New York was the state with the greatest gap between rich and poor, with a Gini coefficient score of 0.52 in 2023. Although not a state, District of Columbia was among the highest Gini coefficients in the United States that year.
Income InequalityThe level of income inequality among households in a county can be measured using the Gini index. A Gini index varies between zero and one. A value of one indicates perfect inequality, where only one household in the county has any income. A value of zero indicates perfect equality, where all households in the county have equal income.The United States, as a country, has a Gini Index of 0.47 for this time period. For comparision in this map, the purple counties have greater income inequality, while orange counties have less inequality of incomes. For reference, Brazil has an index of 0.58 (relatively high inequality) and Denmark has an index of 0.24 (relatively low inequality).The 5-year Gini index for the U.S. was 0.4695 in 2007-2011 and 0.467 in 2006-2010. Appalachian Regional Commission, September 2013Data source: U.S. Census Bureau, 5-Year American Community Survey, 2006-2010 & 2007-2011
Based on the degree of inequality in income distribution measured by the Gini coefficient, Colombia was the most unequal country in Latin America as of 2022. Colombia's Gini coefficient amounted to 54.8. The Dominican Republic recorded the lowest Gini coefficient at 37, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America. The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time. What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 37 and 55 points according to the latest available data from the reporting period 2010-2023. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 41.500 % in 2016. This records an increase from the previous number of 41.000 % for 2013. United States US: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 40.400 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 41.500 % in 2016 and a record low of 34.600 % in 1979. United States US: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
This dataset contains tables that match an estimated Gini coefficient to a specific geographic region (either census tract, county, or state) from 2010 to 2018. The 1-year estimates are produced by the American Community Survey (ACS).
Brazil is one of the most unequal countries in terms of income in Latin America. In 2022, it was estimated that almost 57 percent of the income generated in Brazil was held by the richest 20 percent of its population. Among the Latin American countries with available data included in this graph, Colombia came in first, as the wealthiest 20 percent of the Colombian population held over 59 percent of the country's total income.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.
In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.
Comparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
In 2023, the Middle East and North Africa, and Latin America were the regions with the lowest level of distribution of wealth worldwide, with the richest ten percent holding around ** percent of the total wealth. On the other hand, in Europe, the richest ten percent held around ** percent of the wealth. East and South Asia were the regions where the poorest half of the population held the highest share of the wealth, but still only around **** percent, underlining the high levels of wealth inequalities worldwide.
This dataset contains tables that match an estimated Gini coefficient to a specific geographic region (either census tract, county, or state) from 2010 to 2018. The 1-year estimates are produced by the American Community Survey (ACS).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, and definitions, see the 2020 Island Areas Censuses Technical Documentation..Due to COVID-19 restrictions impacting data collection for the 2020 Census of the U.S. Virgin Islands, data tables reporting social and economic characteristics do not include the group quarters population in the table universe. As a result, impacted 2020 data tables should not be compared to 2010 and other past census data tables reporting the same characteristics. The Census Bureau advises data users to verify table universes are the same before comparing data across census years. For more information about data collection limitations and the impacts on the U.S. Virgin Islands' data products, see the 2020 Island Areas Censuses Technical Documentation..Explanation of Symbols: 1.An "-" means the statistic could not be computed because there were an insufficient number of observations. 2. An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.3. An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.4. An "N" means data are not displayed for the selected geographic area due to concerns with statistical reliability or an insufficient number of cases.5. An "(X)" means not applicable..Source: U.S. Census Bureau, 2020 Census, U.S. Virgin Islands.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
SI.POV.GINI. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality. The Gender Statistics database is a comprehensive source for the latest sex-disaggregated data and gender statistics covering demography, education, health, access to economic opportunities, public life and decision-making, and agency.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, and definitions, see the 2020 Island Areas Censuses Technical Documentation..Due to COVID-19 restrictions impacting data collection for the 2020 Census of American Samoa, data tables reporting social and economic characteristics do not include the group quarters population in the table universe. As a result, impacted 2020 data tables should not be compared to 2010 and other past census data tables reporting the same characteristics. The Census Bureau advises data users to verify table universes are the same before comparing data across census years. For more information about data collection limitations and the impacts on American Samoa's data products, see the 2020 Island Areas Censuses Technical Documentation..Explanation of Symbols: 1.An "-" means the statistic could not be computed because there were an insufficient number of observations. 2. An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.3. An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.4. An "N" means data are not displayed for the selected geographic area due to concerns with statistical reliability or an insufficient number of cases.5. An "(X)" means not applicable..Source: U.S. Census Bureau, 2020 Census, American Samoa.