100+ datasets found
  1. Daily Social Media Active Users

    • kaggle.com
    zip
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaik Barood Mohammed Umar Adnaan Faiz (2025). Daily Social Media Active Users [Dataset]. https://www.kaggle.com/datasets/umeradnaan/daily-social-media-active-users
    Explore at:
    zip(126814 bytes)Available download formats
    Dataset updated
    May 5, 2025
    Authors
    Shaik Barood Mohammed Umar Adnaan Faiz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description:

    The "Daily Social Media Active Users" dataset provides a comprehensive and dynamic look into the digital presence and activity of global users across major social media platforms. The data was generated to simulate real-world usage patterns for 13 popular platforms, including Facebook, YouTube, WhatsApp, Instagram, WeChat, TikTok, Telegram, Snapchat, X (formerly Twitter), Pinterest, Reddit, Threads, LinkedIn, and Quora. This dataset contains 10,000 rows and includes several key fields that offer insights into user demographics, engagement, and usage habits.

    Dataset Breakdown:

    • Platform: The name of the social media platform where the user activity is tracked. It includes globally recognized platforms, such as Facebook, YouTube, and TikTok, that are known for their large, active user bases.

    • Owner: The company or entity that owns and operates the platform. Examples include Meta for Facebook, Instagram, and WhatsApp, Google for YouTube, and ByteDance for TikTok.

    • Primary Usage: This category identifies the primary function of each platform. Social media platforms differ in their primary usage, whether it's for social networking, messaging, multimedia sharing, professional networking, or more.

    • Country: The geographical region where the user is located. The dataset simulates global coverage, showcasing users from diverse locations and regions. It helps in understanding how user behavior varies across different countries.

    • Daily Time Spent (min): This field tracks how much time a user spends on a given platform on a daily basis, expressed in minutes. Time spent data is critical for understanding user engagement levels and the popularity of specific platforms.

    • Verified Account: Indicates whether the user has a verified account. This feature mimics real-world patterns where verified users (often public figures, businesses, or influencers) have enhanced status on social media platforms.

    • Date Joined: The date when the user registered or started using the platform. This data simulates user account history and can provide insights into user retention trends or platform growth over time.

    Context and Use Cases:

    • This synthetic dataset is designed to offer a privacy-friendly alternative for analytics, research, and machine learning purposes. Given the complexities and privacy concerns around using real user data, especially in the context of social media, this dataset offers a clean and secure way to develop, test, and fine-tune applications, models, and algorithms without the risks of handling sensitive or personal information.

    Researchers, data scientists, and developers can use this dataset to:

    • Model User Behavior: By analyzing patterns in daily time spent, verified status, and country of origin, users can model and predict social media engagement behavior.

    • Test Analytics Tools: Social media monitoring and analytics platforms can use this dataset to simulate user activity and optimize their tools for engagement tracking, reporting, and visualization.

    • Train Machine Learning Algorithms: The dataset can be used to train models for various tasks like user segmentation, recommendation systems, or churn prediction based on engagement metrics.

    • Create Dashboards: This dataset can serve as the foundation for creating user-friendly dashboards that visualize user trends, platform comparisons, and engagement patterns across the globe.

    • Conduct Market Research: Business intelligence teams can use the data to understand how various demographics use social media, offering valuable insights into the most engaged regions, platform preferences, and usage behaviors.

    • Sources of Inspiration: This dataset is inspired by public data from industry reports, such as those from Statista, DataReportal, and other market research platforms. These sources provide insights into the global user base and usage statistics of popular social media platforms. The synthetic nature of this dataset allows for the use of realistic engagement metrics without violating any privacy concerns, making it an ideal tool for educational, analytical, and research purposes.

    The structure and design of the dataset are based on real-world usage patterns and aim to represent a variety of users from different backgrounds, countries, and activity levels. This diversity makes it an ideal candidate for testing data-driven solutions and exploring social media trends.

    Future Considerations:

    As the social media landscape continues to evolve, this dataset can be updated or extended to include new platforms, engagement metrics, or user behaviors. Future iterations may incorporate features like post frequency, follower counts, engagement rates (likes, comments, shares), or even sentiment analysis from user-generated content.

    By leveraging this dataset, analysts and data scientists can create better, more effective strategies ...

  2. Number of global social network users 2017-2028

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  3. Facebook users worldwide 2017-2027

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  4. Countries with the most Facebook users 2024

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Countries with the most Facebook users 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Which county has the most Facebook users?

                  There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
    
                  Facebook – the most used social media
    
                  Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
    
                  Facebook usage by device
                  As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
    
  5. Social Media Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Social Media Datasets [Dataset]. https://brightdata.com/products/datasets/social-media
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 7, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.

    Dataset Features

    User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.

    Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.

    Popular Use Cases

    Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.

    Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.

  6. Leading social media platforms used by marketers worldwide 2024

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Ross, Leading social media platforms used by marketers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Christopher Ross
    Description

    During a 2024 survey among marketers worldwide, around 86 percent reported using Facebook for marketing purposes. Instagram and LinkedIn followed, respectively mentioned by 79 and 65 percent of the respondents.

