evidence" whereas cultural competence training for health care professionals received a rating of "scientifically supported." Data from County Health Rankings (layer referenced below), available for nation, state, and county, and available in ArcGIS Living Atlas of the World.
The American Civil War is the conflict with the largest number of American military fatalities in history. In fact, the Civil War's death toll is comparable to all other major wars combined, the deadliest of which were the World Wars, which have a combined death toll of more than 520,000 American fatalities. The ongoing series of conflicts and interventions in the Middle East and North Africa, collectively referred to as the War on Terror in the west, has a combined death toll of more than 7,000 for the U.S. military since 2001. Other records In terms of the number of deaths per day, the American Civil War is still at the top, with an average of 425 deaths per day, while the First and Second World Wars have averages of roughly 100 and 200 fatalities per day respectively. Technically, the costliest battle in U.S. military history was the Battle of Elsenborn Ridge, which was a part of the Battle of the Bulge in the Second World War, and saw upwards of 5,000 deaths over 10 days. However, the Battle of Gettysburg had more military fatalities of American soldiers, with almost 3,200 Union deaths and over 3,900 Confederate deaths, giving a combined total of more than 7,000. The Battle of Antietam is viewed as the bloodiest day in American military history, with over 3,600 combined fatalities and almost 23,000 total casualties on September 17, 1862. Revised Civil War figures For more than a century, the total death toll of the American Civil War was generally accepted to be around 620,000, a number which was first proposed by Union historians William F. Fox and Thomas L. Livermore in 1888. This number was calculated by using enlistment figures, battle reports, and census data, however many prominent historians since then have thought the number should be higher. In 2011, historian J. David Hacker conducted further investigations and claimed that the number was closer to 750,000 (and possibly as high as 850,000). While many Civil War historians agree that this is possible, and even likely, obtaining consistently accurate figures has proven to be impossible until now; both sides were poor at keeping detailed records throughout the war, and much of the Confederacy's records were lost by the war's end. Many Confederate widows also did not register their husbands death with the authorities, as they would have then been ineligible for benefits.