82 datasets found
  1. Most popular database management systems worldwide 2024

    • statista.com
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular database management systems worldwide 2024 [Dataset]. https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    Worldwide
    Description

    As of June 2024, the most popular database management system (DBMS) worldwide was Oracle, with a ranking score of *******; MySQL and Microsoft SQL server rounded out the top three. Although the database management industry contains some of the largest companies in the tech industry, such as Microsoft, Oracle and IBM, a number of free and open-source DBMSs such as PostgreSQL and MariaDB remain competitive. Database Management Systems As the name implies, DBMSs provide a platform through which developers can organize, update, and control large databases. Given the business world’s growing focus on big data and data analytics, knowledge of SQL programming languages has become an important asset for software developers around the world, and database management skills are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.

  2. Most popular relational database management systems worldwide 2024

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most popular relational database management systems worldwide 2024 [Dataset]. https://www.statista.com/statistics/1131568/worldwide-popularity-ranking-relational-database-management-systems/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    Worldwide
    Description

    As of June 2024, the most popular relational database management system (RDBMS) worldwide was Oracle, with a ranking score of *******. Oracle was also the most popular DBMS overall. MySQL and Microsoft SQL server rounded out the top three.

  3. Most popular commercial database management systems worldwide 2024

    • statista.com
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most popular commercial database management systems worldwide 2024 [Dataset]. https://www.statista.com/statistics/1131597/worldwide-popularity-ranking-database-management-systems-commercial/
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    Worldwide
    Description

    As of June 2024, the most popular commercial database management system (DBMS) in the world was Oracle, with a ranking score of ****. MySQL was the most popular open source DBMS at that time, with a ranking score of ****.

  4. Most commonly used database technologies among developers worldwide 2023

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most commonly used database technologies among developers worldwide 2023 [Dataset]. https://www.statista.com/statistics/794187/united-states-developer-survey-most-wanted-used-database-technologies/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 8, 2023 - May 19, 2023
    Area covered
    Worldwide
    Description

    In 2023, over ** percent of surveyed software developers worldwide reported using PostgreSQL, the highest share of any database technology. Other popular database tools among developers included MySQL and SQLite.

  5. Most popular database management systems in software companies in Russia...

    • statista.com
    Updated Aug 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Most popular database management systems in software companies in Russia 2022 [Dataset]. https://www.statista.com/statistics/1330732/most-popular-dbms-in-software-companies-russia/
    Explore at:
    Dataset updated
    Aug 18, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2022 - May 2022
    Area covered
    Russia
    Description

    Approximately ** percent of the surveyed software companies in Russia mentioned PostgreSQL, making it the most popular database management system (DBMS) in the period between February and May 2022. MS SQL and MySQL followed, having been mentioned by ** percent and ** percent of respondents, respectively.

  6. d

    August 2024 data-update for "Updated science-wide author databases of...

    • elsevier.digitalcommonsdata.com
    Updated Sep 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John P.A. Ioannidis (2024). August 2024 data-update for "Updated science-wide author databases of standardized citation indicators" [Dataset]. http://doi.org/10.17632/btchxktzyw.7
    Explore at:
    Dataset updated
    Sep 16, 2024
    Authors
    John P.A. Ioannidis
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    Citation metrics are widely used and misused. We have created a publicly available database of top-cited scientists that provides standardized information on citations, h-index, co-authorship adjusted hm-index, citations to papers in different authorship positions and a composite indicator (c-score). Separate data are shown for career-long and, separately, for single recent year impact. Metrics with and without self-citations and ratio of citations to citing papers are given and data on retracted papers (based on Retraction Watch database) as well as citations to/from retracted papers have been added in the most recent iteration. Scientists are classified into 22 scientific fields and 174 sub-fields according to the standard Science-Metrix classification. Field- and subfield-specific percentiles are also provided for all scientists with at least 5 papers. Career-long data are updated to end-of-2023 and single recent year data pertain to citations received during calendar year 2023. The selection is based on the top 100,000 scientists by c-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field. This version (7) is based on the August 1, 2024 snapshot from Scopus, updated to end of citation year 2023. This work uses Scopus data. Calculations were performed using all Scopus author profiles as of August 1, 2024. If an author is not on the list it is simply because the composite indicator value was not high enough to appear on the list. It does not mean that the author does not do good work. PLEASE ALSO NOTE THAT THE DATABASE HAS BEEN PUBLISHED IN AN ARCHIVAL FORM AND WILL NOT BE CHANGED. The published version reflects Scopus author profiles at the time of calculation. We thus advise authors to ensure that their Scopus profiles are accurate. REQUESTS FOR CORRECIONS OF THE SCOPUS DATA (INCLUDING CORRECTIONS IN AFFILIATIONS) SHOULD NOT BE SENT TO US. They should be sent directly to Scopus, preferably by use of the Scopus to ORCID feedback wizard (https://orcid.scopusfeedback.com/) so that the correct data can be used in any future annual updates of the citation indicator databases. The c-score focuses on impact (citations) rather than productivity (number of publications) and it also incorporates information on co-authorship and author positions (single, first, last author). If you have additional questions, see attached file on FREQUENTLY ASKED QUESTIONS. Finally, we alert users that all citation metrics have limitations and their use should be tempered and judicious. For more reading, we refer to the Leiden manifesto: https://www.nature.com/articles/520429a