                  The global social media marketing segment
    
                  According to the same study, 59 percent of responding marketers intended to increase their organic use of YouTube for marketing purposes throughout that year. LinkedIn and Instagram followed with similar shares, rounding up the top three social media platforms attracting a planned growth in organic use among global marketers in 2024. Their main driver is increasing brand exposure and traffic, which led the ranking of benefits of social media marketing worldwide.
    
                  Social media for B2B marketing
    
                  Social media platform adoption rates among business-to-consumer (B2C) and business-to-business (B2B) marketers vary according to each subsegment's focus. While B2C professionals prioritize Facebook and Instagram – both run by Meta, Inc. – due to their popularity among online audiences, B2B marketers concentrate their endeavors on Microsoft-owned LinkedIn due to its goal to connect people and companies in a corporate context.
    
  7. Twitter Data on #IndonesiaHumanRightsSOS

    • kaggle.com
    zip
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francis (2024). Twitter Data on #IndonesiaHumanRightsSOS [Dataset]. https://www.kaggle.com/datasets/noeyislearning/twitter-data-on-indonesiahumanrightssos
    Explore at:
    zip(14269743 bytes)Available download formats
    Dataset updated
    Dec 4, 2024
    Authors
    Francis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides a comprehensive overview of tweets related to the hashtag #IndonesiaHumanRightsSOS from December 18, 2020, 10:59 AM, to December 19, 2020, 23:18 PM. The data is sourced from Twitter using the twint application and offers detailed insights into social media engagement, user activity, and discussions on human rights. The dataset is structured to include key metrics such as user ID, username, Twitter name, tweets, mentions, URLs, photos, replies count, retweets count, likes count, hashtags, cashtags, and more, providing a robust foundation for analyzing social media trends and user behavior.

    Key Features

    • User Identification: The dataset includes unique identifiers for each user, such as user ID, username, and Twitter name, facilitating easy identification and tracking of user activity.
    • Temporal Precision: Data is categorized by date and time, offering insights into the timing and frequency of tweets.
    • Content Analysis: Information is presented by tweets, mentions, URLs, photos, and hashtags, allowing for detailed analysis of content and engagement patterns.
    • Engagement Metrics: The dataset includes metrics such as replies count, retweets count, and likes count, providing insights into user interaction and engagement levels.
    • Geolocation: Data includes timezone information, enabling analysis of regional engagement patterns.

    Potential Uses

    • Social Media Analysis: Assist in understanding social media trends and user behavior related to human rights discussions.
    • Sentiment Analysis: Support sentiment analysis by providing detailed data on user sentiments and reactions to human rights issues.
    • Policy Development: Inform policymakers in developing and adjusting human rights policies based on social media trends and user feedback.
    • Strategic Planning: Provide insights into social media engagement patterns, informing strategic planning for advocacy and awareness campaigns.
    • Research and Academic Studies: Enable research and academic studies on social media behavior and human rights issues.
  8. Global social network penetration 2019-2028

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Global social network penetration 2019-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global social media penetration rate in was forecast to continuously increase between 2024 and 2028 by in total 11.6 (+18.19 percent). After the ninth consecutive increasing year, the penetration rate is estimated to reach 75.31 and therefore a new peak in 2028. Notably, the social media penetration rate of was continuously increasing over the past years.

  9. Z

    #IndonesiaHumanRightsSOS Twitter Hashtag Tweets Dataset

    • data.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azmi Nawwar (2024). #IndonesiaHumanRightsSOS Twitter Hashtag Tweets Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4362504
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    UIN Syarif Hidayatullah Jakarta
    Authors
    Azmi Nawwar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset ini merupakan hasil dari scraping pada media sosial twitter dengan menggunakan aplikasi twint yang ditujukan pada hashtag #IndonesiaHumanRightsSOS. Scraping data dilakukan untuk cuitan yang dibuat dari tanggal 18 Desember 2020 10:59 AM s/d 19 Desember 2020 23:18 PM.

    Pada dataset mengandung 106.903 Row data dengan informasi terkait: User ID, Username, Twitter Name,Tweets, dsb.

    Selain itu dilampirkan juga contoh data yang telah dianalisis berupa wordcloud,username cloud, 100 most used word & most active username.

    -

    This dataset is the result of scraping on social media twitter using the twint application aimed at the hashtag #IndonesiaHumanRightsSOS. Data scraping is done for tweets made from December 18 2020 10:59 AM to December 19 2020 23:18 PM.

    The dataset contains 106,903 rows of data with related information: User ID, Username, Twitter Name, Tweets, etc.

    Also there is an example of the data that has been analyzed in the form of wordcloud, username cloud, 100 most used words & most active username.