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Link to this report's codebookUnfulfilled Promise of Racial EqualityUS states unequally distribute resources, services, and opportunities by raceThe US is failing to deliver on its promise of racial equality. While the US founding documents assert that ‘all men are created equal,’ this value is not demonstrated in outcomes across areas as diverse and varied as education, justice, health, gender, and pollution. On average, white communities receive resources and services at a rate approximately three times higher, than the least-served racial community (data on Asian, Black, Indigenous, Hawaiian and Pacific Islander, Hispanic, Multiracial and ‘Other’ racial communities, were used as available). Evidence shows that unequal treatment impacts each of these communities, however, it is most often Black and Indigenous communities that are left the furthest behind. When states are scored on how well they deliver the United Nations Sustainable Development Goals (SDGs) to the racial group least served, no state is even halfway to achieving the SDGs by 2030 (see Figure 1). To learn more about the Sustainable Development Goals, see the section “SDGs & Accountability.”One example of this inequality is in life expectancy. In Figure 2, the scatter plot on the left demonstrates a pattern in which Black and Indigenous communities, represented by orange and green dots closest to the bottom of the graph, are consistently the communities with least access to years of life. In the graph on the right, each box represents a racial population in a specific state, the boxes are organized from left to right, lowest to highest, according to the life expectancy for that group and state. The graph shows how large the gap is in life expectancy across racial communities and states, with green and orange boxes, representing Indigenous and Black communities respectively, clustered to the left of the graph.Patterns like this one, demonstrating both deep and wide racial inequalities, occur across the 51 indicators this analysis includes, covering 12 of 17 SDGs. In a similar example (Figure 3), a pattern emerges where white students are least likely to attend a school where 75 percent or more of its students receive free or reduced cost lunch when compared to all other racial groups. In the most unequal state, North Dakota, Indigenous students attend high poverty schools at a rate 42 times higher than white students. As Figure 3 shows, although the percentage of students from the least served racial group attending high poverty schools ranges from 2 percent in Vermont to 73 percent in Mississippi, the group least served, represented by the dots closest to the top of the graph, are most often Hispanic and Indigenous communities.Lack of Racial DataMore, and better, racially and ethnically disaggregated data are needed to assess delivery of racial equalityA significant barrier to evaluating progress is the unavailability of racial data across all areas of measurement. For too many important topic areas, such as food insecurity, maternal mortality and lead in drinking water, there is no racial data available at the state level. Even in the areas where there is some racial data, it is often not available for all groups (see Figure 4). Particularly missing, were measures of environmental justice; in Goals focusing on Water, Clean Energy, and Life on Land (Goals 6, 7, and 15), racial data was not found for any indicators, despite the fact that there is research indicating that clean water, for example, is unequally distributed across racial groups. The reasons for these gaps vary. For some indicators, data is not tracked through a nationally organized database, for other indicators, the data is old and out of date, and in many cases, surveys are not large enough to disaggregate by race. As was made clear with the disparate impacts of COVID-19 (for example, see CDC 2020), understanding to whom resources are being distributed has real life implications and is an important part of holding democratic institutions accountable to promises of equality.People are often left behind due to a combination of intersecting identities and factors; they remain hidden in averages. Evaluating the Leave No One Behind Agenda through the lens of gender, ability, class and other identities are undoubtedly important and urgent. Disaggregating data along two axes such as race and location—is revealing. But an even more refined analysis using multilevel disaggregation, such as looking at women and race in urban settings, would likely reveal even starker inequalities. Those are not included here and are important areas for future work. Other areas for further exploration include the use of longitudinal data to understand how these inequalities are changing over time.Though the full extent of this unequal treatment is unknown, this analysis sheds some light on the clouded story told by state averages. Whole group averages leave out important information, particularly about inequality. Racially disaggregated data is essential for holding governments accountable to the promise of racial equity. Without it, it is too easy to hide who is being excluded and left behind.SDGs and AccountabilitySDGs and AccountabilityThe SDGs can be an accountability tool to address racial inequality. This would not be the first time UN frameworks have been used to call attention to racial inequality in the US. In 1951, the Civil Rights Congress (CRC) led by William L. Patterson and Paul Robeson put a petition to the UN, named: “We Charge Genocide,” which charged that the United States government was in violation of the Charter of the United Nations and the Convention on the Prevention and Punishment of the Crime of Genocide (Figure 5). While this attempt did not succeed in charging the US government with genocide, it is a central example of how international instruments can be used to apply localized pressure to advance civil rights.All 193 member countries of the UN, including the United States, signed on to the Sustainable Development Goals in 2015, to be achieved by 2030. The Goals cover 17 wide-ranging topics, with 169 specific targets for action (Figure 6). The first agenda of the SDGs, the Leave No One Behind Agenda (LNOB), requires that those left furthest behind by governments must have the SDGs delivered to them first. The results of this project demonstrate that in a US-context, those left furthest behind would undoubtedly include Asian, Black, Indigenous, Hawaiian and Pacific Islander, Hispanic, Multiracial and ‘Other’ racial communities. The SDGs can offer a template for US states attempting to deliver on their promise of racial equality. The broad topic areas covered by the SDGs, in combination with the Leave No One Behind agenda, can be a tool to hold states accountable for addressing racial inequalities when and through developing solutions for clean water, quality education, ending hunger, delivering justice and more. This highlights an important implication of the Leave No One Behind Agenda, it is not meant to pit communities against each other, but rather to remind us how much everyone