  7. Popularity distribution of database management systems worldwide 2024, by...

    • statista.com
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Popularity distribution of database management systems worldwide 2024, by model [Dataset]. https://www.statista.com/statistics/1131595/worldwide-popularity-database-management-systems-category/
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    Worldwide
    Description

    As of December 2022, relational database management systems (RDBMS) were the most popular type of DBMS, accounting for a ** percent popularity share. The most popular RDBMS in the world has been reported as Oracle, while MySQL and Microsoft SQL server rounded out the top three.

  8. Z

    Data from: Bibliographic dataset characterizing studies that use online...

    • data-staging.niaid.nih.gov
    • portalcientifico.unav.edu
    • +1more
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ball-Damerow, Joan E.; Brenskelle, Laura; Barve, Narayani; LaFrance, Raphael; Soltis, Pamela S.; Sierwald, Petra; Bieler, Rüdiger; Ariño, Arturo; Guralnick, Robert (2020). Bibliographic dataset characterizing studies that use online biodiversity databases [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_2589438
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Florida Museum of Natural History, University of Florida, Gainesville
    Department of Environmental Biology, Universidad de Navarra
    Field Museum of Natural History
    Authors
    Ball-Damerow, Joan E.; Brenskelle, Laura; Barve, Narayani; LaFrance, Raphael; Soltis, Pamela S.; Sierwald, Petra; Bieler, Rüdiger; Ariño, Arturo; Guralnick, Robert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes bibliographic information for 501 papers that were published from 2010-April 2017 (time of search) and use online biodiversity databases for research purposes. Our overarching goal in this study is to determine how research uses of biodiversity data developed during a time of unprecedented growth of online data resources. We also determine uses with the highest number of citations, how online occurrence data are linked to other data types, and if/how data quality is addressed. Specifically, we address the following questions:

    1.) What primary biodiversity databases have been cited in published research, and which

     databases have been cited most often?
    

    2.) Is the biodiversity research community citing databases appropriately, and are

     the cited databases currently accessible online?
    

    3.) What are the most common uses, general taxa addressed, and data linkages, and how

     have they changed over time?
    

    4.) What uses have the highest impact, as measured through the mean number of citations

     per year?
    

    5.) Are certain uses applied more often for plants/invertebrates/vertebrates?

    6.) Are links to specific data types associated more often with particular uses?

    7.) How often are major data quality issues addressed?

    8.) What data quality issues tend to be addressed for the top uses?

    Relevant papers for this analysis include those that use online and openly accessible primary occurrence records, or those that add data to an online database. Google Scholar (GS) provides full-text indexing, which was important to identify data sources that often appear buried in the methods section of a paper. Our search was therefore restricted to GS. All authors discussed and agreed upon representative search terms, which were relatively broad to capture a variety of databases hosting primary occurrence records. The terms included: “species occurrence” database (8,800 results), “natural history collection” database (634 results), herbarium database (16,500 results), “biodiversity database” (3,350 results), “primary biodiversity data” database (483 results), “museum collection” database (4,480 results), “digital accessible information” database (10 results), and “digital accessible knowledge” database (52 results)--note that quotations are used as part of the search terms where specific phrases are needed in whole. We downloaded all records returned by each search (or the first 500 if there were more) into a Zotero reference management database. About one third of the 2500 papers in the final dataset were relevant. Three of the authors with specialized knowledge of the field characterized relevant papers using a standardized tagging protocol based on a series of key topics of interest. We developed a list of potential tags and descriptions for each topic, including: database(s) used, database accessibility, scale of study, region of study, taxa addressed, research use of data, other data types linked to species occurrence data, data quality issues addressed, authors, institutions, and funding sources. Each tagged paper was thoroughly checked by a second tagger.

    The final dataset of tagged papers allow us to quantify general areas of research made possible by the expansion of online species occurrence databases, and trends over time. Analyses of this data will be published in a separate quantitative review.

  9. n

    Comprehensive Drug Self-administration and Discrimination Bibliographic...

