100+ datasets found
  1. n

    Manually Labeled MRI Brain Scan Database

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Manually Labeled MRI Brain Scan Database [Dataset]. http://identifiers.org/RRID:SCR_009604
    Explore at:
    Dataset updated
    Oct 15, 2024
    Description

    Collection of neuroanatomically labeled MRI brain scans, created by neuroanatomical experts. Regions of interest include the sub-cortical structures (thalamus, caudate, putamen, hippocampus, etc), along with ventricles, brain stem, cerebellum, and gray and white matter and sub-divided cortex into parcellation units that are defined by gyral and sulcal landmarks.

  2. Data from: The MRi-Share database: Brain imaging in a cross-sectional cohort...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    csv, txt
    Updated Sep 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabrice Crivello; Fabrice Crivello; Ami Tsuchida; Bernard Mazoyer; Christohpe Tzourio; Ami Tsuchida; Bernard Mazoyer; Christohpe Tzourio (2022). Data from: The MRi-Share database: Brain imaging in a cross-sectional cohort of 1,870 university students [Dataset]. http://doi.org/10.5061/dryad.q573n5tj2
    Explore at:
    csv, txtAvailable download formats
    Dataset updated
    Sep 16, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Fabrice Crivello; Fabrice Crivello; Ami Tsuchida; Bernard Mazoyer; Christohpe Tzourio; Ami Tsuchida; Bernard Mazoyer; Christohpe Tzourio
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1,870 young healthy adults, aged 18 to 35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility weighted (SWI), and resting-state functional imaging modalities. Here, we described the contents of these different neuroimaging datasets and the processing pipelines used to derive brain phenotypes, as well as how quality control was assessed. In addition, we present preliminary results on associations of some of these brain image-derived phenotypes at the whole brain level with both age and sex, in the subsample of 1,722 individuals aged less than 26 years. We demonstrate that the post-adolescence period is characterized by changes in both structural and microstructural brain phenotypes. Grey matter cortical thickness, surface area and volume were found to decrease with age, while white matter volume shows increase. Diffusivity, either radial or axial, was found to robustly decrease with age whereas fractional anisotropy only slightly increased. As for the neurite orientation dispersion and densities, both were found to increase with age. The isotropic volume fraction also showed a slight increase with age. These preliminary findings emphasize the complexity of changes in brain structure and function occurring in this critical period at the interface of late maturation and early aging.

  3. d

    BrainWeb - Simulated Brain Database

    • dknet.org
    • scicrunch.org
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). BrainWeb - Simulated Brain Database [Dataset]. http://identifiers.org/RRID:SCR_003263
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Database of human brain images derived from a realistic phantom and generated using a sophisticated MRI simulator. Custom simulations may be generated to match a user's selected parameters. The goal is to aid validation of computer-aided quantitative analysis of medical image data. The SBD contains a set of realistic MRI data volumes produced by an MRI simulator. These data can be used by the neuroimaging community to evaluate the performance of various image analysis methods in a setting where the truth is known. The SBD contains simulated brain MRI data based on two anatomical models: normal and multiple sclerosis (MS). For both of these, full 3-dimensional data volumes have been simulated using three sequences (T1-, T2-, and proton-density- (PD-) weighted) and a variety of slice thicknesses, noise levels, and levels of intensity non-uniformity. These data are available for viewing in three orthogonal views (transversal, sagittal, and coronal), and for downloading.

  4. GBM MRI data / base 4 reactdiff model

    • kaggle.com
    zip
    Updated Jul 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lauren Pearson (2024). GBM MRI data / base 4 reactdiff model [Dataset]. https://www.kaggle.com/datasets/laurengp/mri-image-data
    Explore at:
    zip(91002358 bytes)Available download formats
    Dataset updated
    Jul 2, 2024
    Authors
    Lauren Pearson
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset uses non-augmented datasets with credits belonging to the following...

    Sartaj Bhuvaji, Ankita Kadam, Prajakta Bhumkar, Sameer Dedge, and Swati Kanchan. (2020). Brain Tumor Classification (MRI) [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/1183165

    git repo source = https://github.com/SartajBhuvaji/Brain-Tumor-Classification-DataSet

    source credit - Kaggle dataset credits https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri

  5. N

    The MRi-Share database: brain imaging in a cross-sectional cohort of 1,870...

    • neurovault.org
    Updated May 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). The MRi-Share database: brain imaging in a cross-sectional cohort of 1,870 university students: Group average inner CSA map [Dataset]. http://identifiers.org/neurovault.image:505046
    Explore at:
    Dataset updated
    May 21, 2021
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Group average map of inner (white) cortical surface area images in fsaverage space across 1,832 MRiShare subjects.

