As of June 2024, the most popular database management system (DBMS) worldwide was Oracle, with a ranking score of 1244.08; MySQL and Microsoft SQL server rounded out the top three. Although the database management industry contains some of the largest companies in the tech industry, such as Microsoft, Oracle and IBM, a number of free and open-source DBMSs such as PostgreSQL and MariaDB remain competitive. Database Management Systems As the name implies, DBMSs provide a platform through which developers can organize, update, and control large databases. Given the business world’s growing focus on big data and data analytics, knowledge of SQL programming languages has become an important asset for software developers around the world, and database management skills are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.
As of June 2024, the most popular open-source database management system (DBMS) in the world was MySQL, with a ranking score of 1061. Oracle was the most popular commercial DBMS at that time, with a ranking score of 1244.
As of June 2024, the most popular relational database management system (RDBMS) worldwide was Oracle, with a ranking score of 1244.08. Oracle was also the most popular DBMS overall. MySQL and Microsoft SQL server rounded out the top three.
As of December 2022, relational database management systems (RDBMS) were the most popular type of DBMS, accounting for a 72 percent popularity share. The most popular RDBMS in the world has been reported as Oracle, while MySQL and Microsoft SQL server rounded out the top three.
Approximately 82 percent of the surveyed software companies in Russia mentioned PostgreSQL, making it the most popular database management system (DBMS) in the period between February and May 2022. MS SQL and MySQL followed, having been mentioned by 47 percent and 41 percent of respondents, respectively.
As of November 2023, commercial database management systems (DBMSs) are slightly less popular than open source DBMSs, however, both have accumulated similar amounts of ranking scores. The most popular DBMS in the world was Oracle, a commercial system; open source system MySQL and Microsoft SQL server, another commercial system, rounded out the top three.
Oracle’s cloud services and license support division is the company’s most profitable business segment, bringing in over 39 billion U.S. dollars in its 2024 fiscal year. In that year, Oracle brought in annual revenue of close to 52 billion U.S. dollars, its highest revenue figure to date. Oracle Corporation Oracle was founded by Larry Ellison in 1977 as a tech company primarily focused on relational databases. Today, Oracle ranks among the largest companies in the world in terms of market value and serves as the world’s most popular database management system provider. Oracle’s success is not only reflected in its booming sales figures, but also in its growing number of employees: between fiscal year 2008 and 2021, Oracle’s total employee number has grown substantially, increasing from around 84,000 to 132,000. Database market The global database market reached a size of 65 billion U.S. dollars in 2020. Database Management Systems (DBMSs) provide a platform through which developers can organize, update, and control large databases, with products like Oracle, MySQL, and Microsoft SQL Server being the most widely used in the market.
In 2023, over 45 percent of surveyed software developers worldwide reported using PostgreSQL, the highest share of any database technology. Other popular database tools among developers included MySQL and SQLite.
The global database management system (DBMS) market revenue grew to 80 billion U.S. dollars in 2020. Cloud DBMS accounted for the majority of the overall market growth, as database systems are migrating to cloud platforms.
Database market
The database market consists of paid database software such as Oracle and Microsoft SQL Server, as well as free, open-source software options like PostgreSQL and MongolDB. Database Management Systems (DBMSs) provide a platform through which developers can organize, update, and control large databases, with products like Oracle, MySQL, and Microsoft SQL Server being the most widely used in the market.
Database management software
Knowledge of the programming languages related to these databases is becoming an increasingly important asset for software developers around the world, and database management skills such as MongoDB and Elasticsearch are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
South Ossetia and Abkhazia were not included for the safety of the interviewers. In addition, very remote mountainous villages or those with less than 100 inhabitants were also excluded. The excluded areas represent approximately 8 percent of the total population.
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for Georgia is 1000.
Face-to-face [f2f]
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
Amazon AWS - Cloud Platforms & Services
Companies using Amazon AWS
We have data on 1,070,574 companies that use Amazon AWS. The companies using Amazon AWS are most often found in United States and in the Computer Software industry. Amazon AWS is most often used by companies with 10-50 employees and 1M-10M dollars in revenue. Our data for Amazon AWS usage goes back as far as 2 years and 1 months.
What is Amazon AWS?
