100+ datasets found
  1. Size of urban and rural population U.S. 1960-2023

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Size of urban and rural population U.S. 1960-2023 [Dataset]. https://www.statista.com/statistics/985183/size-urban-rural-population-us/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, there were approximately ***** million people living in rural areas in the United States, while about ****** million people were living in urban areas. Within the provided time period, the number of people living in urban U.S. areas has increased significantly since totaling only ****** million in 1960.

  2. Urban and Rural Population in US Legislative Districts (2020 Census)

    • data-bgky.hub.arcgis.com
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Urban and Rural Population in US Legislative Districts (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/maps/497d1bb78d98438386fd6721b6c2c3aa
    Explore at:
    Dataset updated
    Jun 8, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map's colors indicate which population is larger in each area: urban (green) or rural (yellow). The map's layers contain total population counts by sex, age, and race groups for Nation, State Legislative Districts Upper, State Legislative Districts Lower, Congressional District in the United States and Puerto Rico.The U.S. Census designates each census block as part of an urban area or as rural. Larger geographies in this map such as block group, tract, county and state can therefore have a mix of urban and rural population. This map illustrates the 100% urban areas in dark green, and 100% rural areas in dark yellow. Areas with mixed urban/rural population have softer shades of green or yellow, to give a visual indication of where change may be happening. From the Census:"The Census Bureau’s urban-rural classification is a delineation of geographic areas, identifying both individual urban areas and the rural area of the nation. The Census Bureau’s urban areas represent densely developed territory, and encompass residential, commercial, and other non-residential urban land uses. The Census Bureau delineates urban areas after each decennial census by applying specified criteria to decennial census and other data. Rural encompasses all population, housing, and territory not included within an urban area.For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  3. a

    Healthcare Access in Urban Vs. Rural New Mexico

    • chi-phi-nmcdc.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jul 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2017). Healthcare Access in Urban Vs. Rural New Mexico [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/maps/a60a73f4e5614eb3ab01e2f96227ce4b
    Explore at:
    Dataset updated
    Jul 24, 2017
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    CLICK ON THE ABOVE IMAGE TO LAUNCH THE MAP - Healthcare access issues vary greatly between urban and rural areas of New Mexico. Launch the map to explore alternate ways to classify geographies as urban or rural. These classifications are often used for food access as well as healthcare access.BIBLIOGRAPHY WITH LINKS:US Census Bureau, Urban Area - Urban Cluster FAQ - https://www2.census.gov/geo/pdfs/reference/ua/2010ua_faqs.pdfAre the problems with Rural areas actually just a result of definitions that change?: "When a rural county grows, it transmutes into an urban one." - The real (surprisingly comforting) reason rural America is doomed to decline, https://www.washingtonpost.com/business/2019/05/24/real-surprisingly-comforting-reason-rural-america-is-doomed-decline/ (See also the complete study - http://programme.exordo.com/2018annualmeeting/delegates/presentation/130/ )Rural Definitions for Health Policy, Harvey Licht, a presentation for the University of New Mexico Center for Health Policy: : http://nmcdc.maps.arcgis.com/home/item.html?id=7076f283b8de4bb69bf3153bc42e0402Rural Definitions for Health Policy, update of 2019, Harvey Licht, a presentation to the NMDOH Quarterly Epidemiology Meeting, November, 2019 - http://www.arcgis.com/home/item.html?id=a60a73f4e5614eb3ab01e2f96227ce4bNew Mexico Rural-Urban Counties Comparison Tables - October 2017, Harvey Licht, A preliminary compilation for the National Conference of State Legislators Rural Health Plan Taskforce : https://nmcdc.maps.arcgis.com/home/item.html?id=d3ca56e99f8b45c58522b2f9e061999eNew Mexico Rural Health Plan - Report of the Rural Health Planning Workgroup convened by the NM Department of Health 2018-2019 - http://nmcdc.maps.arcgis.com/home/item.html?id=d4b9b66a5ca34ec9bbe90efd9562586aFrontier and Remote Areas Zip Code Map - http://nmcdc.maps.arcgis.com/home/webmap/viewer.html?webmap=56b4005256244499a58f863c17bbac8aHOUSING ISSUES, RURAL & URBAN, 2017 - http://nmcdc.maps.arcgis.com/home/webmap/viewer.html?webmap=3e3aeabc04ac4672994e25a1ec94df83FURTHER READING:What is Rural? Rural Health Information Hub: https://www.ruralhealthinfo.org/topics/what-is-ruralDefining Rural. Research and Training Center on Disability in Rural Communities: http://rtc.ruralinstitute.umt.edu/resources/defining-rural/What is Rural? USDA: https://www.ers.usda.gov/topics/rural-economy-population/rural-classifications/what-is-rural/National Center for Health Statistics Urban–Rural Classification Scheme: https://www.cdc.gov/nchs/data_access/urban_rural.htm.Health-Related Behaviors by Urban-Rural County Classification — United States, 2013, CDC: https://www.cdc.gov/mmwr/volumes/66/ss/ss6605a1.htm?s_cid=ss6605a1_wExtending Work on Rural Health Disparities, The Journal of Rural Health: http://onlinelibrary.wiley.com/doi/10.1111/jrh.12241/fullMinority Populations Driving Community Growth in the Rural West, Headwaters Economics: https://headwaterseconomics.org/economic-development/trends-performance/minority-populations-driving-county-growth/ Methodology - https://headwaterseconomics.org/wp-content/uploads/Minorities_Methods.pdfThe Role of Medicaid in Rural America, Kaiser Family Foundation: http://www.kff.org/medicaid/issue-brief/the-role-of-medicaid-in-rural-america/The Future of the Frontier: Water, Energy & Climate Change in America’s Most Remote Communities: http://frontierus.org/wp-content/uploads/2017/09/FUTURE-OF-THE-FRONTIER_Final-Version_Spring-2017.pdfRural and Urban Differences in Passenger-Vehicle–Occupant Deaths and Seat Belt Use Among Adults — United States, 2014, CDC: https://www.cdc.gov/mmwr/volumes/66/ss/ss6617a1.htm