    Collection description

    This collection contains group average maps presented in the associated publication "The MRi-Share database: brain imaging in a cross-sectional cohort of 1,870 university students".

    Subject species

    homo sapiens

    Modality

    Structural MRI

    Analysis level

    group

    Cognitive paradigm (task)

    None / Other

    Map type

    A

  6. N

    The MRi-Share database: brain imaging in a cross-sectional cohort of 1,870...

    • neurovault.org
    nifti
    Updated May 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). The MRi-Share database: brain imaging in a cross-sectional cohort of 1,870 university students: Group average FLAIR image [Dataset]. http://identifiers.org/neurovault.image:505040
    Explore at:
    niftiAvailable download formats
    Dataset updated
    May 21, 2021
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Group average map of FLAIR images in standard MNI space across 1,832 MRiShare subjects.

    Collection description

    This collection contains group average maps presented in the associated publication "The MRi-Share database: brain imaging in a cross-sectional cohort of 1,870 university students".

    Subject species

    homo sapiens

    Modality

    Structural MRI

    Analysis level

    group

    Cognitive paradigm (task)

    None / Other

    Map type

    A

  7. n

    Animal Imaging Database

    • neuinfo.org
    • scicrunch.org
    • +2more
    Updated Sep 7, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Animal Imaging Database [Dataset]. http://identifiers.org/RRID:SCR_008002
    Explore at:
    Dataset updated
    Sep 7, 2012
    Description

    THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented October 4, 2017.A sub-project of the Cell Centered Database (http://ccdb.ucsd.edu) providing a public repository for animal imaging data sets from MRI and related techniques. The public AIDB website provides the ability for browsing, visualizing and downloading the animal subjected MRI data. The AIDB is a pilot project to serve the current need for public imaging repositories for animal imaging data. The Cell Centered Database (CCDB) is a web accessible database for high resolution 2D, 3D and 4D data from light and electron microscopy. The AIDB data model is modified from the basic model of the CCDB where microscopic images are combined to make 2D, 3D and 4D reconstructions. The CCDB has made available over 40 segmented datasets from high resolution magnetic resonance imaging of inbred mouse strains through the prototype AIDB. These data were acquired as part of the Mouse BIRN project by Drs. G. Allan Johnson and Robert Williams. More information about these data can be found in Badea et al. (2009) (Genetic dissection of the mouse CNS using magnetic resonance microscopy - Pubmed: 19542887)

  8. d

    NIH Pediatric MRI Data Repository

    • dknet.org
    • rrid.site
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). NIH Pediatric MRI Data Repository [Dataset]. http://identifiers.org/RRID:SCR_014149
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A database which contains longitudinal structural MRIs, spectroscopy, DTI and correlated clinical/behavioral data from approximately 500 healthy, normally developing children, ages newborn to young adult.

  9. Dataset related to article "Automated Head Tissue Modelling Based on...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Aug 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaia Amarante Taberna; Gaia Amarante Taberna; Jessica Samogin; Jessica Samogin; Dante Mantini; Dante Mantini (2021). Dataset related to article "Automated Head Tissue Modelling Based on Structural Magnetic Resonance Images for Electroencephalographic Source Reconstruction" [Dataset]. http://doi.org/10.5281/zenodo.5242897
    Explore at:
    Dataset updated
    Aug 24, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gaia Amarante Taberna; Gaia Amarante Taberna; Jessica Samogin; Jessica Samogin; Dante Mantini; Dante Mantini
    Description

    SCORING SEGMENTATIONS

    • Qualitative segmentation scores by two raters (rater1; rater2).
    • Scale: excellent (4); good (3); doubtful (2) and failed (1).

    DATABASES

    SEGMENTATION METHODS

    • MR-TIM (Taberna et al., 2021), green rows
    • WTS (Liu et al., 2017), red rows

    TABLES

    IXI_young

    • 20 MRI from the IXI database, participants 20–35 years old;
    • MR scanners: Philips Intera 3.0T (HH); Philips Gyroscan Intera 1.5T (G)

    IXI_older

    • 20 MRI from the IXI database, participants 60–75 years old;
    • MR scanners: Philips Intera 3.0T (HH); Philips Gyroscan Intera 1.5T (G)

    ABIDE

    • 10 MRI from the ABIDE database, participants 18-25 years old;
    • MR scanner: Philips Achieva 3.0T