  10. Z

    DeepCube: Post-processing and annotated datasets of social media data

    • data.niaid.nih.gov
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandros Mokas; Eleni Kamateri; Giannis Tsampoulatidis (2024). DeepCube: Post-processing and annotated datasets of social media data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7732930
    Explore at:
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    INFALIA
    Authors
    Alexandros Mokas; Eleni Kamateri; Giannis Tsampoulatidis
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Researcher(s): Alexandros Mokas, Eleni Kamateri

    Supervisor: Ioannis Tsampoulatidis

    This repository contains 3 social media datasets:

    2 Post-processing datasets: These datasets contain post-processing data extracted from the analysis of social media posts collected for two different use cases during the first two years of the Deepcube project. More specifically, these include:

    The UC2 dataset containing the post-processing analysis of the Twitter data collected for the DeepCube use case (UC2) dealing with the climate induced migration in Africa. This dataset contains in total 5,695,253 social media posts collected from the Twitter platform, based on the initial version of search criteria relevant to UC2 defined by Universitat De Valencia, focused on the regions of Ethiopia and Somalia and started from 26 June, 2021 till March, 2023.

    The UC5 dataset containing the post-processing analysis of the Twitter and Instagram data collected for the DeepCube use case (UC5) related to the sustainable and environmentally-friendly tourism. This dataset contains in total 58,143 social media posts collected from the Twitter and Instagram platform (12,881 collected from Twitter and 45,262 collected from Instagram), based on the initial version of search criteria relevant to UC5 defined by MURMURATION SAS, focused on the regions of Brasil and started from 26 June, 2021 till March, 2023.

    1 Annotated dataset: An additional anottated dataset was created that contains post-processing data along with annotations of Twitter posts collected for UC2 for the years 2010-2022. More specifically, it includes:

    The UC2 dataset contain the post-processing of the Twitter data collected for the DeepCube use case (UC2) dealing with the climate induced migration in Africa. This dataset contains in total 1721 annotated (412 relevant and 1309 irrelevant) by social media posts collected from the Twitter platform, focused on the region of Somalia and started from 1 January, 2010 till 31 December, 2022.

    For every social media post retrieved from Twitter and Instagram, a preprocessing step was performed. This involved a three-step analysis of each post using the appropriate web service. First, the location of the post was automatically extracted from the text using a location extraction service. Second, the images included in the post were analyzed using a concept extraction service, which identified and provided the top ten concepts that best described the image. These concepts included items such as "person," "building," "drought," "sun," and so on. Finally, the sentiment expressed in the post's text was determined by using a sentiment analysis service. The sentiment was classified as either positive, negative, or neutral.

    After the social media posts were preprocessed, they were visualized using the Social Media Web Application. This intuitive, user-friendly online application was designed for both expert and non-expert users and offers a web-based user interface for filtering and visualizing the collected social media data. The application provides various filtering options, an interactive map, a timeline, and a collection of graphs to help users analyze the data. Moreover, this application provides users with the option to download aggregated data for specific periods by applying filters and clicking the "Download Posts" button. This feature allows users to easily extract and analyze social media data outside of the web application, providing greater flexibility and control over data analysis.

    The dataset is provided by INFALIA. INFALIA, being a spin-off of the CERTH institute and a partner of a research EU project, releases this dataset containing Tweets IDs and post pre-processing data for the sole purpose of enabling the validation of the research conducted within the DeepCube. Moreover, Twitter Content provided in this dataset to third parties remains subject to the Twitter Policy, and those third parties must agree to the Twitter Terms of Service, Privacy Policy, Developer Agreement, and Developer Policy (https://developer.twitter.com/en/developer-terms) before receiving this download.

  11. Leading social media usage reasons worldwide 2024

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Leading social media usage reasons worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    A global survey conducted in the third quarter of 2024 found that the main reason for using social media was to keep in touch with friends and family, with over 50.8 percent of social media users saying this was their main reason for using online networks. Overall, 39 percent of social media users said that filling spare time was their main reason for using social media platforms, whilst 34.5 percent of respondents said they used it to read news stories. Less than one in five users were on social platforms for the reason of following celebrities and influencers.

                  The most popular social network
    
                  Facebook dominates the social media landscape. The world's most popular social media platform turned 20 in February 2024, and it continues to lead the way in terms of user numbers. As of February 2025, the social network had over three billion global users. YouTube, Instagram, and WhatsApp follow, but none of these well-known brands can surpass Facebook’s audience size.
                  Moreover, as of the final quarter of 2023, there were almost four billion Meta product users.
    
                  Ever-evolving social media usage
    
                  The utilization of social media remains largely gratuitous; however, companies have been encouraging users to become paid subscribers to reduce dependence on advertising profits. Meta Verified entices users by offering a blue verification badge and proactive account protection, among other things. X (formerly Twitter), Snapchat, and Reddit also offer users the chance to upgrade their social media accounts for a monthly free.
    
  12. Google Play Store - 6,000 Reviews ⭐️

    • kaggle.com
    zip
    Updated Sep 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unique Data (2023). Google Play Store - 6,000 Reviews ⭐️ [Dataset]. https://www.kaggle.com/trainingdatapro/6000-messengers-reviews-google-play
    Explore at:
    zip(745281 bytes)Available download formats
    Dataset updated
    Sep 25, 2023
    Authors
    Unique Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Reviews on Messengers Dataset - Review dataset

    The Reviews on Messengers Dataset is a comprehensive collection of 200 the most recent customer reviews on 6 messengers obtained from the popular app store, Google Play. See the list of the apps below. This dataset encompasses reviews written in 5 different languages: English, French, German, Italian, Japanese.