    • neuinfo.org
    • scicrunch.org
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Comprehensive Drug Self-administration and Discrimination Bibliographic Databases [Dataset]. http://identifiers.org/RRID:SCR_000707
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Database of bibliographic details of over 9,000 references published between 1951 and the present day, and includes abstracts, journal articles, book chapters and books replacing the two former separate websites for Ian Stolerman's drug discrimination database and Dick Meisch's drug self-administration database. Lists of standardized keywords are used to index the citations. Most of the keywords are generic drug names but they also include methodological terms, species studied and drug classes. This index makes it possible to selectively retrieve references according to the drugs used as the training stimuli, drugs used as test stimuli, drugs used as pretreatments, species, etc. by entering your own terms or by using our comprehensive lists of search terms. Drug Discrimination Drug Discrimination is widely recognized as one of the major methods for studying the behavioral and neuropharmacological effects of drugs and plays an important role in drug discovery and investigations of drug abuse. In Drug Discrimination studies, effects of drugs serve as discriminative stimuli that indicate how reinforcers (e.g. food pellets) can be obtained. For example, animals can be trained to press one of two levers to obtain food after receiving injections of a drug, and to press the other lever to obtain food after injections of the vehicle. After the discrimination has been learned, the animal starts pressing the appropriate lever according to whether it has received the training drug or vehicle; accuracy is very good in most experiments (90 or more correct). Discriminative stimulus effects of drugs are readily distinguished from the effects of food alone by collecting data in brief test sessions where responses are not differentially reinforced. Thus, trained subjects can be used to determine whether test substances are identified as like or unlike the drug used for training. Drug Self-administration Drug Self-administration methodology is central to the experimental analysis of drug abuse and dependence (addiction). It constitutes a key technique in numerous investigations of drug intake and its neurobiological basis and has even been described by some as the gold standard among methods in the area. Self-administration occurs when, after a behavioral act or chain of acts, a feedback loop results in the introduction of a drug or drugs into a human or infra-human subject. The drug is usually conceptualized as serving the role of a positive reinforcer within a framework of operant conditioning. For example, animals can be given the opportunity to press a lever to obtain an infusion of a drug through a chronically-indwelling venous catheter. If the available dose of the drug serves as a positive reinforcer then the rate of lever-pressing will increase and a sustained pattern of responding at a high rate may develop. Reinforcing effects of drugs are distinguishable from other actions such as increases in general activity by means of one or more control procedures. Trained subjects can be used to investigate the behavioral and neuropharmacological basis of drug-taking and drug-seeking behaviors and the reinstatement of these behaviors in subjects with a previous history of drug intake (relapse models). Other applications include evaluating novel compounds for liability to produce abuse and dependence and for their value in the treatment of drug dependence and addiction. The bibliography is updated about four times per year.

  10. A list of Frequently Used Databases, Classified Based on the Type of...

    • plos.figshare.com
    doc
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ganesh A Viswanathan; Jeremy Seto; Sonali Patil; German Nudelman; Stuart C Sealfon (2023). A list of Frequently Used Databases, Classified Based on the Type of Information Represented, during a Biological Pathway Construction, Their Properties, and URLs [Dataset]. http://doi.org/10.1371/journal.pcbi.0040016.st001
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ganesh A Viswanathan; Jeremy Seto; Sonali Patil; German Nudelman; Stuart C Sealfon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A comprehensive list of databases can be found in Pathguide (http://www.pathguide.org). A, automated curation; B, both manual and automated curation; BIND, Biomolecular Interaction Network Database; BioPP, Biological Pathway Publisher; DIP, Database of Interacting Proteins; EcoCyc, Encyclopaedia of E. coli Genes and Metabolism; GNPV, Genome Network Platform Viewer; HPRD, Human Protein Reference Database; KEGG, Kyoto Encyclopedia of Genes and Genomes; M, manual curation; MetaCyc, a Metabolic Pathway database; MINT, Molecular Interation Database; MIPS, Munich Information Center for Protein Sequences; N, No; OPHID, Online Predicted Human Interaction Database; PANTHER, Protein Analysis through Evolutionary Relationship Database; PID, The Pathway Interaction Database; STKE, Signal Transduction Knowledge Environment, UNIHI, Unified Human Interactome; Y, yes. (61 KB DOC)

  11. d

    Data from: A database for the provisional identification of species using...

    • catalog.data.gov
    • data.virginia.gov
    Updated Sep 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (2025). A database for the provisional identification of species using only genotypes: web-based genome profiling [Dataset]. https://catalog.data.gov/dataset/a-database-for-the-provisional-identification-of-species-using-only-genotypes-web-based-ge
    Explore at:
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    National Institutes of Health
    Description

    Background For a long time one could not imagine being able to identify species on the basis of genotype only as there were no technological means to do so. But conventional phenotype-based identification requires much effort and a high level of skill, making it almost impossible to analyze a huge number of organisms, as, for example, in microbe-related biological disciplines. Comparative analysis of 16S rRNA has been changing the situation, however. We report here an approach that will allow rapid and accurate phylogenetic comparison of any unknown strain to all known type strains, enabling tentative assignments of strains to species. The approach is based on two main technologies: genome profiling and Internet-based databases. Results A complete procedure for provisional identification of species using only their genomes is presented, using random polymerase chain reaction, temperature-gradient gel electrophoresis, image processing to generate 'species-identification dots' (spiddos) and data processing. A database website for this purpose was also constructed and operated successfully. The protocol was standardized to make the system reproducible and reliable. The overall methodology thus established has remarkable aspects in that it enables non-experts to obtain an initial species identification without a lot of effort and is self-developing; that is, species can be determined more definitively as the database is used more and accumulates more genome profiles. Conclusions We have devised a methodology that enables provisional identification of species on the basis of their genotypes only. It is most useful for microbe-related disciplines as they face the most serious difficulties in species identification.