    SchizConnect

    • 10 MRI from the SchizConnect database, participants 19-66 years old;
    • MR scanner: Siemens Trio Tim 3.0T

    REFERENCES

    Liu, Q., Farahibozorg, S., Porcaro, C., Wenderoth, N., & Mantini, D. (2017). Detecting large-scale networks in the human brain using high-density electroencephalography. Hum Brain Mapp, 38(9), 4631-4643. doi:10.1002/hbm.23688

    Taberna, G. A., Samogin, J., & Mantini, D. (2021). Automated Head Tissue Modelling Based on Structural Magnetic Resonance Images for Electroencephalographic Source Reconstruction. Neuroinformatics. doi:10.1007/s12021-020-09504-5

  10. m

    Alzheimer MRI Preprocessed Dataset

    • data.mendeley.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sachin Kumar (2025). Alzheimer MRI Preprocessed Dataset [Dataset]. http://doi.org/10.17632/3r8hw8wmmk.1
    Explore at:
    Dataset updated
    Jun 25, 2025
    Authors
    Sachin Kumar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data is collected from several websites, hospitals, and public repositories. The datasetconsists of preprocessed MRI (magnetic resonance imaging) images. All the images are resized to 128 x 128 pixels. The dataset has four classes of images. The Dataset is consists of a total of 6400 MRI images. Class - 1: Mild Demented (896 images) Class - 2: Moderate Demented (64 images) Class - 3: Non Demented (3200 images) Class - 4: Very Mild Demented (2240 images)

    Motive The main motive behind sharing this dataset is to design/develop an accurate framework or architecture for the classification of Alzheimer's disease.

  11. Erasmus Glioma Database

    • healthinformationportal.eu
    html
    Updated Mar 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erasmus Universitair Medisch Centrum Rotterdam (2023). Erasmus Glioma Database [Dataset]. http://doi.org/10.1016/j.dib.2021.107191
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 31, 2023
    Dataset authored and provided by
    Erasmus Universitair Medisch Centrum Rotterdam
    License

    https://xnat.bmia.nl/data/archive/projects/egdhttps://xnat.bmia.nl/data/archive/projects/egd

    Variables measured
    sex, title, topics, acronym, country, funding, language, data_owners, description, sample_size, and 20 more
    Measurement technique
    Data from other records
    Dataset funded by
    European Union-
    Dutch Cancer Society
    Description

    The Erasmus Glioma Database (EGD) contains structural magnetic resonance imaging (MRI) scans, genetic and histological features (specifying the WHO 2016 subtype), and whole tumour segmentations of patients with glioma. Pre-operative MRI data of 774 patients with glioma (281 female, 492 male, 1 unknown, age range 19–86 years) treated at the Erasmus MC between 2008 and 2018 is available. For all patients a pre-contrast T1-weighted, post-contrast T1-weighted, T2-weighted, and T2-weighted FLAIR scan are available, made on a variety of scanners from four different vendors. All scans are registered to a common atlas and defaced. Genetic and histological data consists of the IDH mutation status (available for 467 patients), 1p/19q co-deletion status (available for 259 patients), and grade (available for 716 patients). The full WHO 2016 subtype is available for 415 patients. Manual segmentations are available for 374 patients and automatically generated segmentations are available for 400 patients. The dataset can be used to relate the visual appearance of the tumor on the scan with the genetic and histological features, and to develop automatic segmentation methods.

    See also: https://github.com/Svdvoort/egd-downloader

  12. Brain MRI Dataset

    • figshare.com
    tar
    Updated Jun 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yusuf Brima; Mossadek Hossain Kamal Tushar; Upama Kabir; Tariqul Islam (2021). Brain MRI Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.14778750.v2
    Explore at:
    tarAvailable download formats
    Dataset updated
    Jun 15, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Yusuf Brima; Mossadek Hossain Kamal Tushar; Upama Kabir; Tariqul Islam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was curated in collaboration between the Computer Science and Engineering Department, University of Dhaka and the National Institute of Neuroscience, Bangladesh. It comprise 5,285 T1-weighted contrast- enhanced brain MRI images belonging to 38 categories. This work is accompanied by a paper found here http://arxiv.org/abs/2106.07333

