This statistic shows the public opinion on the racial diversity of selected music genres in the United States as of May 2018, by age. During the survey, 25 percent of respondents stated that they considered rap/hip-hop to be the most racially diverse music genre.
This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Racial diversity is measured by a diversity index that is calculated using United States Census racial and ethnic population characteristics from the PL-94 data file. The diversity index is a quantitative measure of the distribution of the proportion of five major ethnic populations (non-Hispanic White, non-Hispanic Black, Asian and Pacific Islander, Hispanic, and Two or more races). The index ranges from 0 (low diversity meaning only one group is present) to 1 (meaning an equal proportion of all five groups is present). The diversity score for the United States in 2010 is 0.60. The diversity score for the San Francisco Bay Region is 0.84. Within the region, Solano (0.89) and Alameda (0.90) Counties are the most diverse and the remaining North Bay (0.55 - 0.64) Counties are the least diverse.
Ethnic diversity is generally associated with less social capital and lower levels of trust. However, most empirical evidence for this relationship is focused on generalized trust, rather than more theoretically appropriate measures of group-based trust. This paper evaluates the relationship between ethnic diversity – at national, regional, and local levels – and the degree to which coethnics are trusted more than non-coethnics, a value I call the “coethnic trust premium.” Using public opinion data from sixteen African countries, I find that citizens of ethnically diverse states express, on average, more ethnocentric trust. However, within countries, regional ethnic diversity is actually associated with less ethnocentric trust. This same negative pattern between diversity and ethnocentric trust appears across districts and enumeration areas within Malawi. I then show, consistent with these patterns, that diversity is only detrimental to intergroup trust at the national level in the presence of ethnic group segregation. These results highlight the importance of the spatial distribution of ethnic groups on intergroup relations, and question the utility of micro-level studies of interethnic interactions for understanding macro-level group dynamics.
The statistic shows public opinion on TV shows being more or less racially diverse compared to five years ago in the United States as of August 2017, sorted by ethnicity. During the survey, 40 percent of white respondents believed that TV shows are somewhat more racially diverse compared to five years ago.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in United States. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of United States population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 68.17% of the total residents in United States. Notably, the median household income for White households is $79,933. Interestingly, despite the White population being the most populous, it is worth noting that Asian households actually reports the highest median household income, with a median income of $106,954. This reveals that, while Whites may be the most numerous in United States, Asian households experience greater economic prosperity in terms of median household income.
https://i.neilsberg.com/ch/united-states-median-household-income-by-race.jpeg" alt="United States median household income diversity across racial categories">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This national, tract-level experienced racial segregation dataset uses data for over 66 million anonymized and opted-in devices in Cuebiq’s Spectus Clean Room data to estimate 15 minute time overlaps of device stays in 38.2m x 19.1m grids across the United States in 2022. We infer a probability distribution of racial backgrounds for each device given their home Census block groups at the time of data collection, and calculate the probability of a diverse social contact during that space and time. These measures are then aggregated to the Census tract and across the whole time period in order to preserve privacy and develop a generalizable measure of the diversity of a place. We propose that this dataset is a better measurement of the segregation and diversity as it is experienced, which we show diverges from standard measurements of segregation. The data can be used by researchers to better understand the determinants of experienced segregation; beyond research, we suggest this data can be used by policy makers to understand the impacts of policies designed to encourage social mixing and access to opportunities such as affordable housing and mixed-income housing, and more.
For the purposes of enhanced privacy, home census block groups were pre-calculated by the data provider, and all calculations are done at the Census tract, with tracts that have more than 20 unique devices over the period of analysis.