    💴 For Commercial Usage: To discuss your requirements, learn about the price and buy the dataset, leave a request on our website to buy the dataset

    The dataset's multilingual nature makes it useful for natural language processing tasks, sentiment analysis algorithms, and other machine learning applications that require diverse language data for training and evaluation.

    The dataset can be highly valuable in training and fine-tuning machine learning models to automatically classify sentiments, predict customer satisfaction, or extract key information from customer reviews.

    The data was scraped with google-play-scraper python lib by TrainingData Team.

    Apps in the dataset and their IDs:

    • Telegram: 'org.telegram.messenger',
    • Facebook Messenger: 'com.facebook.orca',
    • Whats App: 'com.whatsapp',
    • Viber: 'com.viber.voip',
    • Snapchat: 'com.snapchat.android',
    • We Chat: 'com.tencent.mm'.

    Languages in the dataset:

    • English: EN,
    • French: FR,
    • German: DE,
    • Italian : IT,
    • Japanese: JP

    🧩 This is just an example of the data. Leave a request here to learn more

    Content

    For each item, we extracted: - reviewId: ID of the review, - userName: name of the reviewer, - userImage: profile image of the reviewer, - content: text of the review, - score: number of stars given to the review, - thumbsUpCount: number of likes on the review, - at: date of the review, - replyContent: text of the developer's comment, - repliedAt: date of the developer's comment, - appVersion: version of the app, - userLang: language of the review, - app_id: ID of the app

    OTHER DATASETS FOR THE TEXT ANALYSIS:

    Try to find the messenger with the most attentive support 😉

    🚀 You can learn more about our high-quality unique datasets here

    keywords: app reviews, internet, mobile app reviews, google play store, android apps, web scraping, parsing, online database software, customers, reviews dataset, text dataset, ratings, user review data, consumer review data, sentiment analysis, llm dataset, language modeling, large language models, text classification, text mining dataset, natural language texts, nlp, nlp open-source dataset, text data

  13. f

    Dataset belonging to Siebers et al. (2024) Adolescents' digital nightlife:...

    • uvaauas.figshare.com
    csv
    Updated Jul 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T. Siebers; Ine Beyens; Susanne E. Baumgartner; Patti Valkenburg (2024). Dataset belonging to Siebers et al. (2024) Adolescents' digital nightlife: The comparative effects of day- and nighttime smartphone use on sleep quality [Dataset]. http://doi.org/10.21942/uva.26395903.v2
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 29, 2024
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    T. Siebers; Ine Beyens; Susanne E. Baumgartner; Patti Valkenburg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The four datasets 'phone', 'game', 'social', and 'video' are the processed datasets that are used as input files for the Mplus models (but then in .csv instead of .dat format). The dataset 'phone' contains all data related to the main analyses of daytime, pre-bedtime and post-bedtime smartphone use. The datasets 'game', 'social', and 'video' represent the data related to the exploratory analyses for game app, social media app, and video player app use, respectively. The dataset 'timeframes' contains information about respondents' bedtime and wake-up time, which is required to calculate the three timeframes (daytime, pre-bedtime, and post-bedtime).------------------The materials used, including the R and Mplus syntaxes (https://osf.io/tpj98/) and the preregistration of the current study (https://osf.io/kxw2h/) can be found on OSF. For more information, please contact the authors via t.siebers@uva.nl or info@project-awesome.nl.

  14. Galatanet dataset

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, png, txt +1
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vincent Labatut; Vincent Labatut; Jean-Michel Balasque; Jean-Michel Balasque (2024). Galatanet dataset [Dataset]. http://doi.org/10.5281/zenodo.6811542
    Explore at:
    bin, txt, csv, png, zipAvailable download formats
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Vincent Labatut; Vincent Labatut; Jean-Michel Balasque; Jean-Michel Balasque
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description. This project contains the dataset relative to the Galatanet survey, conducted in 2009 and 2010 at the Galatasaray University in Istanbul (Turkey). The goal of this survey was to retrieve information regarding the social relationships between students, their feeling regarding the university in general, and their purchase behavior. The survey was conducted during two phases: the first one in 2009 and the second in 2010.

    The dataset includes two kinds of data. First, the answers to most of the questions are contained in a large table, available under both CSV and MS Excel formats. An description file allows understanding the meaning of each field appearing in the table. Note the
    survey form is also contained in the archive, for reference (it is in French and Turkish only, though). Second, the social network of students is available under both Pajek and Graphml formats. Having both individual (nodal attributes) and relational (links) information in the same dataset is, to our knowledge, rare and difficult to find in public sources, and this makes (to our opinion) this dataset interesting and valuable.

    All data are completely anonymous: students' names have been replaced by random numbers. Note that the survey is not exactly the same between the two phases: some small adjustments were applied thanks to the feedback from the first phase (but the datasets have been normalized since then). Also, the electronic form was very much improved for the second phase, which explains why the answers are much more complete than in the first phase.