  13. Spine Generic Public Database (Multi-Subject)

    • zenodo.org
    zip
    Updated Feb 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julien Cohen-Adad; Julien Cohen-Adad; Eva Alonso-Ortiz; Mihael Abramovic; Carina Arneitz; Nicole Atcheson; Laura Barlow; Robert L. Barry; Markus Barth; Marco Battiston; Christian Büchel; Matthew Budde; Virginie Callot; Anna J.E. Combes; Benjamin De Leener; Maxime Descoteaux; Paulo Loureiro de Sousa; Marek Dostál; Julien Doyon; Adam Dvorak; Falk Eippert; Karla R. Epperson; Kevin S. Epperson; Patrick Freund; Jürgen Finsterbusch; Alexandru Foias; Michela Fratini; Issei Fukunaga; Claudia A.M. Gandini Wheeler-Kingshott; Giancarlo Germani; Guillaume Gilbert; Federico Giove; Charley Gros; Francesco Grussu; Akifumi Hagiwara; Pierre-Gilles Henry; Tomáš Horák; Masaaki Hori; James Joers; Kouhei Kamiya; Haleh Karbasforoushan; Miloš Keřkovský; Ali Khatibi; Joo-Won Kim; Nawal Kinany; Hagen Kitzler; Shannon Kolind; Yazhuo Kong; Petr Kudlička; Paul Kuntke; Nyoman D. Kurniawan; Slawomir Kusmia; René Labounek; Maria Marcella Laganà; Cornelia Laule; Christine S. Law; Christophe Lenglet; Tobias Leutritz; Yaou Liu; Sara Llufriu; Sean Mackey; Eloy Martinez-Heras; Loan Mattera; Igor Nestrasil; Kristin P. O'Grady; Nico Papinutto; Daniel Papp; Deborah Pareto; Todd B. Parrish; Anna Pichiecchio; Ferran Prados; Àlex Rovira; Marc J. Ruitenberg; Rebecca S. Samson; Giovanni Savini; Maryam Seif; Alan C. Seifert; Alex K. Smith; Seth A. Smith; Zachary A. Smith; Elisabeth Solana; Y. Suzuki; George Tackley; Alexandra Tinnermann; Jan Valošek; Dimitri Van De Ville; Marios C. Yiannakas; Kenneth A. Weber; Nikolaus Weiskopf; Richard G. Wise; Patrik O. Wyss; Junqian Xu; Eva Alonso-Ortiz; Mihael Abramovic; Carina Arneitz; Nicole Atcheson; Laura Barlow; Robert L. Barry; Markus Barth; Marco Battiston; Christian Büchel; Matthew Budde; Virginie Callot; Anna J.E. Combes; Benjamin De Leener; Maxime Descoteaux; Paulo Loureiro de Sousa; Marek Dostál; Julien Doyon; Adam Dvorak; Falk Eippert; Karla R. Epperson; Kevin S. Epperson; Patrick Freund; Jürgen Finsterbusch; Alexandru Foias; Michela Fratini; Issei Fukunaga; Claudia A.M. Gandini Wheeler-Kingshott; Giancarlo Germani; Guillaume Gilbert; Federico Giove; Charley Gros; Francesco Grussu; Akifumi Hagiwara; Pierre-Gilles Henry; Tomáš Horák; Masaaki Hori; James Joers; Kouhei Kamiya; Haleh Karbasforoushan; Miloš Keřkovský; Ali Khatibi; Joo-Won Kim; Nawal Kinany; Hagen Kitzler; Shannon Kolind; Yazhuo Kong; Petr Kudlička; Paul Kuntke; Nyoman D. Kurniawan; Slawomir Kusmia; René Labounek; Maria Marcella Laganà; Cornelia Laule; Christine S. Law; Christophe Lenglet; Tobias Leutritz; Yaou Liu; Sara Llufriu; Sean Mackey; Eloy Martinez-Heras; Loan Mattera; Igor Nestrasil; Kristin P. O'Grady; Nico Papinutto; Daniel Papp; Deborah Pareto; Todd B. Parrish; Anna Pichiecchio; Ferran Prados; Àlex Rovira; Marc J. Ruitenberg; Rebecca S. Samson; Giovanni Savini; Maryam Seif; Alan C. Seifert; Alex K. Smith; Seth A. Smith; Zachary A. Smith; Elisabeth Solana; Y. Suzuki; George Tackley; Alexandra Tinnermann; Jan Valošek; Dimitri Van De Ville; Marios C. Yiannakas; Kenneth A. Weber; Nikolaus Weiskopf; Richard G. Wise; Patrik O. Wyss; Junqian Xu (2023). Spine Generic Public Database (Multi-Subject) [Dataset]. http://doi.org/10.5281/zenodo.4299140
