38 datasets found
  1. Ten cities with the largest total wealth from fashion and retail...

    • statista.com
    Updated Jul 26, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Ten cities with the largest total wealth from fashion and retail billionaires, 2015 [Dataset]. https://www.statista.com/statistics/645073/cities-with-most-billionaire-retail-and-fashion-wealth/
    Explore at:
    Dataset updated
    Jul 26, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2015
    Area covered
    Worldwide
    Description

    This statistic shows the top ten cities in the world with the largest amount of wealth held by billionaires from the fashion and retail industry in 2015. Paris had the largest amount of wealth in this regard in 2015, * billionaires held a shared total of ** billion U.S. dollars in wealth.

  2. Share of foreign-born population of major cities around the world, 2015

    • statista.com
    • ai-chatbox.pro
    Updated Oct 28, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2015). Share of foreign-born population of major cities around the world, 2015 [Dataset]. https://www.statista.com/statistics/684691/foreign-born-population-percentage-of-major-cities/
    Explore at:
    Dataset updated
    Oct 28, 2015
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2015
    Area covered
    Worldwide
    Description

    This statistic shows the percentage of the population of select major cities who were foreign-born in 2015. In 2015, ** percent of the population of Dubai were born outside of the United Arab Emirates,

  3. Global built up area share of megacities 2015

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global built up area share of megacities 2015 [Dataset]. https://www.statista.com/statistics/912747/share-built-up-land-area-of-megacities-worldwide/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2015
    Area covered
    Worldwide
    Description

    This statistic provides the share of the total land area that is built-up in the ** largest cities around the world in 2015. As of this year, about ***** percent of Los Angeles' land area was considered built-up.

  4. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  5. S

    Data from: A standardized dataset of built-up areas of China’s cities with...

    • scidb.cn
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiang Huiping; Sun Zhongchang; Guo Huadong; Du Wenjie; Xing Qiang; Cai Guoyin (2021). A standardized dataset of built-up areas of China’s cities with populations over 300,000 for the period 1990–2015 [Dataset]. http://doi.org/10.11922/sciencedb.j00076.00004
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    Science Data Bank
    Authors
    Jiang Huiping; Sun Zhongchang; Guo Huadong; Du Wenjie; Xing Qiang; Cai Guoyin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    Here we used remote sensing data from multiple sources (time-series of Landsat and Sentinel images) to map the impervious surface area (ISA) at five-year intervals from 1990 to 2015, and then converted the results into a standardized dataset of the built-up area for 433 Chinese cities with 300,000 inhabitants or more, which were listed in the United Nations (UN) World Urbanization Prospects (WUP) database (including Mainland China, Hong Kong, Macao and Taiwan). We employed a range of spectral indices to generate the 1990–2015 ISA maps in urban areas based on remotely sensed data acquired from multiple sources. In this process, various types of auxiliary data were used to create the desired products for urban areas through manual segmentation of peri-urban and rural areas together with reference to several freely available products of urban extent derived from ISA data using automated urban–rural segmentation methods. After that, following the well-established rules adopted by the UN, we carried out the conversion to the standardized built-up area products from the 1990–2015 ISA maps in urban areas, which conformed to the definition of urban agglomeration area (UAA). Finally, we implemented data postprocessing to guarantee the spatial accuracy and temporal consistency of the final product.The standardized urban built-up area dataset (SUBAD–China) introduced here is the first product using the same definition of UAA adopted by the WUP database for 433 county and higher-level cities in China. The comparisons made with contemporary data produced by the National Bureau of Statistics of China, the World Bank and UN-habitat indicate that our results have a high spatial accuracy and good temporal consistency and thus can be used to characterize the process of urban expansion in China.The SUBAD–China contains 2,598 vector files in shapefile format containing data for all China's cities listed in the WUP database that have different urban sizes and income levels with populations over 300,000. Attached with it, we also provided the distribution of validation points for the 1990–2010 ISA products of these 433 Chinese cities in shapefile format and the confusion matrices between classified data and reference data during different time periods as a Microsoft Excel Open XML Spreadsheet (XLSX) file.Furthermore, The standardized built-up area products for such cities will be consistently updated and refined to ensure the quality of their spatiotemporal coverage and accuracy. The production of this dataset together with the usage of population counts derived from the WUP database will close some of the data gaps in the calculation of SDG11.3.1 and benefit other downstream applications relevant to a combined analysis of the spatial and socio-economic domains in urban areas.

