Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 126 Cities in the Montana by Hispanic Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each Cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
https://www.montana-demographics.com/terms_and_conditionshttps://www.montana-demographics.com/terms_and_conditions
A dataset listing the 20 richest cities in Montana for 2024, including information on rank, city, county, population, average income, and median income.
Population and Housing data for Census Places (cities, towns, CDPs) within the State of Montana was compiled from the PL 94-171 Redistricting Summary files released by the U.S. Census Bureau for the 2020 Decennial Census. This data set was created by the Montana Department of Commerce for use by the citizens of Montana and the general public. TIGER shapefiles were joined to the tabular summary file data to create this data set. A subset of variables from the release were selected for this dataset. A description of each variable and calculations are provided here.
VINTAGE - Decennial Census vintage year - Calculation
SUMLEV - Geography summary level - Calculation
GEOID - Geography ID - Calculation
NAME - Geography Name - Calculation
AREALAND - Area of land in square meters - Calculation
AREAWATR - Area of water in square meters - Calculation
INTPTLAT - Geography point latitude - Calculation
INTPTLON - Geography point longitude - Calculation
POPTOT - Population Total - Calculation P0010001
POPPCAP - Population per square mile - Calculation P0010001 / (AREALAND / 2589988.110336)
POPWH - Population White alone - Calculation P0010003
POPBL - Population Black alone - Calculation P0010004
POPAI - Population American Indian or Alaska Native alone - Calculation P0010005
POPAS - Population Asian alone - Calculation P0010006
POPNH - Population Native Hawaiian or Pacific Islander alone - Calculation P0010007
POPOT - Population Some other Race alone - Calculation P0010008
POP2MO - Population 2 or more races - Calculation P0010009
POPWHPCT - Population White alone percent - Calculation P0010003 / P0010001 * 100
POPBLPCT - Population Black alone percent - Calculation P0010004 / P0010001 * 100
POPAIPCT - Population American Indian or Alaska Native alone percent - Calculation P0010005 / P0010001 * 100
POPASPCT - Population Asian alone percent - Calculation P0010006 / P0010001 * 100
POPNHPCT - Population Native Hawaiian or Pacific Islander alone percent - Calculation P0010007 / P0010001 * 100
POPOTPCT - Population Some other Race alone percent - Calculation P0010008 / P0010001 * 100
POP2MOPCT - Population 2 or more races percent - Calculation P0010009 / P0010001 * 100
POPWHC - Population White alone or in combination - Calculation P0010003+ P00100011+ P00100012+ P00100013+ P00100014+ P00100015+ P0010027+ P0010028+ P0010029+ P00100030+ P00100031+ P00100032+ P00100033+ P00100034+ P00100035+ P00100036+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100054+ P00100055+ P00100056+ P00100057+ P00100064+ P00100065+ P00100066+ P00100067+ P00100068+ P00100071
POPBLC - Population Black alone or in combination - Calculation P0010004+ P00100011+ P00100016+ P00100017+ P00100018+ P00100019+ P0010027+ P0010028+ P0010029+ P00100030+ P00100037+ P00100038+ P00100039+ P00100040+ P00100041+ P00100042+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100058+ P00100059+ P00100060+ P00100061+ P00100064+ P00100065+ P00100066+ P00100067+ P00100069+ P00100071
POPAIC - Population American Indian or Alaska Native alone or in combination - Calculation P0010005+ P00100012+ P00100016+ P0010020+ P0010021+ P0010022+ P0010027+ P00100031+ P00100032+ P00100033+ P00100037+ P00100038+ P00100039+ P00100043+ P00100044+ P00100045+ P00100048+ P00100049+ P00100050+ P00100054+ P00100055+ P00100056+ P00100058+ P00100059+ P00100060+ P00100062+ P00100064+ P00100065+ P00100066+ P00100068+ P00100069+ P00100071
POPASC - Population Asian alone or in combination - Calculation P0010006+ P00100013+ P00100017+ P0010020+ P0010023+ P0010024+ P0010028+ P00100031+ P00100034+ P00100035+ P00100037+ P00100040+ P00100041+ P00100043+ P00100044+ P00100046+ P00100048+ P00100051+ P00100052+ P00100054+ P00100055+ P00100057+ P00100058+ P00100059+ P00100061+ P00100062+ P00100064+ P00100065+ P00100067+ P00100068+ P00100069+ P00100071