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 23, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Julien Cohen-Adad; Julien Cohen-Adad; Eva Alonso-Ortiz; Mihael Abramovic; Carina Arneitz; Nicole Atcheson; Laura Barlow; Robert L. Barry; Markus Barth; Marco Battiston; Christian Büchel; Matthew Budde; Virginie Callot; Anna J.E. Combes; Benjamin De Leener; Maxime Descoteaux; Paulo Loureiro de Sousa; Marek Dostál; Julien Doyon; Adam Dvorak; Falk Eippert; Karla R. Epperson; Kevin S. Epperson; Patrick Freund; Jürgen Finsterbusch; Alexandru Foias; Michela Fratini; Issei Fukunaga; Claudia A.M. Gandini Wheeler-Kingshott; Giancarlo Germani; Guillaume Gilbert; Federico Giove; Charley Gros; Francesco Grussu; Akifumi Hagiwara; Pierre-Gilles Henry; Tomáš Horák; Masaaki Hori; James Joers; Kouhei Kamiya; Haleh Karbasforoushan; Miloš Keřkovský; Ali Khatibi; Joo-Won Kim; Nawal Kinany; Hagen Kitzler; Shannon Kolind; Yazhuo Kong; Petr Kudlička; Paul Kuntke; Nyoman D. Kurniawan; Slawomir Kusmia; René Labounek; Maria Marcella Laganà; Cornelia Laule; Christine S. Law; Christophe Lenglet; Tobias Leutritz; Yaou Liu; Sara Llufriu; Sean Mackey; Eloy Martinez-Heras; Loan Mattera; Igor Nestrasil; Kristin P. O'Grady; Nico Papinutto; Daniel Papp; Deborah Pareto; Todd B. Parrish; Anna Pichiecchio; Ferran Prados; Àlex Rovira; Marc J. Ruitenberg; Rebecca S. Samson; Giovanni Savini; Maryam Seif; Alan C. Seifert; Alex K. Smith; Seth A. Smith; Zachary A. Smith; Elisabeth Solana; Y. Suzuki; George Tackley; Alexandra Tinnermann; Jan Valošek; Dimitri Van De Ville; Marios C. Yiannakas; Kenneth A. Weber; Nikolaus Weiskopf; Richard G. Wise; Patrik O. Wyss; Junqian Xu; Eva Alonso-Ortiz; Mihael Abramovic; Carina Arneitz; Nicole Atcheson; Laura Barlow; Robert L. Barry; Markus Barth; Marco Battiston; Christian Büchel; Matthew Budde; Virginie Callot; Anna J.E. Combes; Benjamin De Leener; Maxime Descoteaux; Paulo Loureiro de Sousa; Marek Dostál; Julien Doyon; Adam Dvorak; Falk Eippert; Karla R. Epperson; Kevin S. Epperson; Patrick Freund; Jürgen Finsterbusch; Alexandru Foias; Michela Fratini; Issei Fukunaga; Claudia A.M. Gandini Wheeler-Kingshott; Giancarlo Germani; Guillaume Gilbert; Federico Giove; Charley Gros; Francesco Grussu; Akifumi Hagiwara; Pierre-Gilles Henry; Tomáš Horák; Masaaki Hori; James Joers; Kouhei Kamiya; Haleh Karbasforoushan; Miloš Keřkovský; Ali Khatibi; Joo-Won Kim; Nawal Kinany; Hagen Kitzler; Shannon Kolind; Yazhuo Kong; Petr Kudlička; Paul Kuntke; Nyoman D. Kurniawan; Slawomir Kusmia; René Labounek; Maria Marcella Laganà; Cornelia Laule; Christine S. Law; Christophe Lenglet; Tobias Leutritz; Yaou Liu; Sara Llufriu; Sean Mackey; Eloy Martinez-Heras; Loan Mattera; Igor Nestrasil; Kristin P. O'Grady; Nico Papinutto; Daniel Papp; Deborah Pareto; Todd B. Parrish; Anna Pichiecchio; Ferran Prados; Àlex Rovira; Marc J. Ruitenberg; Rebecca S. Samson; Giovanni Savini; Maryam Seif; Alan C. Seifert; Alex K. Smith; Seth A. Smith; Zachary A. Smith; Elisabeth Solana; Y. Suzuki; George Tackley; Alexandra Tinnermann; Jan Valošek; Dimitri Van De Ville; Marios C. Yiannakas; Kenneth A. Weber; Nikolaus Weiskopf; Richard G. Wise; Patrik O. Wyss; Junqian Xu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    About this dataset