    The data were used in our following publications:

    1. Labatut, V. & Balasque, J.-M. (2010). Business-oriented Analysis of a Social Network of University Students. In: International Conference on Advances in Social Network Analysis and Mining, 25-32. Odense, DK : IEEE. ⟨hal-00633643⟩ - DOI: 10.1109/ASONAM.2010.15
    2. An extended version of the original article: Labatut, V. & Balasque, J.-M. (2013). Informative Value of Individual and Relational Data Compared Through Business-Oriented Community Detection. Özyer, T.; Rokne, J.; Wagner, G. & Reuser, A. H. (Eds.), The Influence of Technology on Social Network Analysis and Mining, Springer, 2013, chap.6, 303-330. ⟨hal-00633650⟩ - DOI: 10.1007/978-3-7091-1346-2_13
    3. A more didactic article using some of these data just for illustration purposes: Labatut, V. & Balasque, J.-M. (2012). Detection and Interpretation of Communities in Complex Networks: Methods and Practical Application. Abraham, A. & Hassanien, A.-E. (Eds.), Computational Social Networks: Tools, Perspectives and Applications, Springer, chap.4, 81-113. ⟨hal-00633653⟩ - DOI: 10.1007/978-1-4471-4048-1_4

    Citation. If you use this data, please cite article [1] above:


    @InProceedings{Labatut2010,
    author = {Labatut, Vincent and Balasque, Jean-Michel},
    title = {Business-oriented Analysis of a Social Network of University Students},
    booktitle = {International Conference on Advances in Social Networks Analysis and Mining},
    year = {2010},
    pages = {25-32},
    address = {Odense, DK},
    publisher = {IEEE Publishing},
    doi = {10.1109/ASONAM.2010.15},
    }

    Contact. 2009-2010 by Jean-Michel Balasque (jmbalasque@gsu.edu.tr) & Vincent Labatut (vlabatut@gsu.edu.tr)

    License. This dataset is open data: you can redistribute it and/or use it under the terms of the Creative Commons Zero license (see `license.txt`).

  15. Predicting age groups of Twitter users based on language and metadata...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio A. Morgan-Lopez; Annice E. Kim; Robert F. Chew; Paul Ruddle (2023). Predicting age groups of Twitter users based on language and metadata features [Dataset]. http://doi.org/10.1371/journal.pone.0183537
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Antonio A. Morgan-Lopez; Annice E. Kim; Robert F. Chew; Paul Ruddle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Health organizations are increasingly using social media, such as Twitter, to disseminate health messages to target audiences. Determining the extent to which the target audience (e.g., age groups) was reached is critical to evaluating the impact of social media education campaigns. The main objective of this study was to examine the separate and joint predictive validity of linguistic and metadata features in predicting the age of Twitter users. We created a labeled dataset of Twitter users across different age groups (youth, young adults, adults) by collecting publicly available birthday announcement tweets using the Twitter Search application programming interface. We manually reviewed results and, for each age-labeled handle, collected the 200 most recent publicly available tweets and user handles’ metadata. The labeled data were split into training and test datasets. We created separate models to examine the predictive validity of language features only, metadata features only, language and metadata features, and words/phrases from another age-validated dataset. We estimated accuracy, precision, recall, and F1 metrics for each model. An L1-regularized logistic regression model was conducted for each age group, and predicted probabilities between the training and test sets were compared for each age group. Cohen’s d effect sizes were calculated to examine the relative importance of significant features. Models containing both Tweet language features and metadata features performed the best (74% precision, 74% recall, 74% F1) while the model containing only Twitter metadata features were least accurate (58% precision, 60% recall, and 57% F1 score). Top predictive features included use of terms such as “school” for youth and “college” for young adults. Overall, it was more challenging to predict older adults accurately. These results suggest that examining linguistic and Twitter metadata features to predict youth and young adult Twitter users may be helpful for informing public health surveillance and evaluation research.

  16. Z

    Data from: A Dataset of Multilingual Facebook Comments on Moros and Armed...

    • data.niaid.nih.gov
    • repository.uantwerpen.be
    • +1more
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cruz, Frances Antoinette (2024). A Dataset of Multilingual Facebook Comments on Moros and Armed Conflict in the Southern Philippines [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10971589
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    University of Antwerp
    Authors
    Cruz, Frances Antoinette
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Philippines, Mindanao
    Description

    This dataset is a collection of 12,478 social media comments found on the official Facebook pages of ten Philippine newspapers, The Philippine Daily Inquirer, Manila Bulletin, The Philippine Star, The Manila Times, Sunstar Cebu, Sunstar Davao, Cebu Daily News, The Freeman, Sunstar Davao, MindaNews, and The Mindanao Times, spanning the years 2015, 2017 and 2019. The comments contain terms related to the Moro identity and the Mamasapano Clash, the Marawi Siege and the establishment of BARMM in the southern Philippines, allowing researchers to study semantic fields with regard to Muslims and the relationship between the texts and the source newspaper, their region of origin, and political administration, among other variables. All comments in the dataset were downloaded through Facebook's Graph API via Facepager (Jünger & Keyling, 2019).