POPNHC - Population Native Hawaiian or Pacific Islander alone or in combination - Calculation P0010007+ P00100014+ P00100018+ P0010021+ P0010023+ P0010025+ P0010029+ P00100032+ P00100034+ P00100036+ P00100038+ P00100040+ P00100042+ P00100043+ P00100045+ P00100046+ P00100049+ P00100051+ P00100053+ P00100054+ P00100056+ P00100057+ P00100058+ P00100060+ P00100061+ P00100062+ P00100064+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071
POPOTC - Population Some Other Race alone or in combination - Calculation P0010008+ P00100015+ P00100019+ P0010022+ P0010024+ P0010025+ P00100030+ P00100033+ P00100035+ P00100036+ P00100039+ P00100041+ P00100042+ P00100044+ P00100045+ P00100046+ P00100050+ P00100052+ P00100053+ P00100055+ P00100056+ P00100057+ P00100059+ P00100060+ P00100061+ P00100062+ P00100065+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071
POPWHCPCT - Population White alone or in combination percent - Calculation (P0010003+ P00100011+ P00100012+ P00100013+ P00100014+ P00100015+ P0010027+ P0010028+ P0010029+ P00100030+ P00100031+ P00100032+ P00100033+ P00100034+ P00100035+ P00100036+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100054+ P00100055+ P00100056+ P00100057+ P00100064+ P00100065+ P00100066+ P00100067+ P00100068+ P00100071)/ P0010001 * 100
POPBLCPCT - Population Black alone or in combination percent - Calculation (P0010004+ P00100011+ P00100016+ P00100017+ P00100018+ P00100019+ P0010027+ P0010028+ P0010029+ P00100030+ P00100037+ P00100038+ P00100039+ P00100040+ P00100041+ P00100042+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100058+ P00100059+ P00100060+ P00100061+ P00100064+ P00100065+ P00100066+ P00100067+ P00100069+ P00100071)/ P0010001 * 100
POPAICPCT - Population American Indian or Alaska Native alone or in combination percent - Calculation (P0010005+ P00100012+ P00100016+ P0010020+ P0010021+ P0010022+ P0010027+ P00100031+ P00100032+ P00100033+ P00100037+ P00100038+ P00100039+ P00100043+ P00100044+ P00100045+ P00100048+ P00100049+ P00100050+ P00100054+ P00100055+ P00100056+ P00100058+ P00100059+ P00100060+ P00100062+ P00100064+ P00100065+ P00100066+ P00100068+ P00100069+ P00100071)/ P0010001 * 100
POPASCPCT - Population Asian alone or in combination percent - Calculation (P0010006+ P00100013+ P00100017+ P0010020+ P0010023+ P0010024+ P0010028+ P00100031+ P00100034+ P00100035+ P00100037+ P00100040+ P00100041+ P00100043+ P00100044+ P00100046+ P00100048+ P00100051+ P00100052+ P00100054+ P00100055+ P00100057+ P00100058+ P00100059+ P00100061+ P00100062+ P00100064+ P00100065+ P00100067+ P00100068+ P00100069+ P00100071)/ P0010001 * 100
POPNHCPCT - Population Native Hawaiian or Pacific Islander alone or in combination percent - Calculation (P0010007+ P00100014+ P00100018+ P0010021+ P0010023+ P0010025+ P0010029+ P00100032+ P00100034+ P00100036+ P00100038+ P00100040+ P00100042+ P00100043+ P00100045+ P00100046+ P00100049+ P00100051+ P00100053+ P00100054+ P00100056+ P00100057+ P00100058+ P00100060+ P00100061+ P00100062+ P00100064+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071)/ P0010001 * 100
POPOTCPCT - Population Some Other Race alone or in combination percent - Calculation (P0010008+ P00100015+ P00100019+ P0010022+ P0010024+ P0010025+ P00100030+ P00100033+ P00100035+ P00100036+ P00100039+ P00100041+ P00100042+ P00100044+ P00100045+ P00100046+ P00100050+ P00100052+ P00100053+ P00100055+ P00100056+ P00100057+ P00100059+ P00100060+ P00100061+ P00100062+ P00100065+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071)/ P0010001 * 100
POPHSP - Population Hispanic - Calculation P0020002
POPNHSP - Population Non-Hispanic - Calculation P0020003
POPHSPPCT - Population Hispanic percent - Calculation P0020002 / P0010001 * 100
POPNHSPPCT - Population Non-Hispanic percent - Calculation P0020003 / P0010001 * 100
POP18OV - Population 18 years and over - Calculation P0030001
POP18OVPCT - Population 18 years and over percent - Calculation P0030001 / P0010001 * 100
HUTOT - Housing Units Total - Calculation H0010001
HUOCC - Housing Units Occupied - Calculation H0010002
HUVAC - Housing Units Vacant - Calculation H0010003
HUOCCPCT - Housing Units Occupied percent - Calculation H0010002 / H0010001 * 100
HUVACPCT - Housing Units Vacant percent - Calculation H0010003 / H0010001 * 100
POPGQ - Population Group Quarters - Calculation P0050001
POPGQIN - Population Group Quarters - Institutionalized - Calculation P0050002
POPGQNI - Population Group Quarters - Non-Institutionalized - Calculation P0050007