  4. Urbanization in the United States 1790 to 2050

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Urbanization in the United States 1790 to 2050 [Dataset]. https://www.statista.com/statistics/269967/urbanization-in-the-united-states/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2020, about 82.66 percent of the total population in the United States lived in cities and urban areas. As the United States was one of the earliest nations to industrialize, it has had a comparatively high rate of urbanization over the past two centuries. The urban population became larger than the rural population during the 1910s, and by the middle of the century it is expected that almost 90 percent of the population will live in an urban setting. Regional development of urbanization in the U.S. The United States began to urbanize on a larger scale in the 1830s, as technological advancements reduced the labor demand in agriculture, and as European migration began to rise. One major difference between early urbanization in the U.S. and other industrializing economies, such as the UK or Germany, was population distribution. Throughout the 1800s, the Northeastern U.S. became the most industrious and urban region of the country, as this was the main point of arrival for migrants. Disparities in industrialization and urbanization was a key contributor to the Union's victory in the Civil War, not only due to population sizes, but also through production capabilities and transport infrastructure. The Northeast's population reached an urban majority in the 1870s, whereas this did not occur in the South until the 1950s. As more people moved westward in the late 1800s, not only did their population growth increase, but the share of the urban population also rose, with an urban majority established in both the West and Midwest regions in the 1910s. The West would eventually become the most urbanized region in the 1960s, and over 90 percent of the West's population is urbanized today. Urbanization today New York City is the most populous city in the United States, with a population of 8.3 million, while California has the largest urban population of any state. California also has the highest urbanization rate, although the District of Columbia is considered 100 percent urban. Only four U.S. states still have a rural majority, these are Maine, Mississippi, Montana, and West Virginia.

  5. f

    PLURAL - Place-level urban-rural indices for the United States from 1930 to...