    One CSV file (MMB151719SOCMED_v2.csv) is provided, along with a codebook that contains descriptions of the variables and codes used in the CSV file, and a Readme document with a changelog.

    Each social media comment is annotated with the following metadata:

    object_id: identifier associated with the comment;

    message: the textual string of the comment;

    message_proc: the textual string of the comment after pre-processing;

    lang_label: categorical value for the language of the comment (Tagalog (Filipino), Cebuano, English, Taglish, Bislog, Bislish, Trilingual or Other);

    from_name: identifier of public pages (not profiles of individuals) leaving comments (NaN for profiles of individuals, 'NAME' for public pages besides the newspapers, otherwise, the page name of the newspaper);

    created_time: Facebook Graph API's-generated string for the date and time the comment was posted;

    month_year: categorical value in the form string+YY (e.g. Jun-15) of the month and year when the comment was posted;

    year: numerical value in the form YY;

    newspaper: categorical value for the newspaper Facebook page under which the comment was found;

    corpus: categorical value for comments from the main corpus or the side (control) corpus;

    administration: categorical value for political administration (pbsa = President Benigno Aquino III, prrd = President Rodrigo Roa Duterte);

    count: numerical value referring to the number of string sequences without spaces;

    The dataset may only be used for non-commercial purposes and is licensed under the CC BY-NC-SA 4.0 DEED.

    V2 - 05/06/2024

    Corrections

    Corrections made to region to include Luzon, Visayas and Mindanao (as opposed to Mindanao, non-Mindanao);

    Corrections made to administration coding.

    This dataset is described by:

    Cruz, F. A. (2024). A Multilingual Collection of Facebook Comments on the Moro Identity and Armed Conflict in the Southern Philippines. Journal of Open Humanities Data, 10(1), 41. DOI: https://doi.org/10.5334/johd.219

    Bibiliography

    Jünger, J., & Keyling, T. (2019). Facepager: An application for automated data retrieval on the web (4.5.3) [Computer software]. https://github.com/strohne/Facepager/

  17. d

    Data from: Twitter Big Data as A Resource For Exoskeleton Research: A...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thakur, Nirmalya (2023). Twitter Big Data as A Resource For Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions [Dataset]. http://doi.org/10.7910/DVN/VPPTRF
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Thakur, Nirmalya
    Description

    Please cite the following paper when using this dataset: N. Thakur, “Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions,” Preprints, 2022, DOI: 10.20944/preprints202206.0383.v1 Abstract The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and use cases in assisted living, military, healthcare, firefighting, and industries. With the projected increase in the diverse uses of exoskeletons in the next few years in these application domains and beyond, it is crucial to study, interpret, and analyze user perspectives, public opinion, reviews, and feedback related to exoskeletons, for which a dataset is necessary. The Internet of Everything era of today's living, characterized by people spending more time on the Internet than ever before, holds the potential for developing such a dataset by mining relevant web behavior data from social media communications, which have increased exponentially in the last few years. Twitter, one such social media platform, is highly popular amongst all age groups, who communicate on diverse topics including but not limited to news, current events, politics, emerging technologies, family, relationships, and career opportunities, via tweets, while sharing their views, opinions, perspectives, and feedback towards the same. Therefore, this work presents a dataset of about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. Instructions: This dataset contains about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. The dataset contains only tweet identifiers (Tweet IDs) due to the terms and conditions of Twitter to re-distribute Twitter data only for research purposes. They need to be hydrated to be used. The process of retrieving a tweet's complete information (such as the text of the tweet, username, user ID, date and time, etc.) using its ID is known as the hydration of a tweet ID. The Hydrator application (link to download the application: https://github.com/DocNow/hydrator/releases and link to a step-by-step tutorial: https://towardsdatascience.com/learn-how-to-easily-hydrate-tweets-a0f393ed340e#:~:text=Hydrating%20Tweets) or any similar application may be used for hydrating this dataset. Data Description This dataset consists of 7 .txt files. The following shows the number of Tweet IDs and the date range (of the associated tweets) in each of these files. Filename: Exoskeleton_TweetIDs_Set1.txt (Number of Tweet IDs – 22945, Date Range of Tweets - July 20, 2021 – May 21, 2022) Filename: Exoskeleton_TweetIDs_Set2.txt (Number of Tweet IDs – 19416, Date Range of Tweets - Dec 1, 2020 – July 19, 2021) Filename: Exoskeleton_TweetIDs_Set3.txt (Number of Tweet IDs – 16673, Date Range of Tweets - April 29, 2020 - Nov 30, 2020) Filename: Exoskeleton_TweetIDs_Set4.txt (Number of Tweet IDs – 16208, Date Range of Tweets - Oct 5, 2019 - Apr 28, 2020) Filename: Exoskeleton_TweetIDs_Set5.txt (Number of Tweet IDs – 17983, Date Range of Tweets - Feb 13, 2019 - Oct 4, 2019) Filename: Exoskeleton_TweetIDs_Set6.txt (Number of Tweet IDs – 34009, Date Range of Tweets - Nov 9, 2017 - Feb 12, 2019) Filename: Exoskeleton_TweetIDs_Set7.txt (Number of Tweet IDs – 11351, Date Range of Tweets - May 21, 2017 - Nov 8, 2017) Here, the last date for May is May 21 as it was the most recent date at the time of data collection. The dataset would be updated soon to incorporate more recent tweets.

