100+ datasets found
  1. h

    MPII_Human_Pose_Dataset

    • huggingface.co
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Voxel51 (2024). MPII_Human_Pose_Dataset [Dataset]. https://huggingface.co/datasets/Voxel51/MPII_Human_Pose_Dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    Voxel51
    License

    https://choosealicense.com/licenses/bsd-2-clause/https://choosealicense.com/licenses/bsd-2-clause/

    Description

    Dataset Card for MPII Human Pose

    MPII Human Pose dataset is a state of the art benchmark for evaluation of articulated human pose estimation. The dataset includes around 25K images containing over 40K people with annotated body joints. The images were systematically collected using an established taxonomy of every day human activities. Overall the dataset covers 410 human activities and each image is provided with an activity label. Each image was extracted from a YouTube video… See the full description on the dataset page: https://huggingface.co/datasets/Voxel51/MPII_Human_Pose_Dataset.

  2. h

    mpii-human-pose-captions

    • huggingface.co
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Saif Ullah Khan (2025). mpii-human-pose-captions [Dataset]. http://doi.org/10.57967/hf/1876
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 23, 2025
    Authors
    Muhammad Saif Ullah Khan
    License

    https://choosealicense.com/licenses/bsd-2-clause/https://choosealicense.com/licenses/bsd-2-clause/

    Description

    Dataset Card for MPII Human Pose Descriptions

      Dataset Summary
    

    The MPII Human Pose Descriptions dataset extends the widely-used MPII Human Pose Dataset with rich textual annotations. These annotations are generated by various state-of-the-art language models (LLMs) and include detailed descriptions of the activities being performed, the count of people present, and their specific poses. The dataset consists of the same image splits as provided in MMPose, with 14644… See the full description on the dataset page: https://huggingface.co/datasets/saifkhichi96/mpii-human-pose-captions.

  3. The JDR (%) results of each joint on the MPII dataset.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hao Wang; Ming-hui Sun; Hao Zhang; Li-yan Dong (2023). The JDR (%) results of each joint on the MPII dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0264302.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Hao Wang; Ming-hui Sun; Hao Zhang; Li-yan Dong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The better results in our method are written in bold.

  4. MPII-Human Pose Estimation (Heat Maps)

    • kaggle.com
    Updated Jul 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Super Senix (2021). MPII-Human Pose Estimation (Heat Maps) [Dataset]. https://www.kaggle.com/supersenix/mpiihuman-pose-estimation-heat-maps/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 2, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Super Senix
    Description

    Dataset

    This dataset was created by Super Senix

    Contents

  5. h

    mpii-human-pose

    • huggingface.co
    Updated Jun 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nesa (2023). mpii-human-pose [Dataset]. https://huggingface.co/datasets/Meharun/mpii-human-pose
    Explore at:
    Dataset updated
    Jun 30, 2023
    Authors
    Nesa
    Description

    Meharun/mpii-human-pose dataset hosted on Hugging Face and contributed by the HF Datasets community

  6. f

    Comparisons of PCK@0.5 score on the MPII valid set.

    • plos.figshare.com
    xls
    Updated Sep 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuxuan Liu; Guohui Zhou; Wei He; Hailong Zhu; Yanling Cui (2025). Comparisons of PCK@0.5 score on the MPII valid set. [Dataset]. http://doi.org/10.1371/journal.pone.0325540.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 2, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Yuxuan Liu; Guohui Zhou; Wei He; Hailong Zhu; Yanling Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparisons of PCK@0.5 score on the MPII valid set.