  6. World Population Statistics - 2023

    • kaggle.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavik Jikadara (2024). World Population Statistics - 2023 [Dataset]. https://www.kaggle.com/datasets/bhavikjikadara/world-population-statistics-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhavik Jikadara
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description
    • The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on Earth, which far exceeds the world population of 7.2 billion in 2015. Our estimate based on UN data shows the world's population surpassing 7.7 billion.
    • China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.
    • The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.
    • Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.
    • In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added yearly.
    • This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content

    • In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc. >Dataset Glossary (Column-Wise):
    • Rank: Rank by Population.
    • CCA3: 3 Digit Country/Territories Code.
    • Country/Territories: Name of the Country/Territories.
    • Capital: Name of the Capital.
    • Continent: Name of the Continent.
    • 2022 Population: Population of the Country/Territories in the year 2022.
    • 2020 Population: Population of the Country/Territories in the year 2020.
    • 2015 Population: Population of the Country/Territories in the year 2015.
    • 2010 Population: Population of the Country/Territories in the year 2010.
    • 2000 Population: Population of the Country/Territories in the year 2000.
    • 1990 Population: Population of the Country/Territories in the year 1990.
    • 1980 Population: Population of the Country/Territories in the year 1980.
    • 1970 Population: Population of the Country/Territories in the year 1970.
    • Area (km²): Area size of the Country/Territories in square kilometers.
    • Density (per km²): Population Density per square kilometer.
    • Growth Rate: Population Growth Rate by Country/Territories.
    • World Population Percentage: The population percentage by each Country/Territories.
  7. Largest cities in Brazil by population 2022

    • radharaman.org
    • statista.com
    • +1more
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Largest cities in Brazil by population 2022 [Dataset]. https://radharaman.org/?p=541060
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Brazil
    Description

    In 2022, approximately 11.45 million people lived in São Paulo, making it the largest municipality in Brazil and one of the most populous cities in the world. The homonymous state of São Paulo was also the most populous federal entity in the country. Brazil's cities Brazil is home to two large metropolises: São Paulo with close to 11.45 million inhabitants, and Rio de Janeiro with around 6.21 million inhabitants. It also contains a number of smaller, but well known cities such as Brasília, Salvador, Belo Horizonte and many others, which report between 2 and 3 million inhabitants each. As a result, the country's population is primarily urban, with nearly 85 percent of inhabitants living in cities. While smaller than some of the other cities, Brasília was chosen to be the capital because of its relatively central location. The city is also well-known for its modernist architecture and utopian city plan which is quite controversial - criticized by many and praised by others. Sports venues capitals A number of Brazil’s medium-sized and large cities were chosen as venues for the 2014 World Cup, and the 2015 Summer Olympics also took place in Rio de Janeiro. Both of these events required large sums of money to support infrastructure and enhance mobility within a number of different cities across the country. Billions of dollars were spent on the 2014 World Cup, which went primarily to stadium construction and renovation, but also to a number of different mobility projects. Other short-term spending on infrastructure for the World Cup and the Rio Olympic Games was estimated at around 50 billion U.S. dollars. While these events have poured a lot of money into urban infrastructure, a number of social and economic problems within the country remain unsolved.

  8. a

    Integrated Living Conditions Survey 2015 - Armenia

    • microdata.armstat.am
    • catalog.ihsn.org
    • +1more
    Updated Oct 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Service of the Republic of Armenia (NSS RA) (2019). Integrated Living Conditions Survey 2015 - Armenia [Dataset]. https://microdata.armstat.am/index.php/catalog/24
    Explore at:
    Dataset updated
    Oct 17, 2019
    Dataset authored and provided by
    National Statistical Service of the Republic of Armenia (NSS RA)
    Time period covered
    2015
    Area covered
    Armenia
    Description

    Abstract

    The Integrated Living Conditions Survey (ILCS), conducted annually by the NSS National Statistical Service of the Republic of Armenia, formed the basis for monitoring living conditions in Armenia. The ILCS is a universally recognized best-practice survey for collecting data to inform about the living standards of households. The ILCS comprises comprehensive and valuable data on the welfare of households and separate individuals which gives the NSS an opportunity to provide the public with up to date information on the population’s income, expenditures, the level of poverty and the other changes in living standards on an annual basis.