    • figshare.com
    zip
    Updated Jul 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes H. Uhl; Lori M. Hunter; Stefan Leyk; Dylan S. Connor; Jeremiah J. Nieves; Cyrus Hester; Catherine Talbot; Myron Gutmann (2023). PLURAL - Place-level urban-rural indices for the United States from 1930 to 2018 [Dataset]. http://doi.org/10.6084/m9.figshare.22596946.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 3, 2023
    Dataset provided by
    figshare
    Authors
    Johannes H. Uhl; Lori M. Hunter; Stefan Leyk; Dylan S. Connor; Jeremiah J. Nieves; Cyrus Hester; Catherine Talbot; Myron Gutmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    PLURAL (Place-level urban-rural indices) is a framework to create continuous classifications of "rurality" or "urbanness" based on the spatial configuration of populated places. PLURAL makes use of the concept of "remoteness" to characterize the level of spatial isolation of a populated place with respect to its neighbors. There are two implementations of PLURAL, including (a) PLURAL-1, based on distances to the nearest places of user-specified population classes, and (b) PLURAL-2, based on neighborhood characterization derived from spatial networks. PLURAL requires simplistic input data, i.e., the coordinates (x,y) and population p of populated places (villages, towns, cities) in a given point in time. Due to its simplistic input, the PLURAL rural-urban classification scheme can be applied to historical data, as well as to data from data-scarce settings. Using the PLURAL framework, we created place-level rural-urban indices for the conterminous United States from 1930 to 2018. Rural-urban classifications are essential for analyzing geographic, demographic, environmental, and social processes across the rural-urban continuum. Most existing classifications are, however, only available at relatively aggregated spatial scales, such as at the county scale in the United States. The absence of rurality or urbanness measures at high spatial resolution poses significant problems when the process of interest is highly localized, as with the incorporation of rural towns and villages into encroaching metropolitan areas. Moreover, existing rural-urban classifications are often inconsistent over time, or require complex, multi-source input data (e.g., remote sensing observations or road network data), thus, prohibiting the longitudinal analysis of rural-urban dynamics. We developed a set of distance- and spatial-network-based methods for consistently estimating the remoteness and rurality of places at fine spatial resolution, over long periods of time. Based on these methods, we constructed indices of urbanness for 30,000 places in the United States from 1930 to 2018. We call these indices the place-level urban-rural index (PLURAL), enabling long-term, fine-grained analyses of urban and rural change in the United States. The method paper has been peer-reviewed and is published in "Landscape and Urban Planning". The PLURAL indices from 1930 to 2018 are available as CSV files, and as point-based geospatial vector data (.SHP). Moreover, we provide animated GIF files illustrating the spatio-temporal variation of the different variants of the PLURAL indices, illustrating the dynamics of the rural-urban continuum in the United States from 1930 to 2018. Apply the PLURAL rural-urban classification to your own data: Python code is fully open source and available at https://github.com/johannesuhl/plural. Data sources: Place-level population counts (1980-2010) and place locations 1930 - 2018 were obtained from IPUMS NHGIS, (University of Minnesota, www.nhgis.org; Manson et al. 2022). Place-level population counts 1930-1970 were digitized from historical census records (U.S. Census Bureau 1942, 1964). References: Uhl, J.H., Hunter, L.M., Leyk, S., Connor, D.S., Nieves, J.J., Hester, C., Talbot, C. and Gutmann, M., 2023. Place-level urban–rural indices for the United States from 1930 to 2018. Landscape and Urban Planning, 236, p.104762. DOI: https://doi.org/10.1016/j.landurbplan.2023.104762 Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 16.0 [dataset]. Minneapolis, MN: IPUMS. 2021. http://doi.org/10.18128/D050.V16.0 U.S. Census Bureau (1942). U.S. Census of Population: 1940. Vol. I, Number of Inhabitants. U.S. Government Printing Office, Washington, D.C. U.S. Census Bureau (1964). U.S. Census of Population: 1960. Vol. I, Characteristics of the Population. Part I, United States Summary. U.S. Government Printing Office, Washington, D.C.