  7. mpii training repo

    • kaggle.com
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjay Acharjee (2021). mpii training repo [Dataset]. https://www.kaggle.com/datasets/sanjayacharjee/mpii-training-repo
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 12, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sanjay Acharjee
    Description

    Dataset

    This dataset was created by Sanjay Acharjee

    Contents

  8. mpii dataset for python

    • kaggle.com
    zip
    Updated Sep 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kae (2020). mpii dataset for python [Dataset]. https://www.kaggle.com/keshavaprasad/mpii-dataset-for-python
    Explore at:
    zip(12103585658 bytes)Available download formats
    Dataset updated
    Sep 26, 2020
    Authors
    Kae
    Description

    Dataset

    This dataset was created by Kae

    Contents

    It contains the following files:

  9. h

    Data from: mpii-face-gaze

    • huggingface.co
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fahrizalfarid (2025). mpii-face-gaze [Dataset]. https://huggingface.co/datasets/akahana/mpii-face-gaze
    Explore at:
    Dataset updated
    May 13, 2025
    Authors
    fahrizalfarid
    Description

    akahana/mpii-face-gaze dataset hosted on Hugging Face and contributed by the HF Datasets community

  10. Ablation study of DE-HRNet’s components on the MPII valid set.

    • plos.figshare.com
    xls
    Updated Sep 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuxuan Liu; Guohui Zhou; Wei He; Hailong Zhu; Yanling Cui (2025). Ablation study of DE-HRNet’s components on the MPII valid set. [Dataset]. http://doi.org/10.1371/journal.pone.0325540.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 2, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yuxuan Liu; Guohui Zhou; Wei He; Hailong Zhu; Yanling Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Ablation study of DE-HRNet’s components on the MPII valid set.

  11. t

    MPI-INF-3DHP - Dataset - LDM

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). MPI-INF-3DHP - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/mpi-inf-3dhp
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    MPI-INF-3DHP: A Large-Scale Benchmark for 3D Human Pose Estimation in the Wild. MPI-INF-3DHP: A Large-Scale Benchmark for 3D Human Pose Estimation in the Wild. MPI-INF-3DHP: A Large-Scale Benchmark for 3D Human Pose Estimation in the Wild. MPI-INF-3DHP: A Large-Scale Benchmark for 3D Human Pose Estimation in the Wild.

  12. f

    Comparisons on the COCO validation set. #Params and FLOPS are calculated...

    • plos.figshare.com
    xls
    Updated Sep 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuxuan Liu; Guohui Zhou; Wei He; Hailong Zhu; Yanling Cui (2025). Comparisons on the COCO validation set. #Params and FLOPS are calculated only for the method. [Dataset]. http://doi.org/10.1371/journal.pone.0325540.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 2, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Yuxuan Liu; Guohui Zhou; Wei He; Hailong Zhu; Yanling Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparisons on the COCO validation set. #Params and FLOPS are calculated only for the method.

  13. R

    Data from: Mp2 Dataset

    • universe.roboflow.com
    zip
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BE major p (2025). Mp2 Dataset [Dataset]. https://universe.roboflow.com/be-major-p/mp2-t4n7k
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 30, 2025
    Dataset authored and provided by
    BE major p
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Dental Bounding Boxes
    Description

    Mp2

    ## Overview
    
    Mp2 is a dataset for object detection tasks - it contains Dental annotations for 3,796 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  14. Comparisons on the COCO test-dev set. The bottom-up methods use multi-scale...

    • plos.figshare.com
    xls
    Updated Sep 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuxuan Liu; Guohui Zhou; Wei He; Hailong Zhu; Yanling Cui (2025). Comparisons on the COCO test-dev set. The bottom-up methods use multi-scale testing. [Dataset]. http://doi.org/10.1371/journal.pone.0325540.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 2, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yuxuan Liu; Guohui Zhou; Wei He; Hailong Zhu; Yanling Cui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparisons on the COCO test-dev set. The bottom-up methods use multi-scale testing.

  15. h

    BEAR-MPII-Cooking2

    • huggingface.co
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andong Deng (2023). BEAR-MPII-Cooking2 [Dataset]. https://huggingface.co/datasets/groundmore/BEAR-MPII-Cooking2
    Explore at:
    Dataset updated
    Dec 4, 2023
    Authors
    Andong Deng
    Description

    groundmore/BEAR-MPII-Cooking2 dataset hosted on Hugging Face and contributed by the HF Datasets community