    Geographic coverage

    Urban and rural communities

    Analysis unit

    • Households;
    • Individuals.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    During the 2001-2003 surveys two-stage random sample was used; the first stage covered the selection of settlements - cities and villages, while the second stage was focused on the selection of households in these settlements. The surveys were conducted on the principle of monthly rotation of households by clusters (sample units). In 2002 and 2003 the number of households was 387 with the sample covering 14 cities and 30 villages in 2002 and 17 cities and 20 villages in 2003.

    During the 2004-2006 surveys the sampling frame for the ILCS was built using the database of addresses for the 2001 Population Census; the database was developed with the World Bank technical assistance. The database of addresses of all households in Armenia was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to the following three categories: big towns with 15,000 and more population; villages, and other towns. Big towns formed 16 strata (the only exception was the Vayots Dzor marz where there are no big towns). The villages and other towns formed 10 strata each. According to this division, a random, two-step sample stratified at marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of population residing in those settlements as percent to the total population in the country. In the first step, the settlements, i.e. primary sample units, were selected: 43 towns out of 48 or 90 percent of all towns in Armenia were surveyed during the year; also 216 villages out of 951 or 23 percent of all villages in the country were covered by the survey. In the second step, the respondent households were selected: 6,816 households (5,088 from urban and 1,728 from rural settlements). As a result, for the first time since 1996 survey data were representative at the marz level.

    During the 2007-2012 surveys the sampling frame for ILCS was designed according to the database of addresses for the 2001 Population Census, which was developed with the World Bank technical assistance. The sample consisted of two parts: core sample and oversample.

    1) For the creation of core sample, the sample frame (database of addresses of all households in Armenia) was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to three categories: large towns (with population of 15000 and higher), villages and other towns. Large towns formed by 16 groups (strata), while the villages and towns formed by 10 strata each. According to that division, a random, two-step sample stratified at the marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of households residing in those settlements as percent to the total households in the country. In the first step, using the PPS method the enumeration units (i.e., primary sample units to be surveyed during the year) were selected. 2007 sample includes 48 urban and 18 rural enumeration areas per month. 2) The oversample was drawn from the list of villages included in MCA-Armenia Rural Roads Rehabilitation Project. The enumeration areas of villages that were already in the core sample were excluded from that list. From the remaining enumeration areas 18 enumeration areas were selected per month. Thus, the rural sample size was doubled. 3) After merging the core sample and oversample, the survey households were selected in the second step. 656 households were surveyed per month, from which 368 from urban and 288 from rural settlements. Each month 82 interviewers had conducted field work, and their workload included 8 households per month. In 2007 number of surveyed households was 7,872 (4,416 from urban and 3,456 from rural areas).

    For the survey 2013 the sample frame for ILCS was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2001 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample. For the purpose of drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2013 sample included 32 enumeration areas in urban and 16 enumeration areas in rural communities per month. The households to be surveyed were selected in the second round. A total of 432 households were surveyed per month, of which 279 and 153 households from urban and rural communities, respectively. Every month 48 interviewers went on field work with a workload of 9 households per month.

    The sample frame for 2014-2016 was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2011 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample.
    For drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2014 sample included 30 enumeration areas in urban and 18 enumeration areas in rural communities per month. The method of representative probability sampling was used to frame the sample. At regional level, all communities were grouped into two categories - towns and villages. According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all rural and urban communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration districts - that is primary sample units to be surveyed during the year - were selected. The ILCS 2015 sample included 30 enumeration districts in urban and 18 enumeration districts in rural communities per month.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Questionnaire is filled in by the interviewer during the least five visits to households per month. During face-to-face interviews with the household head or another knowledgeable adult member, the interviewer collects information on the composition and housing conditions of the household, the employment status, educational level and health condition of the members, availability and use of land, livestock, and agricultural machinery, monetary and commodity flows between households, and other information.

    The 2015 survey questionnaire had the following sections: (1) "List of Household Members", (2) "Migration", (3) "Housing and Dwelling Conditions", (4) "Employment", (5) "Education", (6) "Agriculture", (7) "Food Production", (8) "Monetary and Commodity Flows between Households", (9) "Health (General) and Healthcare", (10) "Debts", (11) "Subjective Assessment of Living Conditions", (12) "Provision of Services", (13) "Social Assistance", (14) "Households as Employers for Service Personnel", and (15) "Household Monthly Consumption of Energy Resources".