POPGQPCT - Population Group Quarters percent - Calculation P0050001 / P0010001 * 100
POPGQINPCT - Population Group Quarters - Institutionalized percent - Calculation P0050002 / P0010001 * 100
POPGQNIPCT - Population Group Quarters - Non-Institutionalized percent - Calculation P0050007 / P0010001 * 100
POPTOT2010 - Population Total 2010 - Calculation
POPCHG - Population Change from 2010 to 2020 - Calculation
POPCHGPCT - Population Percent Change from 2010 to 2020 - Calculation
The highest city in the world with a population of more than one million is La Paz. The Capital of Bolivia sits 3,869 meters above sea level, and is more than 1,000 meters higher than the second ranked city - Quito. La Paz is also higher than Mt. Fuji in Japan, which has a height of 3,776 meters. Many of the world's highest cities are located in South America. The only city in North America that makes the top 20 list is Denver, Colorado, which has an altitude of 1,673 meters.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Tabular Summaries- Communities at Risk As part of Montana DNRC’s Montana Wildfire Risk Assessment (MWRA), wildfire risk to homes, commercial buildings, and other structures was assessed across the state. The purpose of this assessment is to identify the counties and communities whose structures are most threatened by wildfire—both on average and in total. The risk-to-structures methods used for this assessment are identical to the methods used for structures within the overall MWRA project. See earlier section 3.4.1 of the report (page 20) for details. This portion of the report addresses only the tabular summaries. The summary methods used in this section were customized to the MWRA results from similar methods previously developed for the Pacific Northwest Risk Assessment (PNRA) and for the national Wildfire Risk to Communities (WRC) project. The risk-to-structures results were summarized for four sets of summary polygons: MT Counties MT Census County Divisions MT Communities (core plus zone combined) MT Communities (core and zone separate)Each set of summary polygons captures nearly all structures in Montana, without overlap. In the MT Counties set, a summary polygon is an individual county (e.g. Ravalli County). In the MT Census County Divisions (CCD) set, a summary polygon is an individual CCD (e.g., the Sula CCD within Ravalli County). In the MT Communities (core plus zone combined) set, a summary polygon is the community core plus the zone surrounding the core (as defined below). In the MT Communities (core and zone separate) set, a summary polygon is either the community core or the zone surrounding the community core. There are 56 counties in Montana. Each Montana county is divided into at least two Census County Divisions (CCDs), with mean of 3.5 CCDs per county (194 CCDs in total) and a maximum of 11 (Flathead county). For this assessment, a community core was defined as a Populated Place Area (PPA) as identified by the U.S. Census Bureau. PPAs include incorporated cities and towns as well as Census Designated Places (CDPs). A CDP is an unincorporated concentration of population—a statistical counterpart to incorporated cities and towns. There are 364 PPAs across Montana. Of those, 127 (35 percent) are incorporated cities or towns, and 235 (65 percent) are CDPs. Two PPAs—Butte-Silver Bow and Anaconda-Deer Lodge—are unique in that they represent the balance of a county that is not otherwise incorporated; they are much larger in size than most PPAs. In the PPA dataset, the CDPs represent the location of highest concentration of population for a community; they do not include the less-densely populated areas surrounding the PPA. We refer to the U.S. Census PPA delineation as the community “core.” Approximately 66 percent of Montana’s total structure importance can be found within these PPA core areas (Figure A.1 of the Montana Wildfire Risk Assessment report). To include the populated area and structures surrounding the PPAs, Ager and others (2019) used a travel-time analysis to delineate the land areas closest by drive-time to each PPA core, up to a maximum of 45 minutes travel time. Approximately 33 percent of Montana’s total structure importance can be found within 45 minutes travel time of the cores. Only 1 percent of the total structure importance is not within 45-minutes travel time of any community core.