  16. e

    MPI-Leipzig Mind-Brain-Body dataset

    • search.kg.ebrains.eu
    • openneuro.org
    Updated Oct 30, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anahit Babayan; Miray Erbey; Deniz Kumral; Janis D. Reinelt; Andrea M. F. Reiter; Josefin Röbbig; Lina H. Schaare; Marie Uhlig; Alfred Anwander; Pierre-Louis Bazin; Annette Horstmann; Leonie Lampe; Vadim V. Nikulin; Hadas Okon-Singer; Sven Preusser; André Pampel; Christiane S. Rohr; Julia Sacher; Angelika Thöne-Otto; Sabrina Trapp; Till Nierhaus; Denise Altmann; Katrin Arelin; Maria Blöchl; Edith Bongartz; Patric Breig; Elena Cesnaite; Sufang Chen; Roberto Cozatl; Saskia Czerwonatis; Gabriele Dambrauskaite; Maria Dreyer; Jessica Enders; Melina Engelhardt; Marie Michele Fischer; Norman Forschack; Johannes Golchert; Laura Golz; C. Alexandrina Guran; Susanna Hedrich; Nicole Hentschel; Daria I. Hoffmann; Julia M. Huntenburg; Rebecca Jost; Anna Kosatschek; Hannah Lammers; Mark E. Lauckner; Keyvan Mahjoory; Ahmad S. Kanaan; Natacha Mendes; Ramona Menger; Enzo Morino; Karina Näthe; Jennifer Neubauer; Handan Noyan; Sabine Oligschläger; Patricia Panczyszyn-Trzewik; Dorothee Poehlchen; Nadine Putzke; Sabrina Roski; Marie-Catherine Schaller; Anja Schieferbein; Benito Schlaak; Robert Schmidt; Krzysztof J. Gorgolewski; Hanna Maria Schmidt; Sylvia Stasch; Maria Voss; Annett Wiedemann; Daniel S. Margulies; Michael Gaebler; Arno Villringer (2019). MPI-Leipzig Mind-Brain-Body dataset [Dataset]. http://doi.org/10.18112/openneuro.ds000221.v1.0.0
    Explore at:
    Dataset updated
    Oct 30, 2019
    Authors
    Anahit Babayan; Miray Erbey; Deniz Kumral; Janis D. Reinelt; Andrea M. F. Reiter; Josefin Röbbig; Lina H. Schaare; Marie Uhlig; Alfred Anwander; Pierre-Louis Bazin; Annette Horstmann; Leonie Lampe; Vadim V. Nikulin; Hadas Okon-Singer; Sven Preusser; André Pampel; Christiane S. Rohr; Julia Sacher; Angelika Thöne-Otto; Sabrina Trapp; Till Nierhaus; Denise Altmann; Katrin Arelin; Maria Blöchl; Edith Bongartz; Patric Breig; Elena Cesnaite; Sufang Chen; Roberto Cozatl; Saskia Czerwonatis; Gabriele Dambrauskaite; Maria Dreyer; Jessica Enders; Melina Engelhardt; Marie Michele Fischer; Norman Forschack; Johannes Golchert; Laura Golz; C. Alexandrina Guran; Susanna Hedrich; Nicole Hentschel; Daria I. Hoffmann; Julia M. Huntenburg; Rebecca Jost; Anna Kosatschek; Hannah Lammers; Mark E. Lauckner; Keyvan Mahjoory; Ahmad S. Kanaan; Natacha Mendes; Ramona Menger; Enzo Morino; Karina Näthe; Jennifer Neubauer; Handan Noyan; Sabine Oligschläger; Patricia Panczyszyn-Trzewik; Dorothee Poehlchen; Nadine Putzke; Sabrina Roski; Marie-Catherine Schaller; Anja Schieferbein; Benito Schlaak; Robert Schmidt; Krzysztof J. Gorgolewski; Hanna Maria Schmidt; Sylvia Stasch; Maria Voss; Annett Wiedemann; Daniel S. Margulies; Michael Gaebler; Arno Villringer
    Area covered
    Leipzig
    Description

    The MPI-Leipzig Mind-Brain-Body dataset contains MRI and behavioral data from 318 participants. Datasets for all participants include at least a structural quantitative T1-weighted image and a single 15-minute eyes-open resting-state fMRI session.