How racially diverse are residents in Massachusetts? This topic shows the demographic breakdown of residents by race/ethnicity and the increases in the Non-white population since 2010.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in State Center. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of State Center population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 90.70% of the total residents in State Center. Notably, the median household income for White households is $72,500. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $72,500.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Center median household income by race. You can refer the same here
https://search.gesis.org/research_data/datasearch-httpsdataverse-unc-eduoai--hdl1902-29D-33414https://search.gesis.org/research_data/datasearch-httpsdataverse-unc-eduoai--hdl1902-29D-33414
This survey was conducted among residents of the South (another sample of Non Southern states is also included) on many topics including race relations, opportunities for minorities, local communities, racial diversity, and inter-racial marriages and adoption. Demographic data include education, religious affiliation, marital status, employment status, income, race, household composition, party affiliation, political ideology,
California is home to 12 percent of the nation's population yet accounts for more than 20 percent of the people living in the nation’s hardest-to-count areas, according to the United States Census Bureau (U.S. Census Bureau). California's unique diversity, large population distributed across both urban and rural areas, and sheer geographic size present significant barriers to achieving a complete and accurate count. The state’s population is more racially and ethnically diverse than ever before, with about 18 percent of Californians speaking English “less than very well,” according to U.S. Census Bureau estimates. Because the 2020 Census online form was offered in only twelve non-English languages, which did not correspond with the top spoken language in California, and a paper questionnaire only in English and Spanish, many Californians may not have been able to access a census questionnaire or written guidance in a language they could understand. In order to earn the confidence of California’s most vulnerable populations, it was critical during the 2020 Census that media and trusted messengers communicate with them in their primary language and in accessible formats. An accurate count of the California population in each decennial census is essential to receive its equitable share of federal funds and political representation, through reapportionment and redistricting. It plays a vital role in many areas of public life, including important investments in health, education, housing, social services, highways, and schools. Without a complete count in the 2020 Census, the State faced a potential loss of congressional seats and billions of dollars in muchneeded federal funding. An undercount of California in 1990 cost an estimated $2 billion in federal funding. The potential loss of representation and critically needed funding could have long-term impacts; only with a complete count does California receive the share of funding the State deserves with appropriate representation at the federal, state, and local government levels. The high stakes and formidable challenges made this California Complete Count Census 2020 Campaign (Campaign) the most important to date. The 2020 Census brought an unprecedented level of new challenges to all states, beyond the California-specific hurdles discussed above. For the first time, the U.S. Census Bureau sought to collect data from households through an online form. While the implementation of digital forms sought to reduce costs and increase participation, its immediate impact is still unknown as of this writing, and it may have substantially changed how many households responded to the census. In addition, conditions such as the novel Coronavirus (COVID-19) pandemic, a contentious political climate, ongoing mistrust and distrust of government, and rising concerns about privacy may have discouraged people to open their doors, or use computers, to participate. Federal immigration policy, as well as the months-long controversy over adding a citizenship question to the census, may have deterred households with mixed documentation status, recent immigrants, and undocumented immigrants from participating. In 2017, to prepare for the unique challenges of the 2020 Census, California leaders and advocates reflected on lessons learned from previous statewide census efforts and launched the development of a high-impact strategy to efficiently raise public awareness about the 2020 Census. Subsequently, the State established the California Complete Count – Census 2020 Office (Census Office) and invested a significant sum for the Campaign. The Campaign was designed to educate, motivate, and activate Californians to respond to the 2020 Census. It relied heavily on grassroots messaging and outreach to those least likely to fill out the census form. One element of the Campaign was the Language and Communication Access Plan (LACAP), which the Census Office developed to ensure that language and communication access was linguistically and culturally relevant and sensitive and provided equal and meaningful access for California’s vulnerable populations. The Census Office contracted with outreach partners, including community leaders and organizations, local government, and ethnic media, who all served as trusted messengers in their communities to deliver impactful words and offer safe places to share information and trusted messages. The State integrated consideration of hardest-to-count communities’ needs throughout the Campaign’s strategy at both the statewide and regional levels. The Campaign first educated, then motivated, and during the census response period, activated Californians to fill out their census form. The Census Office’s mission was to ensure that Californians get their fair share of resources and representation by encouraging the full participation of all Californians in the 2020 Census. This report focuses on the experience of the Census Office and partner organizations who worked to achieve the most complete count possible, presenting an evaluation of four outreach and communications strategies.