    The Diary is completed directly by the household for one month. Every day the household would record all its expenditures on food, non-food products and services, also giving a detailed description of such purchases; e.g. for food products the name, quantity, cost, and place of purchase of the product is recorded. Besides, the household records its consumption of food products received and used from its own land and livestock, as well as from other sources (e.g. gifts, humanitarian aid). Non-food products and services purchased or received for free are also recorded in the diary. Then, the household records its income received during the month. At the end of the month, information on rarely used food products, durable goods and ceremonies is recorded, as well. The records in the diary are verified by the interviewer in the course of 5

  9. Qatar QA: Population in Largest City: as % of Urban Population

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Qatar QA: Population in Largest City: as % of Urban Population [Dataset]. https://www.ceicdata.com/en/qatar/population-and-urbanization-statistics/qa-population-in-largest-city-as--of-urban-population
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Qatar
    Variables measured
    Population
    Description

    Qatar QA: Population in Largest City: as % of Urban Population data was reported at 25.205 % in 2017. This records an increase from the previous number of 24.620 % for 2016. Qatar QA: Population in Largest City: as % of Urban Population data is updated yearly, averaging 54.854 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 82.695 % in 1971 and a record low of 24.252 % in 2015. Qatar QA: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Qatar – Table QA.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;

  10. F

    Geographical Outreach: Number of Branches in 3 Largest Cities, Excluding...

    • fred.stlouisfed.org
    json
    Updated Nov 10, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Geographical Outreach: Number of Branches in 3 Largest Cities, Excluding Headquarters, for Commercial Banks for Zimbabwe [Dataset]. https://fred.stlouisfed.org/series/ZWEFCBODCLNUM
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 10, 2016
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Geographical Outreach: Number of Branches in 3 Largest Cities, Excluding Headquarters, for Commercial Banks for Zimbabwe (ZWEFCBODCLNUM) from 2004 to 2015 about branches, Zimbabwe, banks, and depository institutions.

  11. u

    Accessibility To Cities 2015

    • datacore-gn.unepgrid.ch
    Updated May 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Accessibility To Cities 2015 (2018). Accessibility To Cities 2015 [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/dd9da394-1f82-423a-a290-24744ba79a78
    Explore at:
    ogc:wms-1.3.0-http-get-map, www:link-1.0-http--linkAvailable download formats
    Dataset updated
    May 16, 2018
    Dataset provided by
    Accessibility To Cities 2015
    Time period covered
    Jan 1, 2015 - Dec 31, 2015
    Area covered
    Description

    This global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as contiguous areas with 1,500 or more inhabitants per square kilometre or a majority of built-up land cover types coincident with a population centre of at least 50,000 inhabitants. This map was produced through a collaboration between MAP (University of Oxford), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands.The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a "friction surface"; a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) were used in conjunction with this friction surface to calculate the time of travel from all locations to the nearest (in time) city. The cities dataset used is the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modelled shortest time from that location to a city. Authors: D.J. Weiss, A. Nelson, H.S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier, T.C.D. Lucas, R.E. Howes, L.S. Tusting, S.Y. Kang, E. Cameron, D. Bisanzio, K.E. Battle, S. Bhatt, and P.W. Gething. A global map of travel time to cities to assess inequalities in accessibility in 2015. (2018). Nature. doi:10.1038/nature25181

    Processing notes: Data were processed from numerous sources including OpenStreetMap, Google Maps, Land Cover mapping, and others, to generate a global friction surface of average land-based travel speed. This accessibility surface was then derived from that friction surface via a least-cost-path algorithm finding at each location the closest point from global databases of population centres and densely-populated areas. Please see the associated publication for full details of the processing.

    Source: https://map.ox.ac.uk/research-project/accessibility_to_cities/

  12. G

    Accessibility to Cities 2015

    • developers.google.com
    Updated Jan 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malaria Atlas Project (2015). Accessibility to Cities 2015 [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/Oxford_MAP_accessibility_to_cities_2015_v1_0
    Explore at:
    Dataset updated
    Jan 1, 2015
    Dataset provided by
    Malaria Atlas Project
    Time period covered
    Jan 1, 2015 - Jan 1, 2016
    Area covered
    Description

    This global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as contiguous areas with 1,500 or more inhabitants per square kilometer or a majority of built-up land cover types coincident with a population center of at least 50,000 inhabitants. This map was produced through a collaboration between the University of Oxford Malaria Atlas Project (MAP), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands. The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a “friction surface”, a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) were used in conjunction with this friction surface to calculate the time of travel from all locations to the nearest city (by travel time). Cities were determined using the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modeled shortest time from that location to a city. Source dataset credits are as described in the accompanying paper.