  12. d

    Alaska Geochemical Database Version 3.0 (AGDB3) including best value data...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Alaska Geochemical Database Version 3.0 (AGDB3) including best value data compilations for rock, sediment, soil, mineral, and concentrate sample media [Dataset]. https://catalog.data.gov/dataset/alaska-geochemical-database-version-3-0-agdb3-including-best-value-data-compilations-for-r
    Explore at:
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The Alaska Geochemical Database Version 3.0 (AGDB3) contains new geochemical data compilations in which each geologic material sample has one best value determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska Geochemical Database Version 2.0 before it, the AGDB3 was created and designed to compile and integrate geochemical data from Alaska to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, element concentrations and associations, environmental impact assessments, and studies in public health associated with geology. This relational database, created from databases and published datasets of the U.S. Geological Survey (USGS), Atomic Energy Commission National Uranium Resource Evaluation (NURE), Alaska Division of Geological & Geophysical Surveys (DGGS), U.S. Bureau of Mines, and U.S. Bureau of Land Management serves as a data archive in support of Alaskan geologic and geochemical projects and contains data tables in several different formats describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 112 laboratory and field analytical methods on 396,343 rock, sediment, soil, mineral, heavy-mineral concentrate, and oxalic acid leachate samples. Most samples were collected by personnel of these agencies and analyzed in agency laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various agency programs and projects from 1938 through 2017. In addition, mineralogical data from 18,138 nonmagnetic heavy-mineral concentrate samples are included in this database. The AGDB3 includes historical geochemical data archived in the USGS National Geochemical Database (NGDB) and NURE National Uranium Resource Evaluation-Hydrogeochemical and Stream Sediment Reconnaissance databases, and in the DGGS Geochemistry database. Retrievals from these databases were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. In other words, the data of the AGDB3 supersedes data in the AGDB and the AGDB2, but the background about the data in these two earlier versions are needed by users of the current AGDB3 to understand what has been done to amend, clean up, correct and format this data. Corrections were entered, resulting in a significantly improved Alaska geochemical dataset, the AGDB3. Data that were not previously in these databases because the data predate the earliest agency geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB3 and will be added to the NGDB and Alaska Geochemistry. The AGDB3 data provided here are the most accurate and complete to date and should be useful for a wide variety of geochemical studies. The AGDB3 data provided in the online version of the database may be updated or changed periodically.

  13. w

    The Global Findex Database 2025: Connectivity and Financial Inclusion in the...

    • microdata.worldbank.org
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2025). The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy - Indonesia [Dataset]. https://microdata.worldbank.org/index.php/catalog/7917
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2024
    Area covered
    Indonesia
    Description

    Abstract

    The Global Findex 2025 reveals how mobile technology is equipping more adults around the world to own and use financial accounts to save formally, access credit, make and receive digital payments, and pursue opportunities. Including the inaugural Global Findex Digital Connectivity Tracker, this fifth edition of Global Findex presents new insights on the interactions among mobile phone ownership, internet use, and financial inclusion.

    The Global Findex is the world’s most comprehensive database on digital and financial inclusion. It is also the only global source of comparable demand-side data, allowing cross-country analysis of how adults access and use mobile phones, the internet, and financial accounts to reach digital information and resources, save, borrow, make payments, and manage their financial health. Data for the Global Findex 2025 were collected from nationally representative surveys of about 145,000 adults in 141 economies. The latest edition follows the 2011, 2014, 2017, and 2021 editions and includes new series measuring mobile phone ownership and internet use, digital safety, and frequency of transactions using financial services.

    The Global Findex 2025 is an indispensable resource for policy makers in the fields of digital connectivity and financial inclusion, as well as for practitioners, researchers, and development professionals.

    Geographic coverage

    National Coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most low- and middle-income economies, Global Findex data were collected through face-to-face interviews. In these economies, an area frame design was used for interviewing. In most high-income economies, telephone surveys were used. In 2024, face-to-face interviews were again conducted in 22 economies after phone-based surveys had been employed in 2021 as a result of mobility restrictions related to COVID-19. In addition, an abridged form of the questionnaire was administered by phone to survey participants in Algeria, China, the Islamic Republic of Iran, Libya, Mauritius, and Ukraine because of economy-specific restrictions. In just one economy, Singapore, did the interviewing mode change from face to face in 2021 to phone based in 2024.

    In economies in which face-to-face surveys were conducted, the first stage of sampling was the identification of primary sampling units. These units were then stratified by population size, geography, or both and clustered through one or more stages of sampling. Where population information was available, sample selection was based on probabilities proportional to population size; otherwise, simple random sampling was used. Random route procedures were used to select sampled households. Unless an outright refusal occurred, interviewers made up to three attempts to survey each sampled household. To increase the probability of contact and completion, attempts were made at different times of the day and, where possible, on different days. If an interview could not be completed at a household that was initially part of the sample, a simple substitution method was used to select a replacement household for inclusion.