This datalayer displays the Urbanized Areas (UAs) for the state based on a January 1, 1990 ground condition. Note that the Census Bureau made significant changes in Urban/Rural designations for the Census 2000 data layers. Some of these delineations and definitions are explained below. 1990 Urban/Rural The U.S. Census Bureau defined urban for the 1990 census as consisting of all territory and population in urbanized areas (UAs) and in the urban portion of places with 2,500 or more people located outside of the UAs. The 1990 urban and rural classification applied to the 50 states, the District of Columbia, and Puerto Rico. 1990 Urbanized Areas A 1990 urbanized area (UA) consisted of at least one central place and the adjacent densely settled surrounding territory that together had a minimum population of 50,000 people. The densely settled surrounding territory generally consisted of an area with continuous residential development and a general overall population density of at least 1,000 people per square mile. 1990 Extended Cities For the 1990 census, the U.S. Census Bureau distinguished the urban and rural population within incorporated places whose boundaries contained large, sparsely populated, or even unpopulated area. Under the 1990 criteria, an extended city had to contain either 25 percent of the total land area or at least 25 square miles with an overall population density lower than 100 people per square mile. Such pieces of territory had to cover at least 5 square miles. This low-density area was classified as rural and the other, more densely settled portion of the incorporated place was classified as urban. Unlike previous censuses where the U.S. Census Bureau defined extended cities only within UAs, for the 1990 census the U.S. Census Bureau applied the extended city criteria to qualifying incorporated places located outside UAs. 1990 Urbanized Area Codes Each 1990 UA was assigned a 4-digit numeric census code in alphabetical sequence on a nationwide basis based on the metropolitan area codes. Note that in Record Type C, the 1990 UA 4-digit numeric censu s code and Census 2000 UA 5-digit numeric census code share a 5-character field. Because of this, the 1990 4-digit UA code, in Record Type C only, appears with a trailing blank. For Census 2000 the U.S. Census Bureau classifies as urban all territory, population, and housing units located within urbanized areas (UAs) and urban clusters (UCs). It delineates UA and UC boundaries to encompass densely settled territory, which generally consists of: - A cluster of one or more block groups or census blocks each of which has a population density of at least 1,000 people per square mile at the time - Surrounding block groups and census blocks each of which has a population density of at least 500 people per square mile at the time, and - Less densely settled blocks that form enclaves or indentations, or are used to connect discontiguous areas with qualifying densities. Rural consists of all territory, population, and housing units located outside of UAs and UCs. For Census 2000 this urban and rural classification applies to the 50 states, the District of Columbia, Puerto Rico, American Samoa, Guam, the Northern Mariana Islands, and the Virgin Islands of the United States. Urbanized Areas (UAs) An urbanized area consists of densely settled territory that contains 50,000 or more people. The U.S. Census Bureau delineates UAs to provide a better separation of urban and rural territory, population, and housing in the vicinity of large places. For Census 2000, the UA criteria were extensively revised and the delineations were performed using a zero-based approach. Because of more stringent density requirements, some territory that was classified as urbanized for the 1990 census has been reclassified as rural. (Area that was part of a 1990 UA has not been automatically grandfathered into the 2000 UA.) In addition, some areas that were identified as UAs for the 1990 census have been reclassified as urban clusters. Urban Clusters (UCs) An urban cluster consists of densely settled territory that has at least 2,500 people but fewer than 50,000 people. The U.S. Census Bureau introduced the UC for Census 2000 to provide a more consistent and accurate measure of the population concentration in and around places. UCs are defined using the same criteria that are used to define UAs. UCs replace the provision in the 1990 and previous censuses that defined as urban only those places with 2,500 or more people located outside of urbanized areas. Urban Area Title and Code The title of each UA and UC may contain up to three incorporated place names, and will include the two-letter U.S. Postal Service abbreviation for each state into which the UA or UC extends. However, if the UA or UC does not contain an incorporated place, the urban area title will include the single name of a census designated place (CDP), minor civil division, or populated place recognized by the U.S. Geological Survey's Geographic Names Information System. Each UC and UA is assigned a 5-digit numeric code, based on a national alphabetical sequence of all urban area names. For the 1990 census, the U.S. Census Bureau assigned as four-digit UA code based on the metropolitan area codes. Urban Area Central Places A central place functions as the dominant center of an urban area. The U.S. Census Bureau identifies one or more central places for each UA or UC that contains a place. Any incorporated place or census designated place (CDP) that is in the title of the urban area is a central place of that UA or UC. In addition, any other incorporated place or CDP that has an urban population of 50,000 or an urban population of at least 2,500 people and is at least 2/3 the size of the largest place within the urban area also is a central place. Extended Places As a result of the UA and UC delineations, an incorporated place or census designated place (CDP) may be partially within and partially outside of a UA or UC. Any place that is split by a UA or UC is referred to as an extended place.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Montana town. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2011 and 2021, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/montana-wi-median-household-income-by-race-trends.jpeg" alt="Montana, Wisconsin median household income trends across races (2011-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Montana town median household income by race. You can refer the same here
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 126 Cities in the Montana by Hispanic Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each Cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.