  6. VetPop2023 Urban/Rural by Race FY2023-2025

    • catalog.data.gov
    • data.va.gov
    • +1more
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Veterans Affairs (2025). VetPop2023 Urban/Rural by Race FY2023-2025 [Dataset]. https://catalog.data.gov/dataset/vetpop2023-urban-rural-by-race-fy2023-2025
    Explore at:
    Dataset updated
    Apr 2, 2025
    Dataset provided by
    United States Department of Veterans Affairshttp://va.gov/
    Description

    The Department of Veterans Affairs provides official estimates and projections of the Veteran population using the Veteran Population Projection Model (VetPop). Based on the latest model VetPop2023 and the most recent national survey estimates from the 2023 American Community Survey 1-Year (ACS) data, the projected number of Veterans living in the 50 states, DC and Puerto Rico for fiscal years, 2023 to 2025, are allocated to Urban and Rural areas. As defined by the Census Bureau, Rural encompasses all population, housing, and territory not included within an Urban area (https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html). This table contains the Veteran estimates by urban/rural, sex, age group, and race. Note: rounding to the nearest 1,000 is always appropriate for VetPop estimates.

  7. United States US: People Using Basic Drinking Water Services: Rural: % of...

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: People Using Basic Drinking Water Services: Rural: % of Rural Population [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-people-using-basic-drinking-water-services-rural--of-rural-population
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2015
    Area covered
    United States
    Description

    United States US: People Using Basic Drinking Water Services: Rural: % of Rural Population data was reported at 96.675 % in 2015. This stayed constant from the previous number of 96.675 % for 2014. United States US: People Using Basic Drinking Water Services: Rural: % of Rural Population data is updated yearly, averaging 96.675 % from Dec 2005 (Median) to 2015, with 11 observations. The data reached an all-time high of 96.675 % in 2015 and a record low of 96.675 % in 2015. United States US: People Using Basic Drinking Water Services: Rural: % of Rural Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. The percentage of people using at least basic water services. This indicator encompasses both people using basic water services as well as those using safely managed water services. Basic drinking water services is defined as drinking water from an improved source, provided collection time is not more than 30 minutes for a round trip. Improved water sources include piped water, boreholes or tubewells, protected dug wells, protected springs, and packaged or delivered water.; ; WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply, Sanitation and Hygiene (washdata.org).; Weighted Average;

  8. 2023 American Community Survey: B06009 | Place of Birth by Educational...

    • data.census.gov
    Updated Aug 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2023 American Community Survey: B06009 | Place of Birth by Educational Attainment in the United States (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/all/tables?q=Montgomery%20Creek%20Rancheria,%20CA;%20California%20Education
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  9. 2023 American Community Survey: B05006 | Place of Birth for the Foreign-Born...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B05006 | Place of Birth for the Foreign-Born Population in the United States (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2023.B05006?q=west+indies
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  10. 2021 American Community Survey: B03003 | HISPANIC OR LATINO ORIGIN (ACS...

    • data.census.gov
    Updated Oct 1, 1970
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (1970). 2021 American Community Survey: B03003 | HISPANIC OR LATINO ORIGIN (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2021.B03003?q=Hispanic+or+Latino&g=040XX00US16_050XX00US16021_1500000US160219701001
    Explore at:
    Dataset updated
    Oct 1, 1970
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  11. 5G population coverage in rural and urban United States 2023, by number of...

    • statista.com
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). 5G population coverage in rural and urban United States 2023, by number of networks [Dataset]. https://www.statista.com/statistics/1559585/us-5g-rural-urban-population-coverage/
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 31, 2023
    Area covered
    United States
    Description

    More than 71 percent of the rural United States population were covered by at least one 5G network as of late 2023, while around 43 percent were covered by two or more. Expanding rural 5G coverage presents a challenge for U.S. mobile network operators, with low density and difficult terrain driving up the cost per potential customer.