This layer summarizes racial and ethnic diversity in the United States. The Diversity Index shows the likelihood that two persons chosen at random from the same area, belong to different race or ethnic groups. The index ranges from 0 (no diversity) to 100 (complete diversity).The data shown is from Esri's 2020 Updated Demographic estimates using Census 2010 geographies. The map adds increasing level of detail as you zoom in, from state, to county, to ZIP Code, to tract, to block group data. Esri's U.S. Updated Demographic (2020/2025) Data: Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2020/2025 Esri Updated DemographicsEssential demographic vocabularyPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in State Line City. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of State Line City population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 89.80% of the total residents in State Line City. Notably, the median household income for White households is $64,167. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $64,167.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line City median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in State College. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of State College population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 80.12% of the total residents in State College. Notably, the median household income for White households is $50,296. Interestingly, despite the White population being the most populous, it is worth noting that Some Other Race households actually reports the highest median household income, with a median income of $60,333. This reveals that, while Whites may be the most numerous in State College, Some Other Race households experience greater economic prosperity in terms of median household income.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State College median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in State Center. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Center median household income by race. You can refer the same here
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Institutions of higher education (IHE) throughout the United States have a long history of acting out various levels of commitment to diversity advancement, equity, and inclusion (DEI). Despite decades of DEI “efforts,” the academy is fraught with legacies of racism that uphold white supremacy and prevent marginalized populations from full participation. Furthermore, politicians have not only weaponized education but passed legislation to actively ban DEI programs and censor general education curricula (https://tinyurl.com/antiDEI). Ironically, systems of oppression are particularly apparent in the fields of Ecology, Evolution, and Conservation Biology (EECB)–which recognize biological diversity as essential for ecological integrity and resilience. Yet, amongst EECB faculty, people who do not identify as cis-heterosexual, non-disabled, affluent white males are poorly represented. Furthermore, IHE lack metrics to quantify DEI as a priority. Here we show that only 30.3% of US-faculty positions advertised in EECB from Jan 2019-May 2020 required a diversity statement; diversity statement requirements did not correspond with state-level diversity metrics. Though many announcements “encourage women and minorities to apply,” empirical evidence demonstrates that hiring committees at most institutions did not prioritize an applicant’s DEI advancement potential. We suggest a model for change and call on administrators and faculty to implement SMART (i.e., Specific, Measurable, Achievable, Realistic, and Timely) strategies for DEI advancement across IHE throughout the United States. We anticipate our quantification of diversity statement requirements relative to other application materials will motivate institutional change in both policy and practice when evaluating a candidate’s potential “fit”. IHE must embrace a leadership role to not only shift the academic culture to one that upholds DEI, but to educate and include people who represent the full diversity of our society. In the current context of political censure of education including book banning and backlash aimed at Critical Race Theory, which further reinforce systemic white supremacy, academic integrity and justice are more critical than ever. Methods Here we investigated the (lack of) process in faculty searches at IHE for evaluating candidates’ ability to advance DEI objectives. We quantified the prevalence of required diversity statements relative to research and/or teaching statements for all faculty positions posted to the Eco-Evo Jobs Board (http://ecoevojobs.net) from January 2019 - May 2020 as a proxy for institutional DEI prioritization (Supplement). We also mapped the job posts that required diversity statements geographically to gauge whether and where diversity is valued in higher education across the US. Data analysis We pulled all faculty jobs posted on Eco-Evo jobs board (http://ecoevojobs.net) from Jan 1, 2019, to May 31, 2020. For each position, we recorded the Location (i.e., state), Subject Area, Closing Date, Rank, whether or not the position is Tenure Track, and individual application materials (i.e., Research statement, Teaching statement, combined Teaching and Research statement, Diversity statement, Mentorship statement). Of the 543 faculty positions posted during this time, we eliminated 299 posts because the web links were broken or application information was no longer available (i.e., “NA”), leaving 244 faculty job posts. For each of the retained posts, we coded the requirement of teaching, research, diversity, and/or mentorship statements as follows:
"Yes” = statement required “No” = statement not required “Other” = application materials did not explicitly require a Diversity Statement (i.e., option or suggested that applicants include a statement on diversity and inclusion as a component of their teaching and/or research statement or in their cover letter)
Data visualization We created a Sankey diagram using Sankey Flow Show (THORTEC Software GmbH: www.sankeyflowshow.com) to compare diversity and representation from the general population, through (Science, Technology, Engineering, and Mathematics) STEM academia (a career hierarchy often referred to as the “leaky pipeline”). We procured population data from the US Census Bureau (US Department of Commerce: https://www.census.gov/quickfacts/fact/table/US/PST045219) and quantified the diversity/representation in Conservation Biology (https://datausa.io/profile/cip/ecology-evolution-systematics-population-biology#demographics) and Ecology (https://datausa.io/profile/cip/conservation-biology) using Data USA (developed by Deloitte Touche Tohmatsu Limited and Datawheel). We used the 2015 Diversity Index (produced by PolicyLink and the USC Program for Environmental and Regional Equity: https://nationalequityatlas.org/indicators/Diversity_index/Ranking:33271/United_States/false/Year(s):2015/) to quantify relative ethnic diversity per state, and graphed Figure 2B using the tidyverse, rgdal, broom, and rgeos packages in R (see Base code used to produce Figure 2 in R, below). The Diversity index measures the representation of White, Black, Latino, Asian/Pacific Islander, Native American, and Mixed/other race in a given population. A maximum possible diversity score (1.79) would indicate even representation of all ethnic/racial groups. We checked all figures using the Color Blindness Simulator (ColBlindor: https://www.color-blindness.com/coblis-color-blindness-simulator/) to maintain inclusivity.