    This dataset was acquired using the spine-generic protocol on multiple subjects, multiple sites and multiple MRI vendors and models. The list of subjects is available in participants.tsv.

    The contributors have the necessary ethics & permissions to share the data publicly. The dataset does not include any identifiable personal health information, including names, zip codes, dates of birth, facial features on structural scans.

    The dataset is about 10 GB and it is structured according to the BIDS convention.

    Download

    We are using a tool to manage large datasets called git-annex. To download this dataset, you need to have `git` installed, and also install `git-annex` at version 8. Then run:

    git clone https://github.com/spine-generic/data-multi-subject && \
    cd data-multi-subject && \
    git annex init && \
    git annex get

    You may substitute `git annex get` with more specific commands if you are only interested in certain subjects. For example:

    git annex get sub-nwu01/ sub-nwu03/ sub-nwu04/ sub-oxfordFmrib04/ sub-tokyoSkyra*/


    Analysis

    The instructions to process this dataset are available in the spine-generic documentation.

    Contributing

    If you wish to contribute to this dataset please see the wiki. Thank you for your contribution 🎉

  14. Fully-Automated μMRI Morphometric Phenotyping of the Tc1 Mouse Model of Down...

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nick M. Powell; Marc Modat; M. Jorge Cardoso; Da Ma; Holly E. Holmes; Yichao Yu; James O’Callaghan; Jon O. Cleary; Ben Sinclair; Frances K. Wiseman; Victor L. J. Tybulewicz; Elizabeth M. C. Fisher; Mark F. Lythgoe; Sébastien Ourselin (2023). Fully-Automated μMRI Morphometric Phenotyping of the Tc1 Mouse Model of Down Syndrome - Table 1 [Dataset]. http://doi.org/10.1371/journal.pone.0162974.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Nick M. Powell; Marc Modat; M. Jorge Cardoso; Da Ma; Holly E. Holmes; Yichao Yu; James O’Callaghan; Jon O. Cleary; Ben Sinclair; Frances K. Wiseman; Victor L. J. Tybulewicz; Elizabeth M. C. Fisher; Mark F. Lythgoe; Sébastien Ourselin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Fully-Automated μMRI Morphometric Phenotyping of the Tc1 Mouse Model of Down Syndrome - Table 1

  15. Z

    UNC-Wisconsin Neurodevelopment Rhesus Structural MRI Database

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Styner, Martin; Niethammer, Marc; Coe, Christopher (2020). UNC-Wisconsin Neurodevelopment Rhesus Structural MRI Database [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_233682
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    University of North Carolina at Chapel Hill
    University of Wisconsin
    Authors
    Styner, Martin; Niethammer, Marc; Coe, Christopher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wisconsin
    Description

    A macaque brain MRI database characterizing the normal postnatal macaque brain development. This longitudinal primate database was acquired from a cohort of healthy macaque monkeys ranging from a few week olds up to 3-year-old adolescents. Website: https://data.kitware.com/#collection/54b582c38d777f4362aa9cb3

    This work was supported by R01 MH091645 DEVELOPMENTAL BRAIN ATLAS TOOLS AND DATA APPLIED TO HUMANS AND MACAQUES http://projectreporter.nih.gov/project_info_description.cfm?aid=8454496

  16. n

    Bipolar Disorder Neuroimaging Database

    • neuinfo.org
    • scicrunch.org
    • +1more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Bipolar Disorder Neuroimaging Database [Dataset]. http://identifiers.org/RRID:SCR_007025
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Database of 141 studies which have investigated brain structure (using MRI and CT scans) in patients with bipolar disorder compared to a control group. Ninety-eight studies and 47 brain structures are included in the meta-analysis. The database and meta-analysis are contained in an Excel spreadsheet file which may be freely downloaded from this website.

  17. b

    The Brain Imaging and Neurophysiology Database (BIND)

    • bdsp.io
    Updated Sep 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte Maschke; Peter Hadar; Yicheng Zhang; Jian Li; Gauri Ganjoo; Andrew Hoopes; Alessandro Guazzo; Aditya Gupta; Manohar Ghanta; Bruce Nearing; Christine Tsien Silvers; Bharath Gunapati; Robert Thomas; Jennifer Kim; Shibani Mukerji; Adrian Dalca; Sahar Zafar; Alice Lam; Emmanuel Mignot; M Brandon Westover (2025). The Brain Imaging and Neurophysiology Database (BIND) [Dataset]. http://doi.org/10.60508/mby8-3a26
    Explore at:
    Dataset updated
    Sep 9, 2025
    Authors
    Charlotte Maschke; Peter Hadar; Yicheng Zhang; Jian Li; Gauri Ganjoo; Andrew Hoopes; Alessandro Guazzo; Aditya Gupta; Manohar Ghanta; Bruce Nearing; Christine Tsien Silvers; Bharath Gunapati; Robert Thomas; Jennifer Kim; Shibani Mukerji; Adrian Dalca; Sahar Zafar; Alice Lam; Emmanuel Mignot; M Brandon Westover
    License

    https://github.com/bdsp-core/bdsp-license-and-duahttps://github.com/bdsp-core/bdsp-license-and-dua