  13. Largest countries in the world by area

    • statista.com
    • ai-chatbox.pro
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Largest countries in the world by area [Dataset]. https://www.statista.com/statistics/262955/largest-countries-in-the-world/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    World
    Description

    The statistic shows the 30 largest countries in the world by area. Russia is the largest country by far, with a total area of about 17 million square kilometers.

    Population of Russia

    Despite its large area, Russia - nowadays the largest country in the world - has a relatively small total population. However, its population is still rather large in numbers in comparison to those of other countries. In mid-2014, it was ranked ninth on a list of countries with the largest population, a ranking led by China with a population of over 1.37 billion people. In 2015, the estimated total population of Russia amounted to around 146 million people. The aforementioned low population density in Russia is a result of its vast landmass; in 2014, there were only around 8.78 inhabitants per square kilometer living in the country. Most of the Russian population lives in the nation’s capital and largest city, Moscow: In 2015, over 12 million people lived in the metropolis.

  14. a

    City of Scranton - 2020 Population Change

    • scranton-open-data-scrantonplanning.hub.arcgis.com
    Updated Sep 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Scranton GIS (2022). City of Scranton - 2020 Population Change [Dataset]. https://scranton-open-data-scrantonplanning.hub.arcgis.com/datasets/city-of-scranton-2020-population-change
    Explore at:
    Dataset updated
    Sep 16, 2022
    Dataset authored and provided by
    City of Scranton GIS
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Scranton
    Description

    There are three components of change: births, deaths, and migration. The change in the population from births and deaths is often combined and referred to as natural increase or natural change. Populations grow or shrink depending on if they gain people faster than they lose them. Looking at an area’s unique combination of natural change and migration helps us understand why its population is changing, and how quickly the change is occurring.Natural IncreaseNatural change is the difference between births and deaths in a population. Often times, natural change is positive, which means that more babies are being born than people are dying. This positive natural change is referred to as natural increase. Examples of natural increase exist across the United States, one being the Salt Lake City metro area in Utah. Between 2014 and 2015, Salt Lake City had around 19,100 births and 6,400 deaths. Since there were about 12,700 more births than deaths, Salt Lake City had a natural increase of about 12,700 people, making natural increase a key reason why its population grew over the year.The opposite of natural increase is called natural decrease, where more people are dying than babies being born, which can cause a population to shrink. Areas with aging populations often have natural decrease. Two states had natural decrease between 2014 and 2015, Maine and West Virginia. Between 2014 and 2015, Maine had 450 more deaths than births and West Virginia had 940 more deaths than births. In both cases, natural decrease was one of the reasons why their populations shrank between 2014 and 2015 in our latest estimates.MigrationMigration is the movement of people from one area to another. It is often expressed as net migration, which is the difference between how many people move into and out of an area. When net migration is positive, a population has more people moving in than out. We split migration into domestic migration and international migration.Domestic migration refers to people moving between areas within the United States, and is often one of the largest contributors to population change. Regionally, the South gains the most net domestic migrants, with roughly 440,000 more people moving into southern states than leaving them between 2014 and 2015. Sometimes net domestic migration is negative, in which case more people are moving away than are moving in. The Chicago metro area in Illinois, Indiana, and Wisconsin lost about 80,000 people through migration between 2014 and 2015, which is consistent with a long-standing pattern of negative net domestic migration for the metro area.International migration refers to people moving into and out of the United States, and consists of a diverse group of people such as foreign-born immigrants from many countries around the world, members of the U.S. Armed Forces, and U.S. citizens working abroad. Some areas, like the Miami metro area in Florida, grow (in part) due to net international migration. Miami gained about 70,000 net international migrants between 2014 and 2015, making net international migration a major factor in Miami’s population growth.

  15. Top 10 cities with largest ratio of billionaire wealth to GDP, globally 2015...

    • statista.com
    Updated Jul 26, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Top 10 cities with largest ratio of billionaire wealth to GDP, globally 2015 [Dataset]. https://www.statista.com/statistics/621746/top-10-cities-with-largest-ratio-of-billionaire-wealth-to-gdp-globally/
    Explore at:
    Dataset updated
    Jul 26, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2015
    Area covered
    Worldwide
    Description

    This statistic shows the top ten cities in the world with the largest ratio of billionaire wealth to metro GDP in 2015. The combined wealth of billionaires in Geneva was 1.53 times greater than the GDP of the city in 2015.