Ethnic minorities were more likely to be in favor of racially diversifying adverts in the United States, a survey from June 2020 found. The African American demographic was most in favor of change, with 65 percent of respondents in saying they would like to see more racial diversity in ads. The same was true for 49 percent of Hispanics in the country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in United States. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States median household income by race. You can refer the same here
https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy
Diversity in Tech Statistics: In today's tech-driven world, discussions about diversity in the technology sector have gained significant traction. Recent statistics shed light on the disparities and opportunities within this industry. According to data from various sources, including reports from leading tech companies and diversity advocacy groups, the lack of diversity remains a prominent issue. For example, studies reveal that only 25% of computing jobs in the United States are held by women, while Black and Hispanic individuals make up just 9% of the tech workforce combined. Additionally, research indicates that LGBTQ+ individuals are underrepresented in tech, with only 2.3% of tech workers identifying as LGBTQ+. Despite these challenges, there are promising signs of progress. Companies are increasingly recognizing the importance of diversity and inclusion initiatives, with some allocating significant resources to address these issues. For instance, tech giants like Google and Microsoft have committed millions of USD to diversity programs aimed at recruiting and retaining underrepresented talent. As discussions surrounding diversity in tech continue to evolve, understanding the statistical landscape is crucial in fostering meaningful change and creating a more inclusive industry for all. Editor’s Choice In 2021, 7.9% of the US labor force was employed in technology. Women hold only 26.7% of tech employment, while men hold 73.3% of these positions. White Americans hold 62.5% of the positions in the US tech sector. Asian Americans account for 20% of jobs, Latinx Americans 8%, and Black Americans 7%. 83.3% of tech executives in the US are white. Black Americans comprised 14% of the population in 2019 but held only 7% of tech employment. For the same position, at the same business, and with the same experience, women in tech are typically paid 3% less than men. The high-tech sector employs more men (64% against 52%), Asian Americans (14% compared to 5.8%), and white people (68.5% versus 63.5%) compared to other industries. The tech industry is urged to prioritize inclusion when hiring, mentoring, and retaining employees to bridge the digital skills gap. Black professionals only account for 4% of all tech workers despite being 13% of the US workforce. Hispanic professionals hold just 8% of all STEM jobs despite being 17% of the national workforce. Only 22% of workers in tech are ethnic minorities. Gender diversity in tech is low, with just 26% of jobs in computer-related sectors occupied by women. Companies with diverse teams have higher profitability, with those in the top quartile for gender diversity being 25% more likely to have above-average profitability. Every month, the tech industry adds about 9,600 jobs to the U.S. economy. Between May 2009 and May 2015, over 800,000 net STEM jobs were added to the U.S. economy. STEM jobs are expected to grow by another 8.9% between 2015 and 2024. The percentage of black and Hispanic employees at major tech companies is very low, making up just one to three percent of the tech workforce. Tech hiring relies heavily on poaching and incentives, creating an unsustainable ecosystem ripe for disruption. Recruiters have a significant role in disrupting the hiring process to support diversity and inclusion. You May Also Like To Read Outsourcing Statistics Digital Transformation Statistics Internet of Things Statistics Computer Vision Statistics
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Why does ethnic violence occur in some places but not others? This paper argues that the local ethnic configuration below the national level is an important determinant of how likely conflict is in any particular place. Existing studies of ethnicity and conflict focus on national-level fractionalization or dominance, but much of the politics surrounding ethnic groups’ grievances and disputes takes place at a more local level. We argue that the existence of multiple ethnic groups competing for resources and power at the level of sub-national administrative regions creates a significant constraint on the ability of states to mitigate ethnic groups’ grievances. This in turn increases the likelihood of conflict between ethnic groups and the state. In particular, we argue that diverse administrative regions dominated by one group should be most prone for conflict. Using new data on conflict and ethnic group composition at the region level, we test the theory and find that units with one demographically dominant ethnic group among multiple groups are most prone to conflict.
This statistic shows the public opinion on the racial diversity of selected music genres in the United States as of May 2018, by age. During the survey, 25 percent of respondents stated that they considered rap/hip-hop to be the most racially diverse music genre.