    The participants took part in one or two extended protocols: (1) Leipzig Mind-Body-Brain Interactions (LEMON) and (2) Neuroanatomy & Connectivity Protocol (N&C). The data from LEMON protocol is included in the ‘ses-01’ subfolder; the data from N&C protocol in ‘ses-02’ subfolder.

    LEMON focuses on structural imaging. 228 participants were scanned. In addition to the quantitative T1-weighted image, the participants also have a structural T2-weighted image (226 participants), a diffusion-weighted image with 64 directions (228) and a 15-minute eyes-open resting-state session (228). New imaging sequences were introduced into the LEMON protocol after data acquisition for approximately 110 participants. Before the change, a low-resolution 2D FLAIR images were acquired for clinical purposes (110). After the change, 2D FLAIR was replaced with high-resolution 3D FLAIR (117). The second addition was the acquisition of gradient-echo images (112) that can be used for Susceptibility-Weighted Imaging (SWI) and Quantitative Susceptibility Mapping (QSM).

    The N&C protocol focuses on resting-state fMRI data. 199 participants were scanned with this protocol; 109 participants also took part in the LEMON protocol. Structural data was not acquired for the overlapping LEMON participants. For the unique N&C participants, only a T1-weighted and a low-resolution FLAIR image were acquired. Four 15-minute runs of eyes-open resting-state are the main component of N&C; they are complete for 194 participants, three participants have 3 runs, one participant has 2 runs and one participant has a single run. Due to a bug in multiband sequence used in this protocol, the echo time for N&C resting-state is longer than in LEMON — 39.4 ms vs 30 ms.

    Forty-five participants have complete imaging data: quantitative T1-weighted, T2-weighted, high-resolution 3D FLAIR, DWI, GRE and 75 minutes of resting-state. Both gradient-echo and spin-echo field maps are available in both datasets for all EPI-based sequences (rsfMRI and DWI).

    Extensive behavioral data was acquired in both protocols. They include trait and state questionnaires, as well as behavioral tasks.

  17. WCRP CMIP6: Max Planck Institute for Meteorology (MPI-M) MPI-ESM1-2-LR model...

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Dec 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Planck Institute for Meteorology (MPI-M) (2021). WCRP CMIP6: Max Planck Institute for Meteorology (MPI-M) MPI-ESM1-2-LR model output for the "esm-hist" experiment [Dataset]. https://catalogue.ceda.ac.uk/uuid/a9cde07bf51c4f0998e91196760676b1
    Explore at:
    Dataset updated
    Dec 22, 2021
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Max Planck Institute for Meteorology (MPI-M)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdf

    Time period covered
    Jan 1, 1850 - Jan 1, 2015
    Area covered
    Earth
    Variables measured
    time, depth, height, region, latitude, area_type, longitude, runoff_flux, air_pressure, ocean_volume, and 64 more
    Description

    The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the Max Planck Institute for Meteorology (MPI-M) MPI-ESM1-2-LR model output for the "all-forcing simulation of the recent past with atmospheric CO2 concentration calculated" (esm-hist) experiment. These are available at the following frequencies: 3hr, 6hrLev, 6hrPlev, 6hrPlevPt, AERday, AERmon, AERmonZ, Amon, CF3hr, CFday, CFmon, E3hr, E3hrPt, Eday, EdayZ, Emon, Eyr, LImon, Lmon, Oday, Ofx, Omon, Oyr, SIday, SImon, day and fx. The runs included the ensemble members: r1i1p1f1, r2i1p1f1 and r3i1p1f1.

    CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6).

    The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.

  18. MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical

    • wdc-climate.de
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich (2019). MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical [Dataset]. http://doi.org/10.22033/ESGF/CMIP6.6594
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    Earth System Grid
    World Data Center for Climate (WDCC) at DKRZ
    Authors
    Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets. These data include all datasets published for 'CMIP6.CMIP.MPI-M.MPI-ESM1-2-HR.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.

    The MPI-ESM1.2-HR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.

    Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).

    CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).

    The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.