Amazon Web Services (AWS) is a collection of remote computing services, also called web services that make up a cloud computing platform offered by Amazon.com.
Top Industries that use Amazon AWS
Looking at Amazon AWS customers by industry, we find that Computer Software (6%) is the largest segment.
Distribution of companies using Amazon AWS by Industry
Computer software - 67, 537 companies Hospitals & Healthcare - 54, 293 companies Retail - 39, 543 companies Information Technology and Services - 35, 382 companies Real Estate - 31, 676 companies Restaurants - 30, 302 companies Construction - 29, 207 companies Automotive - 28, 469 companies Financial Services - 23, 680 companies Education Management - 21, 548 companies
Top Countries that use Amazon AWS
49% of Amazon AWS customers are in United States and 7% are in United Kingdom.
Distribution of companies using Amazon AWS by country
United Sates – 616 2275 companies United Kingdom – 68 219 companies Australia – 44 601 companies Canada – 42 770 companies Germany – 31 541 companies India – 30 949 companies Netherlands – 19 543 companies Brazil – 17 165 companies Italy – 14 876 companies Spain – 14 675 companies
Contact Information of Fields Include:-
• Company Name
• Business contact number
• Title
• Name
• Email Address
• Country, State, City, Zip Code
• Phone, Mobile and Fax
• Website
• Industry
• SIC & NAICS Code
• Employees Size
• Revenue Size
• And more…
Why Buy AWS Users List from DataCaptive?
• More than 1,070,574 companies
• Responsive database
• Customizable as per your requirements
• Email and Tele-verified list
• Team of 100+ market researchers
• Authentic data sources
What’s in for you?
Over choosing us, here are a few advantages we authenticate-
• Locate, target, and prospect leads from 170+ countries • Design and execute ABM and multi-channel campaigns • Seamless and smooth pre-and post-sale customer service • Connect with old leads and build a fruitful customer relationship • Analyze the market for product development and sales campaigns • Boost sales and ROI with increased customer acquisition and retention
Our security compliance
We use of globally recognized data laws like –
GDPR, CCPA, ACMA, EDPS, CAN-SPAM and ANTI CAN-SPAM to ensure the privacy and security of our database. We engage certified auditors to validate our security and privacy by providing us with certificates to represent our security compliance.
Our USPs- what makes us your ideal choice?
At DataCaptive™, we strive consistently to improve our services and cater to the needs of businesses around the world while keeping up with industry trends.
• Elaborate data mining from credible sources • 7-tier verification, including manual quality check • Strict adherence to global and local data policies • Guaranteed 95% accuracy or cash-back • Free sample database available on request
Guaranteed benefits of our Amazon AWS users email database!
85% email deliverability and 95% accuracy on other data fields
We understand the importance of data accuracy and employ every avenue to keep our database fresh and updated. We execute a multi-step QC process backed by our Patented AI and Machine learning tools to prevent anomalies in consistency and data precision. This cycle repeats every 45 days. Although maintaining 100% accuracy is quite impractical, since data such as email, physical addresses, and phone numbers are subjected to change, we guarantee 85% email deliverability and 95% accuracy on other data points.
100% replacement in case of hard bounces
Every data point is meticulously verified and then re-verified to ensure you get the best. Data Accuracy is paramount in successfully penetrating a new market or working within a familiar one. We are committed to precision. However, in an unlikely event where hard bounces or inaccuracies exceed the guaranteed percentage, we offer replacement with immediate effect. If need be, we even offer credits and/or refunds for inaccurate contacts.