  12. 2023 American Community Survey: B07004C | Geographical Mobility in the Past...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B07004C | Geographical Mobility in the Past Year (American Indian and Alaska Native Alone) for Current Residence in the United States (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2023.B07004C?q=Residential+Mobility&g=040XX00US39
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..This table provides geographical mobility for persons relative to their residence at the time they were surveyed. The characteristics crossed by geographical mobility reflect the current survey year..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  13. United States US: Urban Population Living in Areas Where Elevation is Below...

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-urban-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    United States
    Description

    United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data was reported at 2.264 % in 2010. This records an increase from the previous number of 2.246 % for 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data is updated yearly, averaging 2.264 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 2.329 % in 1990 and a record low of 2.246 % in 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  14. VetPop2023 Urban Rural by Period of Service FY2023-2025

    • catalog.data.gov
    • data.va.gov
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Veterans Affairs (2025). VetPop2023 Urban Rural by Period of Service FY2023-2025 [Dataset]. https://catalog.data.gov/dataset/vetpop2023-urban-rural-by-period-of-service-fy2023-2025
    Explore at:
    Dataset updated
    Apr 2, 2025
    Dataset provided by
    United States Department of Veterans Affairshttp://va.gov/
    Description

    The Department of Veterans Affairs provides official estimates and projections of the Veteran population using the Veteran Population Projection Model (VetPop). Based on the latest model VetPop2023 and the most recent national survey estimates from the 2023 American Community Survey 1-Year (ACS) data, the projected number of Veterans living in the 50 states, DC and Puerto Rico for fiscal years, 2023 to 2025, are allocated to Urban and Rural areas. As defined by the Census Bureau, Rural encompasses all population, housing, and territory not included within an Urban area (https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html). This tables contains the Veteran estimates by urban/rural and period of service. Note: rounding to the nearest 1,000 is always appropriate for VetPop estimates.

  15. d

    UA Census Urbanized Areas, 1990 - Montana

    • datamed.org
    Updated Dec 13, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). UA Census Urbanized Areas, 1990 - Montana [Dataset]. https://datamed.org/display-item.php?repository=0012&idName=ID&id=56d4b84de4b0e644d3132225
    Explore at:
    Dataset updated
    Dec 13, 2011
    Area covered
    Montana
    Description