has to gain by building and advocating for sustainable communities that serve us all.Explore ResultsExplore the data from the In the Red: the US failure to deliver on a promise of racial equality in our interactive dashboards.These maps display how US states are delivering sustainability across different racial and ethnic groups. As part of the Leave No One Behind Agenda, which maintains that those who have been least served by development progress must be those first addressed through the SDGs, progress toward the goals in each state is displayed based on the racial group with the least access to resources, programs, and services in that state. In other words, the “Overall scores’’ map shows the score for the racial group least served in each state. Click on a state to toggle through the state’s performance by different SDGs, and click on an indicator to view how a state performs on a given indicator. At the indicator level, horizontal bar charts show the racial disparity in the selected indicator and state, when data is available.AboutIn the Red: the US Failure to Deliver on a Promise of Racial EqualityIn the Red: the US Failure to Deliver on a Promise of Racial Equality project highlights measurable gaps in how states deliver sustainability to different racial groups. The full report can be read here. It extends an earlier report, Never More Urgent, looking at policies and practices that have led to the inequalities described in this project. It was prepared by a group of independent experts at SDSN and Howard University.UN Sustainable Development Solutions Network (SDSN)The UN Sustainable Development Solutions Network (SDSN) mobilizes scientific and technical expertise from academia, civil society, and the private sector to support practical problem solving for sustainable development at local, national, and global scales. The SDSN has been operating since 2012 under the auspices of the UN Secretary-General Antonio Guterres. The SDSN is building national and regional networks of knowledge institutions, solution-focused thematic networks, and the SDG Academy, an online university for sustainable development.SDSN USASDSN USA is a network of 150+ research institutions across the United States and unincorporated territories. The network builds pathways toward achievement of the UN Sustainable Development Goals (SDGs) in the United States by mobilizing research, outreach, collective action, and global cooperation. SDSN USA is one of more than 40 national and regional SDSN networks globally. It is hosted by the UN Sustainable Development Solutions Network (SDSN) in New York City, and is chaired by Professors Jeffrey Sachs (Columbia University), Helen Bond (Howard University), Dan Esty (Yale University), and Gordon McCord (UC San Diego).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Tell us what you think. Provide feedback to help make American Community Survey data more useful for you..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2016 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2016 American Community Survey 1-Year Estimates
Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically
In this study, we examine the regional income distribution in Peru from 1795 to 2017. To achieve this goal, we reconstructed long-term regional GDP and population series for Peru’s 24 departments. These series allowed us to analyze regional income inequality through dimensions such as inequality, modality, mobility, agglomeration, and convergence. The results indicate a persistent increase in regional inequality in Peru from the second half of the 19th century to the first half of the 20th century. The Gini coefficient, which measures regional inequality, shows a value of 0.2613 for 1795 and 0.3626 for 2017, with the highest value of 0.4283 recorded in 1934. The regional income distribution is bimodal, with no mobility between the extremes. For instance, the probability that a department poor in 1795 remains poor in 2017 is 94%, while the probability of a rich region remaining rich is 95%. However, significant mobility is observed among departments occupying the middle of the distribution. Additionally, the beta convergence rate from 1795 to 2017 was 1.62%, compared to 1.30% in the 19th century and 1.05% in the 20th century. Using Quantile Regressions (QR), we found that the convergence speed for the entire analysis period ranges from 0.5% to 3.22%, depending on the quantile analyzed. In contrast, using Markov-Switching models (MS), we found a convergence speed exceeding 10%, contrary to previous empirical findings. Finally, the impact of geographic variables on convergence speed varies depending on the statistical method used and the period analyzed.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication package for "The regional dispersion of income inequality in nineteenth-century Norway", to be published in Explorations in Economic History (accepted September 2017). The files contain micro data foundations for estimates of Norwegian income inequality in 1868.The file "data_compact.dta" (Stata format) contains "pseudo-invididual" observations of all men age 25 or more in Norway in 1868, estimated as described in the paper. Note that any one individual data point cannot stand by itself; analysis must be conducted at the municipality and/or occupation level. This is further explained in the paper.The file "municipalityfile.dta" (Stata format) contains municipality-level Gini coefficients and covariates.The file "replicate.zip" contains the necessary files (Stata and Matlab) to replicate the analysis. See "DataReadMe.pdf" for instructions.Abstract for the paper: This paper documents, for the first time, municipality- and occupation-level estimates of income inequality between individuals in a European country in the nineteenth century, using a combination of several detailed data sets for Norway in the late 1860s. Urban incomes were on average 4.5 times as high as rural incomes, and the average city Gini coefficient was twice the average rural municipality Gini. All high- or medium-income occupation groups exhibited substantial within-occupation income inequality. Across municipalities, income inequality is higher in high-income municipalities, and lower in muncipalities with high levels of fisheries and pastoral agriculture. While manufacturing activity is positively correlated with income inequality, the association is not apparent when other economic factors such as the mode of food production is accounted for. The income Gini for Norway as a whole is found to have been 0.546, slightly higher than estimates for the UK and US in the same period.
New York was the state with the greatest gap between rich and poor, with a Gini coefficient score of 0.52 in 2023. Although not a state, District of Columbia was among the highest Gini coefficients in the United States that year.