Other promised benefits
• Contacts are for the perpetual usage • The database comprises consent-based opt-in contacts only • The list is free of duplicate contacts and generic emails • Round-the-clock customer service assistance • 360-degree database solutions
The Alaska Geochemical Database Version 3.0 (AGDB3) contains new geochemical data compilations in which each geologic material sample has one best value determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska Geochemical Database Version 2.0 before it, the AGDB3 was created and designed to compile and integrate geochemical data from Alaska to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, element concentrations and associations, environmental impact assessments, and studies in public health associated with geology. This relational database, created from databases and published datasets of the U.S. Geological Survey (USGS), Atomic Energy Commission National Uranium Resource Evaluation (NURE), Alaska Division of Geological & Geophysical Surveys (DGGS), U.S. Bureau of Mines, and U.S. Bureau of Land Management serves as a data archive in support of Alaskan geologic and geochemical projects and contains data tables in several different formats describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 112 laboratory and field analytical methods on 396,343 rock, sediment, soil, mineral, heavy-mineral concentrate, and oxalic acid leachate samples. Most samples were collected by personnel of these agencies and analyzed in agency laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various agency programs and projects from 1938 through 2017. In addition, mineralogical data from 18,138 nonmagnetic heavy-mineral concentrate samples are included in this database. The AGDB3 includes historical geochemical data archived in the USGS National Geochemical Database (NGDB) and NURE National Uranium Resource Evaluation-Hydrogeochemical and Stream Sediment Reconnaissance databases, and in the DGGS Geochemistry database. Retrievals from these databases were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. In other words, the data of the AGDB3 supersedes data in the AGDB and the AGDB2, but the background about the data in these two earlier versions are needed by users of the current AGDB3 to understand what has been done to amend, clean up, correct and format this data. Corrections were entered, resulting in a significantly improved Alaska geochemical dataset, the AGDB3. Data that were not previously in these databases because the data predate the earliest agency geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB3 and will be added to the NGDB and Alaska Geochemistry. The AGDB3 data provided here are the most accurate and complete to date and should be useful for a wide variety of geochemical studies. The AGDB3 data provided in the online version of the database may be updated or changed periodically.
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
Sample excludes three provinces in the Southregion (Narathiwat, Pattani, and Yala) for security reasons as wellas a few districts in otherprovinces. The excluded areas represent less than 4% of the population.
Individual
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size was 1000.
Face-to-face [f2f]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
The statistic displays the most popular SQL databases used by software developers worldwide, as of April 2015. According to the survey, 64 percent of software developers were using MySQL, an open-source relational database management system (RDBMS).
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
National coverage
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for Belgium is 1012.
Landline and mobile telephone
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Climate Database (NCDB) is a high resolution, bias-corrected climate dataset consisting of the three most widely used variables of solar radiation- global horizontal (GHI), direct normal (DNI), and diffuse horizontal irradiance (DHI)- as well as other meteorological data. The goal of the NCDB is to provide unbiased high temporal and spatial resolution climate data needed for renewable energy modeling.
The NCDB is modeled using a statistical downscaling approach with Regional Climate Model (RCM)-based climate projections obtained from the North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX; linked below). Daily climate projections simulated by the Canadian Regional Climate Model 4 (CanRCM4) forced by the second-generation Canadian Earth System Model (CanESM2) for two Representative Concentration Pathways (RCP4.5 or moderate emissions scenario and RCP8.5 or highest baseline emission scenario) are selected as inputs to the statistical downscaling models. The National Solar Radiation Database (NSRDB) is used to build and calibrate statistical models.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
CottonGen (https://www.cottongen.org) is a curated and integrated web-based relational database providing access to publicly available genomic, genetic and breeding data to enable basic, translational and applied research in cotton. Built using the open-source Tripal database infrastructure, CottonGen supersedes CottonDB and the Cotton Marker Database, which includes sequences, genetic and physical maps, genotypic and phenotypic markers and polymorphisms, quantitative trait loci (QTLs), pathogens, germplasm collections and trait evaluations, pedigrees, and relevant bibliographic citations, with enhanced tools for easier data sharing, mining, visualization, and data retrieval of cotton research data. CottonGen contains annotated whole genome sequences, unigenes from expressed sequence tags (ESTs), markers, trait loci, genetic maps, genes, taxonomy, germplasm, publications and communication resources for the cotton community. Annotated whole genome sequences of Gossypium raimondii are available with aligned genetic markers and transcripts. These whole genome data can be accessed through genome pages, search tools and GBrowse, a popular genome browser. Most of the published cotton genetic maps can be viewed and compared using CMap, a comparative map viewer, and are searchable via map search tools. Search tools also exist for markers, quantitative trait loci (QTLs), germplasm, publications and trait evaluation data. CottonGen also provides online analysis tools such as NCBI BLAST and Batch BLAST. This project is funded/supported by Cotton Incorporated, the USDA-ARS Crop Germplasm Research Unit at College Station, TX, the Southern Association of Agricultural Experiment Station Directors, Bayer CropScience, Corteva/Agriscience, Dow/Phytogen, Monsanto, Washington State University, and NRSP10. Resources in this dataset:Resource Title: Website Pointer for CottonGen. File Name: Web Page, url: https://www.cottongen.org/ Genomic, Genetic and Breeding Resources for Cotton Research Discovery and Crop Improvement organized by :
Species (Gossypium arboreum, barbadense, herbaceum, hirsutum, raimondii, others), Data (Contributors, Download, Submission, Community Projects, Archives, Cotton Trait Ontology, Nomenclatures, and links to Variety Testing Data and NCBISRA Datasets), Search options (Colleague, Genes and Transcripts, Genotype, Germplasm, Map, Markers, Publications, QTLs, Sequences, Trait Evaluation, MegaSearch), Tools (BIMS, BLAST+, CottonCyc, JBrowse, Map Viewer, Primer3, Sequence Retrieval, Synteny Viewer), International Cotton Genome Initiative (ICGI), and Help sources (User manual, FAQs).