    This datalayer displays the Urbanized Areas (UAs) for the state based on a January 1, 1990 ground condition. Note that the Census Bureau made significant changes in Urban/Rural designations for the Census 2000 data layers. Some of these delineations and definitions are explained below. 1990 Urban/Rural The U.S. Census Bureau defined urban for the 1990 census as consisting of all territory and population in urbanized areas (UAs) and in the urban portion of places with 2,500 or more people located outside of the UAs. The 1990 urban and rural classification applied to the 50 states, the District of Columbia, and Puerto Rico. 1990 Urbanized Areas A 1990 urbanized area (UA) consisted of at least one central place and the adjacent densely settled surrounding territory that together had a minimum population of 50,000 people. The densely settled surrounding territory generally consisted of an area with continuous residential development and a general overall population density of at least 1,000 people per square mile. 1990 Extended Cities For the 1990 census, the U.S. Census Bureau distinguished the urban and rural population within incorporated places whose boundaries contained large, sparsely populated, or even unpopulated area. Under the 1990 criteria, an extended city had to contain either 25 percent of the total land area or at least 25 square miles with an overall population density lower than 100 people per square mile. Such pieces of territory had to cover at least 5 square miles. This low-density area was classified as rural and the other, more densely settled portion of the incorporated place was classified as urban. Unlike previous censuses where the U.S. Census Bureau defined extended cities only within UAs, for the 1990 census the U.S. Census Bureau applied the extended city criteria to qualifying incorporated places located outside UAs. 1990 Urbanized Area Codes Each 1990 UA was assigned a 4-digit numeric census code in alphabetical sequence on a nationwide basis based on the metropolitan area codes. Note that in Record Type C, the 1990 UA 4-digit numeric censu s code and Census 2000 UA 5-digit numeric census code share a 5-character field. Because of this, the 1990 4-digit UA code, in Record Type C only, appears with a trailing blank. For Census 2000 the U.S. Census Bureau classifies as urban all territory, population, and housing units located within urbanized areas (UAs) and urban clusters (UCs). It delineates UA and UC boundaries to encompass densely settled territory, which generally consists of: - A cluster of one or more block groups or census blocks each of which has a population density of at least 1,000 people per square mile at the time - Surrounding block groups and census blocks each of which has a population density of at least 500 people per square mile at the time, and - Less densely settled blocks that form enclaves or indentations, or are used to connect discontiguous areas with qualifying densities. Rural consists of all territory, population, and housing units located outside of UAs and UCs. For Census 2000 this urban and rural classification applies to the 50 states, the District of Columbia, Puerto Rico, American Samoa, Guam, the Northern Mariana Islands, and the Virgin Islands of the United States. Urbanized Areas (UAs) An urbanized area consists of densely settled territory that contains 50,000 or more people. The U.S. Census Bureau delineates UAs to provide a better separation of urban and rural territory, population, and housing in the vicinity of large places. For Census 2000, the UA criteria were extensively revised and the delineations were performed using a zero-based approach. Because of more stringent density requirements, some territory that was classified as urbanized for the 1990 census has been reclassified as rural. (Area that was part of a 1990 UA has not been automatically grandfathered into the 2000 UA.) In addition, some areas that were identified as UAs for the 1990 census have been reclassified as urban clusters. Urban Clusters (UCs) An urban cluster consists of densely settled territory that has at least 2,500 people but fewer than 50,000 people. The U.S. Census Bureau introduced the UC for Census 2000 to provide a more consistent and accurate measure of the population concentration in and around places. UCs are defined using the same criteria that are used to define UAs. UCs replace the provision in the 1990 and previous censuses that defined as urban only those places with 2,500 or more people located outside of urbanized areas. Urban Area Title and Code The title of each UA and UC may contain up to three incorporated place names, and will include the two-letter U.S. Postal Service abbreviation for each state into which the UA or UC extends. However, if the UA or UC does not contain an incorporated place, the urban area title will include the single name of a census designated place (CDP), minor civil division, or populated place recognized by the U.S. Geological Survey's Geographic Names Information System. Each UC and UA is assigned a 5-digit numeric code, based on a national alphabetical sequence of all urban area names. For the 1990 census, the U.S. Census Bureau assigned as four-digit UA code based on the metropolitan area codes. Urban Area Central Places A central place functions as the dominant center of an urban area. The U.S. Census Bureau identifies one or more central places for each UA or UC that contains a place. Any incorporated place or census designated place (CDP) that is in the title of the urban area is a central place of that UA or UC. In addition, any other incorporated place or CDP that has an urban population of 50,000 or an urban population of at least 2,500 people and is at least 2/3 the size of the largest place within the urban area also is a central place. Extended Places As a result of the UA and UC delineations, an incorporated place or census designated place (CDP) may be partially within and partially outside of a UA or UC. Any place that is split by a UA or UC is referred to as an extended place.

  16. f

    Table_1_Majority of Rural Residents Compost Food Waste: Policy and Waste...

    • frontiersin.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meredith T. Niles (2023). Table_1_Majority of Rural Residents Compost Food Waste: Policy and Waste Management Implications for Rural Regions.DOCX [Dataset]. http://doi.org/10.3389/fsufs.2019.00123.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Meredith T. Niles
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A growing number of municipalities and states are implementing household food waste diversion efforts such as curbside compost programs, though these programs present challenges for participation and implementation. While many food waste diversion programs are occurring in densely populated regions, understanding food waste management in rural regions is less studied. This research examines the food waste perceptions and current and future food waste management behaviors of residents in Vermont, one of the most rural U.S. states, through a representative telephone survey of Vermont residents (n = 583) in 2018. The findings suggest 55% of residents support banning food waste from landfills. Furthermore, 72% of residents compost at least some of their food waste currently and more than 75% anticipate doing so in the future. Conversely, 34% of residents anticipate using the garbage or a curbside compost pickup program in the future with urban county residents, renters, and those currently using garbage most interested in curbside programs. The majority of respondents were unwilling to pay anything additional for curbside compost pickup programs. These results suggest food waste management strategies in rural regions may be different than densely populated areas, particularly for programs that may require significant investments and have limited participation given the popularity of home composting. As a result, greater investment in education and infrastructure for backyard composting may be an important component of rural food waste management.