    Respondents were randomly selected within sampled households. Each eligible household member (that is, all those ages 15 or older) was listed, and a handheld survey device randomly selected the household member to be interviewed. For paper surveys, the Kish grid method was used to select the respondent. In economies in which cultural restrictions dictated gender matching, respondents were randomly selected from among all eligible adults of the interviewer’s gender.

    In economies in which Global Findex surveys have traditionally been phone based, respondent selection followed the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies in which mobile phone and landline penetration is high, a dual sampling frame was used.

    The same procedure for respondent selection was applied to economies in which phone-based interviews were being conducted for the first time. Dual-frame (landline and mobile phone) random digit dialing was used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digit dialing was used in economies with limited or no landline presence (less than 20 percent). For landline respondents in economies in which mobile phone or landline penetration is 80 percent or higher, respondents were selected randomly by using either the next-birthday method or the household enumeration method, which involves listing all eligible household members and randomly selecting one to participate. For mobile phone respondents in these economies or in economies in which mobile phone or landline penetration is less than 80 percent, no further selection was performed. At least three attempts were made to reach the randomly selected person in each household, spread over different days and times of day.

    Research instrument

    The English version of the questionnaire is provided for download.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in: Klapper, Leora, Dorothe Singer, Laura Starita, and Alexandra Norris. 2025. The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-2204-9.

  14. Data from: Inventory of online public databases and repositories holding...

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Inventory of online public databases and repositories holding agricultural data in 2017 [Dataset]. https://catalog.data.gov/dataset/inventory-of-online-public-databases-and-repositories-holding-agricultural-data-in-2017-d4c81
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered. Search methods We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review: Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection. Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation. See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt

  15. n

    Mouse Genome Databases

    • neuinfo.org
    • rrid.site
    Updated Sep 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Mouse Genome Databases [Dataset]. http://identifiers.org/RRID:SCR_007147
    Explore at:
    Dataset updated
    Sep 8, 2025
    Description

    A mouse-related portal of genomic databases and tables of mouse brain data. Most files are intended for you to download and use on your own personal computer. Most files are available in generic text format or as FileMaker Pro databases. The server provides data extracted and compiled from: The 2000-2001 Mouse Chromosome Committee Reports, Release 15 of the MIT microsatellite map (Oct 1997), The recombinant inbred strain database of R.W. Elliott (1997) and R. W. Williams (2001), and the Map Manager and text format chromosome maps (Apr 2001). * LXS genotype (Excel file): Updated, revised positions for 330 markers genotyped using a panel of 77 LXS strain. * MIT SNP DATABASE ONLINE: Search and sort the MIT Single Nucleotide Polymorphism (SNP) database ONLINE. These data from the MIT-Whitehead SNP release of December 1999. * INTEGRATED MIT-ROCHE SNP DATABASE in EXCEL and TEXT FORMATS (1-3 MB): Original MIT SNPs merged with the new Roche SNPs. The Excel file has been formatted to illustrate SNP haplotypes and genetic contrasts. Both files are intended for statistical analyses of SNPs and can be used to test a method outlined in a paper by Andrew Grupe, Gary Peltz, and colleagues (Science 291: 1915-1918, 2001). The Excel file includes many useful equations and formatting that will help in navigating through this large database and in testing the in silico mapping method. * Use of inbred strains for the study of individual differences in pain related phenotypes in the mouse: Elissa J. Chesler''s 2002 dissertation, discussing issues relevant to the integration of genomic and phenomic data from standard inbred strains including genetic interactions with laboratory environmental conditions and the use of various in silico inbred strain haplotype based mapping algorithms for QTL analysis. * SNP QTL MAPPER in EXCEL format (572 KB, updated January 2002 by Elissa Chesler): This Excel workbook implements the Grupe et al. mapping method and outputs correlation plots. The main spreadsheet allows you to enter your own strain data and compares them to haplotypes. Be very cautious and skeptical when using this spreadsheet and the technique. Read all of the caveates. This excel version of the method was developed by Elissa Chesler. This updated version (Jan 2002) handles missing data. * MIT SNP Database (tab-delimited text format): This file is suitable for manipulation in statistics and spreadsheet programs (752 KB, Updated June 27, 2001). Data have been formatted in a way that allows rapid acquisition of the new data from the Roche Bioscience SNP database. * MIT SNP Database (FileMaker 5 Version): This is a reformatted version of the MIT Single Nucleotide Polymorphism (SNP) database in FileMaker 5 format. You will need a copy of this application to open the file (Mac and Windows; 992 KB. Updated July 13, 2001 by RW). * Gene Mapping and Map Manager Data Sets: Genetic maps of mouse chromosomes. Now includes a 10th generation advanced intercross consisting of 500 animals genetoyped at 340 markers. Lots of older files on recombinant inbred strains. * The Portable Dictionary of the Mouse Genome, 21,039 loci, 17,912,832 bytes. Includes all 1997-98 Chromosome Committee Reports and MIT Release 15. * FullDict.FMP.sit: The Portable Dictionary of the Mouse Genome. This large FileMaker Pro 3.0/4.0 database has been compressed with StuffIt. The Dictionary of the Mouse Genome contains data from the 1997-98 chromosome committee reports and MIT Whitehead SSLP databases (Release 15). The Dictionary contains information for 21,039 loci. File size = 4846 KB. Updated March 19, 1998. * MIT Microsatellite Database ONLINE: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. ONLINE. Updated July 12, 2001. * MIT Microsatellite Database: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. File size = 3.0 MB. Updated March 19, 1998. * OurPrimersDB: A small database of primers. Download this database if you are using numerous MIT primers to map genes in mice. This database should be used in combination with the MITDB as one part of a relational database. File size = 149 KB. Updated March 19, 1998. * Empty copy (clone) of the Portable Dictionary in FileMaker Pro 3.0 format. Download this file and import individual chromosome text files from the table into the database. File size = 231 KB. Updated March 19, 1998. * Chromosome Text Files from the Dictionary: The table lists data on gene loci for individual chromosomes.