  16. Household Registration Study 2015 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank (2023). Household Registration Study 2015 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/2729
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    World Bankhttp://worldbank.org/
    Authors
    The World Bank
    Time period covered
    2015
    Area covered
    Vietnam
    Description

    Abstract

    The household registration system known as ho khau has been a part of the fabric of life in Vietnam for over 50 years. The system was used as an instrument of public security, economic planning, and control of migration, at a time when the state played a stronger role in direct management of the economy and the life of its citizens. Although the system has become less rigid over time, concerns persist that ho khau limits the rights and access to public services of those who lack permanent registration in their place of residence. Due largely to data constraints, however, previous discussions about the system have relied largely on anecdotal or partial information.

    Drawing from historical roots as well as the similar model of China’s hukou, the ho khau system was established in Vietnam in 1964. The 1964 law established the basic parameters of the system: every citizen was to be registered as a resident in one and only household at the place of permanent residence, and movements could take place only with the permission of authorities. Controlling migration to cities was part of the system’s early motivation, and the system’s ties to rationing, public services, and employment made it an effective check on unsanctioned migration. Transfer of one’s ho khau from one place to another was possible in principle but challenging in practice.

    The force of the system has diminished since the launch of Doi Moi as well as a series of reforms starting in 2006. Most critically, it is no longer necessary to obtain permission from the local authorities in the place of departure to register in a new location. Additionally, obtaining temporary registration status in a new location is no longer difficult. However, in recent years the direction of policy changes regarding ho khau has been varied. A 2013 law explicitly recognized the authority of local authorities to set their own policies regarding registration, and some cities have tightened the requirements for obtaining permanent status.

    Understanding of the system has been hampered by the fact that those without permanent registration have not appeared in most conventional sources of socioeconomic data. To gather data for this project, a survey of 5000 respondents in five provinces was done in June-July 2015. The samples are representative of the population in 5 provinces – Ho Chi Minh City, Ha Noi, Da Nang, Binh Duong and Dak Nong. Those five provinces/cities are among the provinces with the highest rate of migration as estimated using data from Population Census 2009.

    Geographic coverage

    5 provinces – Ho Chi Minh City, Ha Noi, Da Nang, Binh Duong and Dak Nong.

    Analysis unit

    Household

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling for the Household Registration Survey was conducted in two stages. The two stages were selection of 250 enumeration areas (50 EAs in each of 5 provinces) and then selection of 20 households in each selected EA, resulting in a total sample size of 5000 households. The EAs were selected using Probability Proportional to Size (PPS) method based on the square number of migrants in each EA, with the aim to increase the probability of being selected for EAs with higher number of migrants. “Migrants” were defined using the census data as those who lived in a different province five years previous to the census. The 2009 Population Census data was used as the sample frame for the selection of EAs. To make sure the sampling frame was accurate and up to date, EA leaders of the sampled EAs were asked to collection information of all households regardless of registration status at their ward a month before the actual fieldwork. Information collected include name of head of household, address, gender, age of household’s head, household phone number, residence registration status of household, and place of their registration 5 years ago. All households on the resulting lists were found to have either temporary or permanent registration in their current place of residence.

    Using these lists, selection of survey households was stratified at the EA level to ensure a substantial surveyed population of households without permanent registration. In each EA random selection was conducted of 12 households with temporary registration status and 8 households with permanent registration status. For EAs where the number of temporary registration households was less than 12, all of the temporary registration households were selected and additional permanent registration households were selected to ensure that each EA had 20 survey households. Sampling weights were calculated taking into the account the selection rules for the first and second stages of the survey.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was mostly adapted from the Vietnam Household Living Standard Survey (VHLSS), and the Urban Poverty Survey (UPS) with appropriate adjustment and supplement of a number of questions to follow closely the objectives of this survey. The household questionnaire consists of a set of questions on the following contents:

    • Demographic characteristics of household members with emphasis on their residence status in terms of both administrative management (permanent/temporary residence book) and real residential situation. • Education of household members. Beside information on education level, the respondents are asked whether a household member attend school as “trai-tuyen” , how much “trai-tuyen” fee/enrolment fee, and difficulty in attending schools without permanent residence status. • Health and health care, collecting information on medical status and health insurance card of household members. • Labour and employment, asking household member’s employment status in the last 30 days; their most and second-most time-consuming employment during the last 30 days; and whether they had been asked about residence status when looking for job. • Assets and housing conditions. This section collects information on household’s living conditions such as assets, housing types and areas, electricity, water and energy. • Income and expenditure of households. • Social inclusion and protection. The respondents are asked whether their household members participate in social organizations, activities, services, contribution; whether they benefit from any social project/policy; do they have any loans within the last 12 months; and to provide information about five of their friends at their residential area. • Knowledge on the Law of Residence, current regulations on conditions for obtaining permanent residence, experience dealing with residence issues, and opinion on current household registration system of the respondents.

    Cleaning operations

    Managing and Cleaning the Data

    Data were managed and cleaned each day immediately upon being received, which occurred at the same time as the fieldwork surveys. At the end of each workday, the survey teams were required to review all of the interviews conducted and transfer collected data to the server. The data received by the main server were downloaded and monitored by MDRI staff.

    At this stage, MDRI assigned a technical team to work on the data. First, the team listened to interview records and used an application to detect enumerators’ errors. In this way, MDRI quickly identified and corrected the mistakes of the interviewers. Then the technical team proceeded with data cleaning by questionnaire, based on the following quantity and quality checking criteria.

    • Quantity checking criteria: The number of questionnaires must be matched with the completed interviews and the questionnaires assigned to each individual in the field. According to the plan, each survey team conducted 20 household questionnaires in each village. All questionnaires were checked to ensure that they contained all essential information, and duplicated entries were eliminated. • Quality checking criteria: Our staff performed a thorough examination of the practicality and logic of the data. If there was any suspicious or inconsistent information, the data management team re – listened to the records or contacted the respondents and survey teams for clarification via phone call. Necessary revisions would then be made.

    Data cleaning was implemented by the following stages: 1. Identification of illogical values; 2. Software – based detection of errors for clarification and revision; 3. Information re-checking with respondents and/or enumerators via phone or through looking at the records; 4. Development and implementation of errors correction algorithms; The list of detected and adjusted errors is attached in Annex 6.

    Outlier detection methods The data team applied a popular non - parametric method for outlier detection, which can be done with the following procedure: 1. Identify the first quartile Q1 (the 25th percentile data point) 2. Identify the third quartile Q3 (the 75th percentile data point) 3. Identify the inter-quartile range(IQR): IQR=Q3-Q1 4. Calculate lower limits (L) and upper limits (U) by the following formulas: o L=Q1-1.5*IQR o U=Q3+1.5*IQR 5. Detect outliers by the rule: An observation is an outlier if it lies below the lower bound or beyond the upper bound (i.e. less than L or greater than U)

    Data Structure The completed dataset for the “Household registration survey 2015” includes 9 files in STATA format (.dta): • hrs_maindata: Information on the households, including: assets, housing, income, expenditures, social inclusion and social protection issues, household registration procedures • hrs_muc1: Basic information on the

  17. Airbnb: the 10 most popular destinations in the world by the end of the year...

    • statista.com
    Updated Dec 24, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2015). Airbnb: the 10 most popular destinations in the world by the end of the year 2015 [Dataset]. https://www.statista.com/statistics/775946/ranking-from-cities-of-the-world-with-more-reservations-from-airbnb-for-new-years-eve/
    Explore at:
    Dataset updated
    Dec 24, 2015
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 24, 2015
    Area covered
    World
    Description

    This ranking presents the ** cities in the world that welcomed more Airbnb users on the New Year's Eve of 2015. On that occasion some ****** people received the new year in housing offered in Airbnb of the city of Paris, a figure only surpassed in New York. Barcelona, ​​meanwhile, ranked fifth.