  17. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    application/rdfxml +5
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/njmz-dpbc
    Explore at:
    application/rdfxml, csv, application/rssxml, xml, tsv, jsonAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  18. Small U.S. cities and rural areas with the highest eviction rates 2016

    • statista.com
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Small U.S. cities and rural areas with the highest eviction rates 2016 [Dataset]. https://www.statista.com/statistics/942746/small-cities-highest-eviction-rates-usa/
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    United States
    Description

    This statistic shows the small cities and rural areas with the highest eviction rates in the United States in 2016. In 2016, Homestead Base, Florida had the third highest eviction rate at ***** percent.

  19. 2023 American Community Survey: B07012 | Geographical Mobility in the Past...

    • data.census.gov
    Updated Aug 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2023 American Community Survey: B07012 | Geographical Mobility in the Past Year by Poverty Status in the Past 12 Months for Current Residence in the United States (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/all/tables?q=B07012&g=9700000US4824030
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..This table provides geographical mobility for persons relative to their residence at the time they were surveyed. The characteristics crossed by geographical mobility reflect the current survey year..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  20. o

    PLURAL - Place-level urban-rural indices for the United States from 1930 to...

    • openicpsr.org
    delimited
    Updated Feb 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes H. Uhl; Lori M. Hunter; Stefan Leyk; Dylan S. Connor; Jeremiah J. Nieves; Cyrus Hester; Catherine B. Talbot; Myron P. Gutmann (2022). PLURAL - Place-level urban-rural indices for the United States from 1930 to 2018 [Dataset]. http://doi.org/10.3886/E162941V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Feb 18, 2022
    Dataset provided by
    University of Colorado-Boulder
    University of Liverpool
    Arizona State University
    Authors
    Johannes H. Uhl; Lori M. Hunter; Stefan Leyk; Dylan S. Connor; Jeremiah J. Nieves; Cyrus Hester; Catherine B. Talbot; Myron P. Gutmann
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Time period covered
    1930 - 2018
    Area covered
    United States
    Description

    Rural-urban classifications are essential for analyzing geographic, demographic, environmental, and social processes across the rural-urban continuum. Most existing classifications are, however, only available at relatively aggregated spatial scales, such as at the county scale in the United States. The absence of rurality or urbanness measures at high spatial resolution poses significant problems when the process of interest is highly localized, as with the incorporation of rural towns and villages into encroaching metropolitan areas. Moreover, existing rural-urban classifications are often inconsistent over time, or require complex, multi-source input data (e.g., remote sensing observations or road network data), thus, prohibiting the longitudinal analysis of rural-urban dynamics. We developed a set of distance- and spatial-network-based methods for consistently estimating the remoteness and rurality of places at fine spatial resolution, over long periods of time. Based on these methods, we constructed indices of urbanness for 30,000 places in the United States from 1930 to 2018. We call these indices the place-level urban-rural index (PLURAL), enabling long-term, fine-grained analyses of urban and rural change in the United States.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Size of urban and rural population U.S. 1960-2023 [Dataset]. https://www.statista.com/statistics/985183/size-urban-rural-population-us/
Organization logo

Size of urban and rural population U.S. 1960-2023

Explore at:
19 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 23, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2023, there were approximately ***** million people living in rural areas in the United States, while about ****** million people were living in urban areas. Within the provided time period, the number of people living in urban U.S. areas has increased significantly since totaling only ****** million in 1960.

Search
Clear search
Close search
Google apps
Main menu