  16. H

    Data from: Fuel Consumption of the 50 Most Used Passenger Aircraft

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marius Kühn (2024). Fuel Consumption of the 50 Most Used Passenger Aircraft [Dataset]. http://doi.org/10.7910/DVN/4CYNKA
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 29, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Marius Kühn
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.7910/DVN/4CYNKAhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.7910/DVN/4CYNKA

    Description

    Purpose - Fuel consumption of passenger aircraft is certainly known, but towards the public it is considered an industry secret. This project defines fuel consumption for passenger aircraft, shows and evaluates methods and databases for its calculation, and lists the fuel consumption of the 50 most-used passenger aircraft. Input data is only from publicly available documents. --- Methodology - 8 ways are considered to determine fuel consumption: Method 1: Specific Air Range (SAR), Method 2: Extended Payload-Range Diagram, Method 3: Bathtub Curve at Harmonic Range, Method 4: EEA Master Emission Calculator, Method 5: BADA, Method 6: Handbook Method, Method 7: Literature Review, Method 8: Metric Value (MV). Method 2 is the simplest method, calculating fuel consumption from the difference of maximum take-off mass (MTOM) and maximum zero-fuel mass (MZFM), which is divided by harmonic range and number of seats in the aircraft. Method 8 calculates fuel consumption from the CO2 Metric Value (MV) defined in ICAO Annex 16, Vol. 3 and EASA CS-CO2. --- Findings - Fuel consumption should be defined as kilogram of fuel per kilometer flown, per seat. Each aircraft type has many variants. Different sources give different values for the parameters. This can lead to undetected errors and deviations among the results from different methods beyond their fundamental differences. Method 1 underpredicts, Method 2 overpredicts. Method 4 is a reliable source with apparently good results, but new aircraft types (like A320neo) are presently not in the database. For Method 8, EASA so far publishes only MVs from flight tests with the A330neo. More data will come with new aircraft being certified. With 7 input parameters, an average value can be calculated from Methods 1, 2, and 3. The results give a good first indication of aircraft's fuel consumption. Fuel consumption depends on range. For an economic range (range at maximum payload, harmonic range) modern aircraft consume between 0.02 kg/km/seat and 0.025 kg/km/seat of kerosine. --- Research Limitations - The accuracy of the methods is limited. For this reason, the aircraft with the lowest fuel consumption cannot be named. CO2 emissions can be calculated directly from fuel consumption (3.15 kg CO2 / kg fuel). Otherwise, this project does not go further into emission calculations. --- Practical Implications - Simple methods to determine the fuel consumption of passenger aircraft are presented. --- Social Implications - Fuel consumption of passenger aircraft can be investigated and can be discussed openly independent of (missing) manufacturer's data. --- Originality - So far, no report discusses so many ways to determine fuel consumption of passenger aircraft in such a simple and practical way.

  17. e

    CoRRE Trait Data: A collection of 17 categorical and continuous traits for...

    • portal.edirepository.org
    csv
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kimberly Komatsu; Meghan Avolio; Josep Padulles Cubino; Franziska Schrodt; Harold Auge; Jeannine Cavender-Bares; Adam Clark; Habacuc Flores-Moreno; Emily Grman; W Stanley Harpole; Jens Kattge; Kaitlin Kimmel; Sally Koerner; Lotte Korell; J Adam Langley; Tamara Münkemüller; Timothy Ohlert; Renske Onstein; Christiane Roscher; Nadejda Soudzilovskaia; Benton Taylor; Leho Tedersoo; Rosalie Terry; Kevin Wilcox (2024). CoRRE Trait Data: A collection of 17 categorical and continuous traits for more than 4000 grassland species worldwide [Dataset]. http://doi.org/10.6073/pasta/a33c9be2bd819d6b1a2c52663d561158
    Explore at:
    csv(3446179 byte), csv(75480039 byte), csv(3524292 byte)Available download formats
    Dataset updated
    May 16, 2024
    Dataset provided by
    EDI
    Authors
    Kimberly Komatsu; Meghan Avolio; Josep Padulles Cubino; Franziska Schrodt; Harold Auge; Jeannine Cavender-Bares; Adam Clark; Habacuc Flores-Moreno; Emily Grman; W Stanley Harpole; Jens Kattge; Kaitlin Kimmel; Sally Koerner; Lotte Korell; J Adam Langley; Tamara Münkemüller; Timothy Ohlert; Renske Onstein; Christiane Roscher; Nadejda Soudzilovskaia; Benton Taylor; Leho Tedersoo; Rosalie Terry; Kevin Wilcox
    Area covered
    Variables measured
    genus, trait, family, source, species, DatasetID, Reference, DatabaseID, ReferenceID, trait_value, and 5 more
    Description