Also provides Quick Start links for Major Species and Tools.
The dataset was created for video quality assessment problem. It was formed with 36 clips from Vimeo, which were selected from 18,000+ open-source clips with high bitrate (license CCBY or CC0).
The clips include videos recorded by both professionals and amateurs. Almost half of the videos contain scene changes and high dynamism. Moreover, the synthetic to natural lightning ratio is approximately 1 to 3.
Content type: nature, sport, humans close up, gameplays, music videos, water stream or steam, CGI Effects and distortions: shaking, slow-motion, grain/noisy, too dark/bright regions, macro shooting, captions (text), extraneous objects on the camera lens or just close to it Resolution: 1920x1080 as the most popular modern video resolution (more in the future) Format: yuv420p FPS: 24, 25, 30, 39, 50, 60 Videos duration: mainly 10 seconds
Such content diversity helps simulate near-realistic conditions. The choice of videos collected for the benchmark dataset employed clustering in terms of space-time complexity to obtain a representative distribution.
For compression we used 40 codecs of 10 compression standards (H.264, AV1, H.265, VVC, etc.). Each video was compressed with 3 target bitrates: 1,000 Kbps, 2,000 Kbps, and 4,000 Kbps, and different real-life encoding modes: constant quality (CRF) and variable bitrate (VBR). The choice of bitrate range simplifies the subjective comparison procedure since the video quality is more difficult to distinguish visually at higher bitrates.
The subjective assessment involved pairwise comparisons using crowdsourcing service Subjectify.us. To increase the relevance of the results, each pair of videos received at least 10 responses from participants. In total, 766362 valid answers were collected from more than 10800 unique participants.
This dataset includes bibliographic information for 501 papers that were published from 2010-April 2017 (time of search) and use online biodiversity databases for research purposes. Our overarching goal in this study is to determine how research uses of biodiversity data developed during a time of unprecedented growth of online data resources. We also determine uses with the highest number of citations, how online occurrence data are linked to other data types, and if/how data quality is addressed. Specifically, we address the following questions:
1.) What primary biodiversity databases have been cited in published research, and which
databases have been cited most often?
2.) Is the biodiversity research community citing databases appropriately, and are
the cited databases currently accessible online?
3.) What are the most common uses, general taxa addressed, and data linkages, and how
have they changed over time?
4.) What uses have the highest impact, as measured through the mean number of citations
per year?
5.) Are certain uses applied more often for plants/invertebrates/vertebrates?
6.) Are links to specific data types associated more often with particular uses?
7.) How often are major data quality issues addressed?
8.) What data quality issues tend to be addressed for the top uses?
Relevant papers for this analysis include those that use online and openly accessible primary occurrence records, or those that add data to an online database. Google Scholar (GS) provides full-text indexing, which was important to identify data sources that often appear buried in the methods section of a paper. Our search was therefore restricted to GS. All authors discussed and agreed upon representative search terms, which were relatively broad to capture a variety of databases hosting primary occurrence records. The terms included: “species occurrence” database (8,800 results), “natural history collection” database (634 results), herbarium database (16,500 results), “biodiversity database” (3,350 results), “primary biodiversity data” database (483 results), “museum collection” database (4,480 results), “digital accessible information” database (10 results), and “digital accessible knowledge” database (52 results)--note that quotations are used as part of the search terms where specific phrases are needed in whole. We downloaded all records returned by each search (or the first 500 if there were more) into a Zotero reference management database. About one third of the 2500 papers in the final dataset were relevant. Three of the authors with specialized knowledge of the field characterized relevant papers using a standardized tagging protocol based on a series of key topics of interest. We developed a list of potential tags and descriptions for each topic, including: database(s) used, database accessibility, scale of study, region of study, taxa addressed, research use of data, other data types linked to species occurrence data, data quality issues addressed, authors, institutions, and funding sources. Each tagged paper was thoroughly checked by a second tagger.