  18. Instagram accounts with the most followers worldwide 2024

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram accounts with the most followers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.

                  The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
    
                  How popular is Instagram?
    
                  Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
    
                  Who uses Instagram?
    
                  Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
    
                  Celebrity influencers on Instagram
                  Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
    
  19. H

    Data from: A Large-Scale Dataset of Twitter Chatter About Online Learning...

    • dataverse.harvard.edu
    Updated Aug 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nirmalya Thakur (2022). A Large-Scale Dataset of Twitter Chatter About Online Learning During The Current COVID-19 Omicron Wave [Dataset]. http://doi.org/10.7910/DVN/GBHOD9
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 9, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Nirmalya Thakur
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Please cite the following paper when using this dataset: N. Thakur, “A Large-Scale Dataset of Twitter Chatter about Online Learning during the Current COVID-19 Omicron Wave,” Journal of Data, vol. 7, no. 8, p. 109, Aug. 2022, doi: 10.3390/data7080109 Abstract The COVID-19 Omicron variant, reported to be the most immune evasive variant of COVID-19, is resulting in a surge of COVID-19 cases globally. This has caused schools, colleges, and universities in different parts of the world to transition to online learning. As a result, social media platforms such as Twitter are seeing an increase in conversations, centered around information seeking and sharing, related to online learning. Mining such conversations, such as Tweets, to develop a dataset can serve as a data resource for interdisciplinary research related to the analysis of interest, views, opinions, perspectives, attitudes, and feedback towards online learning during the current surge of COVID-19 cases caused by the Omicron variant. Therefore this work presents a large-scale public Twitter dataset of conversations about online learning since the first detected case of the COVID-19 Omicron variant in November 2021. The dataset files contain the raw version that comprises 52,868 Tweet IDs (that correspond to the same number of Tweets) and the cleaned and preprocessed version that contains 46,208 unique Tweet IDs. The dataset is compliant with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter and the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management. Data Description The dataset comprises 7 .txt files. The raw version of this dataset comprises 6 .txt files (TweetIDs_Corona Virus.txt, TweetIDs_Corona.txt, TweetIDs_Coronavirus.txt, TweetIDs_Covid.txt, TweetIDs_Omicron.txt, and TweetIDs_SARS CoV2.txt) that contain Tweet IDs grouped together based on certain synonyms or terms that were used to refer to online learning and the Omicron variant of COVID-19 in the respective tweets. The cleaned and preprocessed version of this dataset is provided in the .txt file - TweetIDs_Duplicates_Removed.txt. The dataset contains only Tweet IDs in compliance with the terms and conditions mentioned in the privacy policy, developer agreement, and guidelines for content redistribution of Twitter. The Tweet IDs need to be hydrated to be used. For hydrating this dataset the Hydrator application (link to download the application: https://github.com/DocNow/hydrator/releases and link to a step-by-step tutorial: https://towardsdatascience.com/learn-how-to-easily-hydrate-tweets-a0f393ed340e#:~:text=Hydrating%20Tweetsr) may be used. The list of all the synonyms or terms that were used for the dataset development is as follows: COVID-19: Omicron, COVID, COVID19, coronavirus, coronaviruspandemic, COVID-19, corona, coronaoutbreak, omicron variant, SARS CoV-2, corona virus online learning: online education, online learning, remote education, remote learning, e-learning, elearning, distance learning, distance education, virtual learning, virtual education, online teaching, remote teaching, virtual teaching, online class, online classes, remote class, remote classes, distance class, distance classes, virtual class, virtual classes, online course, online courses, remote course, remote courses, distance course, distance courses, virtual course, virtual courses, online school, virtual school, remote school, online college, online university, virtual college, virtual university, remote college, remote university, online lecture, virtual lecture, remote lecture, online lectures, virtual lectures, remote lectures A description of the dataset files is provided below: TweetIDs_Corona Virus.txt – Contains 321 Tweet IDs correspond to tweets that comprise the keywords – "corona virus" and one or more keywords/terms that refer to online learning TweetIDs_Corona.txt – Contains 1819 Tweet IDs correspond to tweets that comprise the keyword – "corona" or "coronaoutbreak" and one or more keywords/terms that refer to online learning TweetIDs_Coronavirus.txt – Contains 1429 Tweet IDs correspond to tweets that comprise the keywords – "coronavirus" or "coronaviruspandemic" and one or more keywords/terms that refer to online learning TweetIDs_Covid.txt – Contains 41088 Tweet IDs correspond to tweets that comprise the keywords – "COVID" or "COVID19" or "COVID-19" and one or more keywords/terms that refer to online learning TweetIDs_Omicron.txt – Contains 8198 Tweet IDs correspond to tweets that comprise the keywords – "omicron" or "omicron variant" and one or more keywords/terms that refer to online learning TweetIDs_SARS CoV2.txt – Contains 13 Tweet IDs correspond to tweets that comprise the keyword – "SARS-CoV-2" and one or more keywords/terms that refer to online learning TweetIDs_Duplicates_Removed.txt - A collection of 46208 unique Tweet IDs from all the 6 .txt files mentioned above after...