    Description

    The Brain Imaging and Neurophysiology Database (BIND) represents one of the largest multi-institutional, multimodal neuroimaging repositories, comprising 1.8 million brain scans from 38,945 subjects linked to neurophysiological recordings. This comprehensive dataset addresses critical limitations in neuroimaging research by providing unprecedented scale and diversity across pathologies and healthy controls. BIND integrates de-identified data from three major academic medical centers -- Massachusetts General Hospital, Brigham and Women's Hospital, and Stanford University Medical Center -- including 1,724,300 MRI scans (1.5T, 3T, and 7T), 54,154 CT scans, 5,720 PET scans, and 655 SPECT scans, converted to standardized NIfTI format following BIDS organization. The database spans the full age spectrum and encompasses diverse neurological conditions alongside healthy subjects. We deployed Bio-Medical Large Language Models to extract structured clinical metadata from 84,960 associated radiology reports, categorizing findings into standardized pathology classifications. All imaging data are linked to previously published EEG and polysomnography recordings from the Harvard Electroencephalography Database and Human Sleep Project, enabling unprecedented multimodal analyses. BIND is freely accessible for academic research through the Brain Data Science Platform (https://bdsp.io/). This resource facilitates large-scale neuroimaging studies, machine learning applications, and multimodal brain research to accelerate discoveries in clinical neuroscience.

  18. f

    Data_Sheet_1_Beware (Surprisingly Common) Left-Right Flips in Your MRI Data:...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated May 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taylor, Paul A.; Buchsbaum, Bradley R.; Glen, Daniel R.; Cox, Robert W.; Reynolds, Richard C. (2020). Data_Sheet_1_Beware (Surprisingly Common) Left-Right Flips in Your MRI Data: An Efficient and Robust Method to Check MRI Dataset Consistency Using AFNI.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000476898
    Explore at:
    Dataset updated
    May 25, 2020
    Authors
    Taylor, Paul A.; Buchsbaum, Bradley R.; Glen, Daniel R.; Cox, Robert W.; Reynolds, Richard C.
    Description

    Knowing the difference between left and right is generally assumed throughout the brain MRI research community. However, we note widespread occurrences of left-right orientation errors in MRI open database repositories where volumes have contained systematic left-right flips between subject EPIs and anatomicals, due to having incorrect or missing file header information. Here we present a simple method in AFNI for determining the consistency of left and right within a pair of acquired volumes for a particular subject; the presence of EPI-anatomical inconsistency, for example, is a sign that dataset header information likely requires correction. The method contains both a quantitative evaluation as well as a visualizable verification. We test the functionality using publicly available datasets. Left-right flipping is not immediately obvious in most cases, so we also present visualization methods for looking at this problem (and other potential problems), using examples from both FMRI and DTI datasets.

  19. Longitudinal MR_MS Dataset

    • kaggle.com
    zip
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    farah_mo (2025). Longitudinal MR_MS Dataset [Dataset]. https://www.kaggle.com/datasets/farahmo/longitudinal-mri-data
    Explore at:
    zip(3252130288 bytes)Available download formats
    Dataset updated
    Jun 7, 2025
    Authors
    farah_mo
    Description

    Overview:-

    This dataset provides longitudinal Magnetic Resonance Imaging (MRI) scans of patients with Multiple Sclerosis (MS), specifically curated for the study of white matter lesion (WML) changes over time.

    Each patient was scanned on two separate occasions, allowing researchers to analyze lesion progression or regression between imaging sessions. Ground truth lesion change masks, derived from expert consensus, are provided to support validation of automatic change detection algorithms.

    All images have been defaced to preserve patient privacy.

    Dataset Contents:-

    Each patient folder includes:

    • Co-registered and N4 bias-corrected MRI sequences (for both timepoints):
      • T1-weighted (T1)
      • T2-weighted (T2)
      • FLAIR
    • Brain mask (patientX_brainmask.nii.gz)
    • White matter lesion change mask (patientX_gt.nii.gz)
    • Affine transform parameters to register images across studies and into a common space.
    • RAW MRI images (in original acquisition space).