The final dataset of tagged papers allow us to quantify general areas of research made possible by the expansion of online species occurrence databases, and trends over time. Analyses of this data will be published in a separate quantitative review.
Success.ai’s Company Data Solutions provide businesses with powerful, enterprise-ready B2B company datasets, enabling you to unlock insights on over 28 million verified company profiles. Our solution is ideal for organizations seeking accurate and detailed B2B contact data, whether you’re targeting large enterprises, mid-sized businesses, or small business contact data.
Success.ai offers B2B marketing data across industries and geographies, tailored to fit your specific business needs. With our white-glove service, you’ll receive curated, ready-to-use company datasets without the hassle of managing data platforms yourself. Whether you’re looking for UK B2B data or global datasets, Success.ai ensures a seamless experience with the most accurate and up-to-date information in the market.
Why Choose Success.ai’s Company Data Solution? At Success.ai, we prioritize quality and relevancy. Every company profile is AI-validated for a 99% accuracy rate and manually reviewed to ensure you're accessing actionable and GDPR-compliant data. Our price match guarantee ensures you receive the best deal on the market, while our white-glove service provides personalized assistance in sourcing and delivering the data you need.
Why Choose Success.ai?
Our database spans 195 countries and covers 28 million public and private company profiles, with detailed insights into each company’s structure, size, funding history, and key technologies. We provide B2B company data for businesses of all sizes, from small business contact data to large corporations, with extensive coverage in regions such as North America, Europe, Asia-Pacific, and Latin America.
Comprehensive Data Points: Success.ai delivers in-depth information on each company, with over 15 data points, including:
Company Name: Get the full legal name of the company. LinkedIn URL: Direct link to the company's LinkedIn profile. Company Domain: Website URL for more detailed research. Company Description: Overview of the company’s services and products. Company Location: Geographic location down to the city, state, and country. Company Industry: The sector or industry the company operates in. Employee Count: Number of employees to help identify company size. Technologies Used: Insights into key technologies employed by the company, valuable for tech-based outreach. Funding Information: Track total funding and the most recent funding dates for investment opportunities. Maximize Your Sales Potential: With Success.ai’s B2B contact data and company datasets, sales teams can build tailored lists of target accounts, identify decision-makers, and access real-time company intelligence. Our curated datasets ensure you’re always focused on high-value leads—those who are most likely to convert into clients. Whether you’re conducting account-based marketing (ABM), expanding your sales pipeline, or looking to improve your lead generation strategies, Success.ai offers the resources you need to scale your business efficiently.
Tailored for Your Industry: Success.ai serves multiple industries, including technology, healthcare, finance, manufacturing, and more. Our B2B marketing data solutions are particularly valuable for businesses looking to reach professionals in key sectors. You’ll also have access to small business contact data, perfect for reaching new markets or uncovering high-growth startups.
From UK B2B data to contacts across Europe and Asia, our datasets provide global coverage to expand your business reach and identify new markets. With continuous data updates, Success.ai ensures you’re always working with the freshest information.
Key Use Cases:
As of June 2024, the most popular database management system (DBMS) worldwide was Oracle, with a ranking score of 1244.08; MySQL and Microsoft SQL server rounded out the top three. Although the database management industry contains some of the largest companies in the tech industry, such as Microsoft, Oracle and IBM, a number of free and open-source DBMSs such as PostgreSQL and MariaDB remain competitive. Database Management Systems As the name implies, DBMSs provide a platform through which developers can organize, update, and control large databases. Given the business world’s growing focus on big data and data analytics, knowledge of SQL programming languages has become an important asset for software developers around the world, and database management skills are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.