  19. WCRP CMIP6: Max Planck Institute for Meteorology (MPI-M) MPI-ESM1-2-XR model...

    • catalogue.ceda.ac.uk
    Updated Dec 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Planck Institute for Meteorology (MPI-M) (2021). WCRP CMIP6: Max Planck Institute for Meteorology (MPI-M) MPI-ESM1-2-XR model output for the "highres-future" experiment [Dataset]. https://catalogue.ceda.ac.uk/uuid/9029bab00618419e82068d3af06cd491
    Explore at:
    Dataset updated
    Dec 22, 2021
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Max Planck Institute for Meteorology (MPI-M)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdf

    Time period covered
    Jan 1, 2015 - Dec 31, 2050
    Area covered
    Earth
    Variables measured
    time, depth, region, transect, longitude, wind_speed, air_pressure, ocean_volume, sea_ice_area, eastward_wind, and 87 more
    Description

    The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the Max Planck Institute for Meteorology (MPI-M) MPI-ESM1-2-XR model output for the "coupled future 2015-2050 using a scenario as close to CMIP5 RCP8.5 as possible within CMIP6" (highres-future) experiment. These are available at the following frequencies: 6hrPlev, 6hrPlevPt, Amon, Eday, LImon, Lmon, Oday, Ofx, Omon, SIday, SImon and day. The runs included the ensemble member: r1i1p1f1.

    CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6).

    The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.

  20. SPECS - MPI-ESM-LR model output prepared for SPECS decadal (1901-2015)

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kameswarrao Modali (2025). SPECS - MPI-ESM-LR model output prepared for SPECS decadal (1901-2015) [Dataset]. https://catalogue.ceda.ac.uk/uuid/72fcd8b56e6d4e468a80cfa01d645d20
    Explore at:
    Dataset updated
    Jul 18, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Kameswarrao Modali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1901 - Dec 31, 2015
    Area covered
    Earth
    Variables measured
    time, depth, height, latitude, longitude, runoff_flux, air_pressure, eastward_wind, snowfall_flux, northward_wind, and 26 more
    Dataset funded by
    Max Planck Institute for Meteorology (MPI-M)
    Description

    This dataset includes the MPI-ESM-LR model output prepared for SPECS decadal (1901-2015). These data were prepared by the Max Planck Institute for Meteorology (MPI-M), as part of the SPECS project.

    Model id is MPI-ESM-LR (MPI-ESM-LR 2015; atmosphere: ECHAM6 v6.3.01p2 (REV: 3904), T63L47; land: JSBACH (REV: 3904); ocean: MPIOM v1.6.1p1 (REV: 3753) marine biogeochemistry HAMOCC included, GR15L40; sea ice (REV: 3753). Frequency is daily and monthly.

    Daily Atmospheric variables are: clt hfls hfss pr prc psl rlds rlut rsds tas tasmin tasmax uas vas zg

    Daily land variables are: mrso

    Monthly atmos variables: clt hfls hfss hus pr prsn psl rlds rlut rsds rsdt rsut ta tas tasmax tasmin tauu tauv ua uas vas va zg

    Monthly ocean variables: mlotst so thetao tos uo vo zos

    Monthly land variables: mrro mrso

    Monthly sea ice variables: sit

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Voxel51 (2024). MPII_Human_Pose_Dataset [Dataset]. https://huggingface.co/datasets/Voxel51/MPII_Human_Pose_Dataset

MPII_Human_Pose_Dataset

MPII Human Pose

Voxel51/MPII_Human_Pose_Dataset

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 7, 2024
Dataset authored and provided by
Voxel51
License

https://choosealicense.com/licenses/bsd-2-clause/https://choosealicense.com/licenses/bsd-2-clause/

Description

Dataset Card for MPII Human Pose

MPII Human Pose dataset is a state of the art benchmark for evaluation of articulated human pose estimation. The dataset includes around 25K images containing over 40K people with annotated body joints. The images were systematically collected using an established taxonomy of every day human activities. Overall the dataset covers 410 human activities and each image is provided with an activity label. Each image was extracted from a YouTube video… See the full description on the dataset page: https://huggingface.co/datasets/Voxel51/MPII_Human_Pose_Dataset.

Search
Clear search
Close search
Google apps
Main menu