    In our changing world, it is critical to understand and predict plant community responses to global change drivers. Plant functional traits promise to be a key predictive tool for many ecosystems, including grasslands, however their use requires both complete plant community and functional trait data. Yet, representation of these data in global databases is incredibly sparse, particularly beyond a handful of most used traits and common species. Here we present the CoRRE Trait Database, spanning 17 traits (9 categorical, 8 continuous) anticipated to predict species’ responses to global change for 4,079 vascular plant species across 173 plant families present in 390 grassland experiments from around the world. The database contains complete categorical trait records for all 4,079 plant species, obtained from a comprehensive literature search. Additionally, the database contains nearly complete coverage (99.97%) of species mean values for continuous traits for a subset of 2,927 plant species, predicted from observed trait data drawn from TRY and a variety of other plant trait databases using Bayesian Probabilistic Matrix Factorization (BHPMF) and multivariate imputation using chained equations (MICE). These data will shed light on mechanisms underlying population, community, and ecosystem responses to global change in grasslands worldwide.

  18. f

    Top ten most used biodiversity databases (see S2 Table for a comprehensive...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joan E. Ball-Damerow; Laura Brenskelle; Narayani Barve; Pamela S. Soltis; Petra Sierwald; Rüdiger Bieler; Raphael LaFrance; Arturo H. Ariño; Robert P. Guralnick (2023). Top ten most used biodiversity databases (see S2 Table for a comprehensive list). [Dataset]. http://doi.org/10.1371/journal.pone.0215794.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Joan E. Ball-Damerow; Laura Brenskelle; Narayani Barve; Pamela S. Soltis; Petra Sierwald; Rüdiger Bieler; Raphael LaFrance; Arturo H. Ariño; Robert P. Guralnick
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Top ten most used biodiversity databases (see S2 Table for a comprehensive list).