    Folder Structure:- The dataset is organized per patient:

    patientX/ │ ├── patientX_brainmask.nii.gz # Brain mask ├── patientX_gt.nii.gz # White matter lesion change mask ├── patientX_study1_T1_reg.nii.gz # N4-corrected & co-registered T1 (study 1) ├── patientX_study1_T2_reg.nii.gz # N4-corrected & co-registered T2 (study 1) ├── patientX_study1_FLAIR_reg.nii.gz # N4-corrected & co-registered FLAIR (study 1) ├── patientX_study2_T1_reg.nii.gz # N4-corrected & co-registered T1 (study 2) ├── patientX_study2_T2_reg.nii.gz # N4-corrected & co-registered T2 (study 2) ├── patientX_study2_FLAIR_reg.nii.gz # N4-corrected & co-registered FLAIR (study 2) ├── patientX_studyY_FLAIR_to_common_space.txt # Affine transform parameters to common space │ └── raw/ ├── patientX_study1_T1.nii.gz ├── patientX_study1_T2.nii.gz ├── patientX_study1_FLAIR.nii.gz ├── patientX_study2_T1.nii.gz ├── patientX_study2_T2.nii.gz ├── patientX_study2_FLAIR.nii.gz └── patientX_studyY_modality_intrastudy_to_FLAIR.txt

    License & Reference:- License: Creative Commons Attribution (CC-BY)

    Reference (please cite if used): Lesjak, Ž., Pernuš, F., Likar, B., & Špiclin, Ž. “Validation of White-Matter Lesion Change Detection Methods on a Novel Publicly Available MRI Image Database.” Neuroinformatics (2016): 1–18.

    Source: Laboratory of Imaging Technologies

  20. Annotated Clinical MRIs and Linked Metadata of Patients with Acute Stroke,...

    • icpsr.umich.edu
    Updated Oct 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Faria, Andreia V. (2025). Annotated Clinical MRIs and Linked Metadata of Patients with Acute Stroke, Baltimore, Maryland, 2009-2019 [Dataset]. http://doi.org/10.3886/ICPSR38464.v6
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Faria, Andreia V.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38464/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38464/terms

    Time period covered
    Jan 1, 2009 - Dec 31, 2019
    Area covered
    Baltimore, Maryland, United States
    Description

    This is a collection of 2,888 clinical MRIs of patients admitted at a National Stroke Center, over ten years, with clinical diagnosis of acute or early subacute stroke. The collection includes diverse MRI modalities and protocols. The infarct core was manually defined in the diffusion weighted images; the images are provided in native subject space and in standard space (MNI), in Neuroimaging Informatics Technology Initiative (NIfTI) format. The data format and organization follows Brain Imaging Data Structure (BIDS) guidelines. The collection includes diverse metadata, comprised of demographic information, basic clinical profile (NIH Stroke Scale/Score (NIHSS), hospitalization duration, blood pressure at admission, BMI, and associated health conditions), and expert description of the acute lesion. This resource provides high quality, large scale, human-supervised knowledge to feed artificial intelligence models and enable further development of tools to automate several tasks that currently rely on human labor, such as lesion segmentation, labeling, calculation of disease-relevant scores, and lesion-based studies relating function to frequency lesion maps. The dataset is divided in folders with 60-70 subjects. Each folder contains the "raw data" (multimodal MRIs, in native space), "DWI-mask" (manually-defined lesion masks, brain masks, and 3D DWI, b0, and recalculated ADC), "DWI-MNI-IntensityNormalized" (DWI and lesion masks in MNI coordinates), and "phenotype" (individual ".tsv" files with metadata of each subject). The "templates" folder contains images averages and lesion frequency maps. The "documentation" contains comprehensive data documentation, the phenotypes of the whole dataset, and the data dictionary.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Manually Labeled MRI Brain Scan Database [Dataset]. http://identifiers.org/RRID:SCR_009604

Manually Labeled MRI Brain Scan Database

RRID:SCR_009604, nlx_155805, Manually Labeled MRI Brain Scan Database (RRID:SCR_009604)

Explore at:
Dataset updated
Oct 15, 2024
Description

Collection of neuroanatomically labeled MRI brain scans, created by neuroanatomical experts. Regions of interest include the sub-cortical structures (thalamus, caudate, putamen, hippocampus, etc), along with ventricles, brain stem, cerebellum, and gray and white matter and sub-divided cortex into parcellation units that are defined by gyral and sulcal landmarks.

Search
Clear search
Close search
Google apps
Main menu