  18. Largest cities in Brazil by population 2024

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest cities in Brazil by population 2024 [Dataset]. https://www.statista.com/statistics/259227/largest-cities-in-brazil/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Brazil
    Description

    In 2024, approximately 11.9 million people lived in São Paulo, making it the largest municipality in Brazil and one of the most populous cities in the world. The homonymous state of São Paulo was also the most populous federal entity in the country. Brazil's cities Brazil is home to two large metropolises: São Paulo with close to 11.9 million inhabitants, and Rio de Janeiro with around 6.7 million inhabitants. It also contains a number of smaller but well-known cities, such as Brasília, Salvador, Belo Horizonte, and many others, which report between 2 and 3 million inhabitants each. As a result, the country's population is primarily urban, with nearly 88 percent of inhabitants living in cities. While smaller than some of the other cities, Brasília was chosen to be the capital because of its relatively central location. The city is also well-known for its modernist architecture and utopian city plan, which is quite controversial - criticized by many and praised by others. Sports venues capitals A number of Brazil’s medium-sized and large cities were chosen as venues for the 2014 World Cup, and the 2015 Summer Olympics also took place in Rio de Janeiro. Both of these events required large sums of money to support infrastructure and enhance mobility within a number of different cities across the country. Billions of dollars were spent on the 2014 World Cup, which went primarily to stadium construction and renovation but also to a number of different mobility projects. Other short-term spending on infrastructure for the World Cup and the Rio Olympic Games was estimated at 50 billion U.S. dollars. While these events have poured a lot of money into urban infrastructure, a number of social and economic problems within the country remain unsolved.

  19. Top ten cities with largest super-rich wealth gap, globally 2015

    • statista.com
    Updated Jul 26, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Top ten cities with largest super-rich wealth gap, globally 2015 [Dataset]. https://www.statista.com/statistics/621610/top-10-cities-with-largest-super-rich-wealth-gap-globally/
    Explore at:
    Dataset updated
    Jul 26, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2015
    Area covered
    Worldwide
    Description

    This statistic shows the top ten cities in the world with the largest "super-rich wealth gap" in 2015. Bangalore had the largest wealth gap in 2015 with the wealth of billionaires 646,407 times that of the average per capita GDP.

  20. Finnish Attitudes to Immigration: Suomen Kuvalehti Survey 2015

    • services.fsd.tuni.fi
    zip
    Updated Jan 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taloustutkimus (2025). Finnish Attitudes to Immigration: Suomen Kuvalehti Survey 2015 [Dataset]. http://doi.org/10.60686/t-fsd3062
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2025
    Dataset provided by
    Finnish Social Science Data Archive
    Authors
    Taloustutkimus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Finland
    Description

    The survey, commissioned by the newsmagazine Suomen Kuvalehti, charted attitudes in Finland towards immigrants from different countries as well as beliefs about race. First, the respondents were asked to state their position on a scale from 0 to 10, where 10 indicated they hoped that Finland would be populated as much as possible by people of Finnish origin sharing the national values, and 0 that they hoped Finland would be populated as much as possible by people from a diversity of countries and ethnic backgrounds. Next, opinions were studied regarding how desirable or undesirable the respondents thought it was that immigrants of certain nationalities would come to Finland. The nationalities mentioned were Swedes, Germans, Russians, Estonians, US Americans, Somalis, Kosovars, Iraqis, Afghans, Syrians, Chinese, Thai and Ukrainians. The respondents were also asked to what extent they agreed with the following four statements: 'The mental abilities of black Africans are lower than those of white people living in Western countries', ' All people have equal value regardless of the colour of their skin or ethnic background', 'The white European race should be prevented from being mixed with darker races because otherwise the original population of Europe will become extinct before long ', and 'There is no such thing as 'race' since all human beings are genetically very much alike'. One question studied whether the respondents thought the Finnish media reported more negatively or positively on the Perussuomalaiset party (the Finns Party) than on the other political parties. Background variables included the respondent's gender, age, region of residence (NUTS3), major region of residence (NUTS2), city or type of municipality, education, occupational status and economic activity, household composition, number and ages of children living at home, total gross annual income of the household, and type of housing.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2016). Ten cities with the largest total wealth from fashion and retail billionaires, 2015 [Dataset]. https://www.statista.com/statistics/645073/cities-with-most-billionaire-retail-and-fashion-wealth/
Organization logo

Ten cities with the largest total wealth from fashion and retail billionaires, 2015

Explore at:
Dataset updated
Jul 26, 2016
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2015
Area covered
Worldwide
Description

This statistic shows the top ten cities in the world with the largest amount of wealth held by billionaires from the fashion and retail industry in 2015. Paris had the largest amount of wealth in this regard in 2015, * billionaires held a shared total of ** billion U.S. dollars in wealth.

Search
Clear search
Close search
Google apps
Main menu