  19. d

    Data from: ARS Water Database

    • catalog.data.gov
    • data.cnra.ca.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). ARS Water Database [Dataset]. https://catalog.data.gov/dataset/ars-water-database-82912
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    The ARS Water Data Base is a collection of precipitation and streamflow data from small agricultural watersheds in the United States. This national archive of variable time-series readings for precipitation and runoff contains sufficient detail to reconstruct storm hydrographs and hyetographs. There are currently about 14,000 station years of data stored in the data base. Watersheds used as study areas range from 0.2 hectare (0.5 acres) to 12,400 square kilometers (4,786 square miles). Raingage networks range from one station per watershed to over 200 stations. The period of record for individual watersheds vary from 1 to 50 years. Some watersheds have been in continuous operation since the mid 1930's. Resources in this dataset:Resource Title: FORMAT INFORMATION FOR VARIOUS RECORD TYPES. File Name: format.txtResource Description: Format information identifying fields and their length will be included in this file for all files except those ending with the extension .txt TYPES OF FILES As indicated in the previous section data has been stored by location number in the form, LXX where XX is the location number. In each subdirectory, there will be various files using the following naming conventions: Runoff data: WSXXX.zip where XXX is the watershed number assigned by the WDC. This number may or may not correspond to a naming convention used in common literature. Rainfall data: RGXXXXXX.zip where XXXXXX is the rain gage station identification. Maximum-minimum daily air temperature: MMTXXXXX.zip where XXXXX is the watershed number assigned by the WDC. Ancillary text files: NOTXXXXX.txt where XXXXX is the watershed number assigned by the WDC. These files will contain textual information including latitude-longitude, name commonly used in literature, acreage, most commonly-associated rain gage(s) (if known by the WDC), a list of all rain gages on or near the watershed. Land use, topography, and soils as known by the WDC. Topographic maps of the watersheds: MAPXXXXX.zip where XXXXX is the location/watershed number assigned by the WDC. Map files are binary TIF files. NOT ALL FILE TYPES MAY BE AVAILABLE FOR SPECIFIC WATERSHEDS. Data files are still being compiled and translated into a form viable for this archive. Please bear with us while we grow.Resource Title: Data Inventory - watersheds. File Name: inventor.txtResource Description: Watersheds at which records of runoff were being collected by the Agricultural Research Service. Variables: Study Location & Number of Rain Gages1; Name; Lat.; Long; Number; Pub. Code; Record Began; Land Use2; Area (Acres); Types of Data3Resource Title: Information about the ARS Water Database. File Name: README.txtResource Title: INDEX TO INFORMATION ON EXPERIMENTAL AGRICULTURAL WATERSHEDS. File Name: INDEX.TXTResource Description: This report includes identification information on all watersheds operated by the ARS. Only some of these are included in the ARS Water Data Base. They are so indicated in the column titled ARS Water Data Base. Other watersheds will not have data available here or through the Water Data Center. This index is particularly important since it relates watershed names with the indexing system used by the Water Data Center. Each location has been assigned a number. The data for that location will be stored in a sub-directory coded as LXX where XX is the location number. The index also indicates the watershed number used by the WDC. Data for a particular watershed will be stored in a compressed file named WSXXXXX.zip where XXXXX is the watershed number assigned by the WDC. Although not included in the index, rain gage information will be stored in compressed files named RGXXXXXX.zip where XXXXXX is a 6-character identification of the rain gage station. The Index also provides information such as latitude-longitude for each of the watersheds, acreage, the period-of-record for each acreage. Multiple entries for a particular watershed will either indicate that the acreage designated for the watershed changed or there was a break in operations of the watershed. Resource Title: ARS Water Database files. File Name: ars_water.zipResource Description: USING THIS SYSTEM Before downloading huge amounts of data from the ARS Water Data Base, you should first review the text files included in this directory. They include: INDEX OF ARS EXPERIMENTAL WATERSHEDS: index.txt This report includes identification information on all watersheds operated by the ARS. Only some of these are included in the ARS Water Data Base. They are so indicated in the column titled ARS Water Data Base. Other watersheds will not have data available here or through the Water Data Center. This index is particularly important since it relates watershed names with the indexing system used by the Water Data Center. Each location has been assigned a number. The data for that location will be stored in a sub-directory coded as LXX where XX is the location number. The index also indicates the watershed number used by the WDC. Data for a particular watershed will be stored in a compressed file named WSXXXXX.zip where XXXXX is the watershed number assigned by the WDC. Although not included in the index, rain gage information will be stored in compressed files named RGXXXXXX.zip where XXXXXX is a 6-character identification of the rain gage station. The Index also provides information such as latitude-longitude for each of the watersheds, acreage, the period-of-record for each acreage. Multiple entries for a particular watershed will either indicate that the acreage designated for the watershed changed or there was a break in operations of the watershed. STATION TABLE FOR THE ARS WATER DATA BASE: station.txt This report indicates the period of record for each recording station represented in the ARS Water Data Base. The data for a particular station will be stored in a single compressed file. FORMAT INFORMATION FOR VARIOUS RECORD TYPES: format.txt Format information identifying fields and their length will be included in this file for all files except those ending with the extension .txt TYPES OF FILES As indicated in the previous section data has been stored by location number in the form, LXX where XX is the location number. In each subdirectory, there will be various files using the following naming conventions: Runoff data: WSXXX.zip where XXX is the watershed number assigned by the WDC. This number may or may not correspond to a naming convention used in common literature. Rainfall data: RGXXXXXX.zip where XXXXXX is the rain gage station identification. Maximum-minimum daily air temperature: MMTXXXXX.zip where XXXXX is the watershed number assigned by the WDC. Ancillary text files: NOTXXXXX.txt where XXXXX is the watershed number assigned by the WDC. These files will contain textual information including latitude-longitude, name commonly used in literature, acreage, most commonly-associated rain gage(s) (if known by the WDC), a list of all rain gages on or near the watershed. Land use, topography, and soils as known by the WDC. Topographic maps of the watersheds: MAPXXXXX.zip where XXXXX is the location/watershed number assigned by the WDC. Map files are binary TIF files. NOT ALL FILE TYPES MAY BE AVAILABLE FOR SPECIFIC WATERSHEDS. Data files are still being compiled and translated into a form viable for this archive. Please bear with us while we grow.

  20. Top SQL databases in software development globally 2015

    • statista.com
    Updated Aug 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2015). Top SQL databases in software development globally 2015 [Dataset]. https://www.statista.com/statistics/627698/worldwide-software-developer-survey-databases-used/
    Explore at:
    Dataset updated
    Aug 15, 2015
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2015
    Area covered
    Worldwide
    Description

    The statistic displays the most popular SQL databases used by software developers worldwide, as of **********. According to the survey, ** percent of software developers were using MySQL, an open-source relational database management system (RDBMS).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Most popular database management systems worldwide 2024 [Dataset]. https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/
Organization logo

Most popular database management systems worldwide 2024

Explore at:
41 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 15, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jun 2024
Area covered
Worldwide
Description

As of June 2024, the most popular database management system (DBMS) worldwide was Oracle, with a ranking score of *******; MySQL and Microsoft SQL server rounded out the top three. Although the database management industry contains some of the largest companies in the tech industry, such as Microsoft, Oracle and IBM, a number of free and open-source DBMSs such as PostgreSQL and MariaDB remain competitive. Database Management Systems As the name implies, DBMSs provide a platform through which developers can organize, update, and control large databases. Given the business world’s growing focus on big data and data analytics, knowledge of SQL programming languages has become an important asset for software developers around the world, and database management skills are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.

Search
Clear search
Close search
Google apps
Main menu