  20. Average daily time spent on social media worldwide 2012-2024

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Average daily time spent on social media worldwide 2012-2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How much time do people spend on social media?

                  As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in
                  the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively.
                  People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general.
                  During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
    
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shaik Barood Mohammed Umar Adnaan Faiz (2025). Daily Social Media Active Users [Dataset]. https://www.kaggle.com/datasets/umeradnaan/daily-social-media-active-users
Organization logo

Daily Social Media Active Users

"A thorough dataset that displays user activity on major social media platforms

Explore at:
zip(126814 bytes)Available download formats
Dataset updated
May 5, 2025
Authors
Shaik Barood Mohammed Umar Adnaan Faiz
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Description:

The "Daily Social Media Active Users" dataset provides a comprehensive and dynamic look into the digital presence and activity of global users across major social media platforms. The data was generated to simulate real-world usage patterns for 13 popular platforms, including Facebook, YouTube, WhatsApp, Instagram, WeChat, TikTok, Telegram, Snapchat, X (formerly Twitter), Pinterest, Reddit, Threads, LinkedIn, and Quora. This dataset contains 10,000 rows and includes several key fields that offer insights into user demographics, engagement, and usage habits.

Dataset Breakdown:

  • Platform: The name of the social media platform where the user activity is tracked. It includes globally recognized platforms, such as Facebook, YouTube, and TikTok, that are known for their large, active user bases.

  • Owner: The company or entity that owns and operates the platform. Examples include Meta for Facebook, Instagram, and WhatsApp, Google for YouTube, and ByteDance for TikTok.

  • Primary Usage: This category identifies the primary function of each platform. Social media platforms differ in their primary usage, whether it's for social networking, messaging, multimedia sharing, professional networking, or more.

  • Country: The geographical region where the user is located. The dataset simulates global coverage, showcasing users from diverse locations and regions. It helps in understanding how user behavior varies across different countries.

  • Daily Time Spent (min): This field tracks how much time a user spends on a given platform on a daily basis, expressed in minutes. Time spent data is critical for understanding user engagement levels and the popularity of specific platforms.

  • Verified Account: Indicates whether the user has a verified account. This feature mimics real-world patterns where verified users (often public figures, businesses, or influencers) have enhanced status on social media platforms.

  • Date Joined: The date when the user registered or started using the platform. This data simulates user account history and can provide insights into user retention trends or platform growth over time.

Context and Use Cases:

  • This synthetic dataset is designed to offer a privacy-friendly alternative for analytics, research, and machine learning purposes. Given the complexities and privacy concerns around using real user data, especially in the context of social media, this dataset offers a clean and secure way to develop, test, and fine-tune applications, models, and algorithms without the risks of handling sensitive or personal information.

Researchers, data scientists, and developers can use this dataset to:

  • Model User Behavior: By analyzing patterns in daily time spent, verified status, and country of origin, users can model and predict social media engagement behavior.

  • Test Analytics Tools: Social media monitoring and analytics platforms can use this dataset to simulate user activity and optimize their tools for engagement tracking, reporting, and visualization.

  • Train Machine Learning Algorithms: The dataset can be used to train models for various tasks like user segmentation, recommendation systems, or churn prediction based on engagement metrics.

  • Create Dashboards: This dataset can serve as the foundation for creating user-friendly dashboards that visualize user trends, platform comparisons, and engagement patterns across the globe.

  • Conduct Market Research: Business intelligence teams can use the data to understand how various demographics use social media, offering valuable insights into the most engaged regions, platform preferences, and usage behaviors.

  • Sources of Inspiration: This dataset is inspired by public data from industry reports, such as those from Statista, DataReportal, and other market research platforms. These sources provide insights into the global user base and usage statistics of popular social media platforms. The synthetic nature of this dataset allows for the use of realistic engagement metrics without violating any privacy concerns, making it an ideal tool for educational, analytical, and research purposes.

The structure and design of the dataset are based on real-world usage patterns and aim to represent a variety of users from different backgrounds, countries, and activity levels. This diversity makes it an ideal candidate for testing data-driven solutions and exploring social media trends.

Future Considerations:

As the social media landscape continues to evolve, this dataset can be updated or extended to include new platforms, engagement metrics, or user behaviors. Future iterations may incorporate features like post frequency, follower counts, engagement rates (likes, comments, shares), or even sentiment analysis from user-generated content.

By leveraging this dataset, analysts and data scientists can create better, more effective strategies ...

Search
Clear search
Close search
Google apps
Main menu