15 datasets found
  1. MSCI World: Reflecting Global Economic Trends or Inflated Valuations?...

    • kappasignal.com
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). MSCI World: Reflecting Global Economic Trends or Inflated Valuations? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/msci-world-reflecting-global-economic.html
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    MSCI World: Reflecting Global Economic Trends or Inflated Valuations?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  2. MSCI World: Where Will it Take Us? (Forecast)

    • kappasignal.com
    Updated Apr 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). MSCI World: Where Will it Take Us? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/msci-world-where-will-it-take-us.html
    Explore at:
    Dataset updated
    Apr 6, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    MSCI World: Where Will it Take Us?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. MSCI World Index Forecast: Mixed Outlook (Forecast)

    • kappasignal.com
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). MSCI World Index Forecast: Mixed Outlook (Forecast) [Dataset]. https://www.kappasignal.com/2025/01/msci-world-index-forecast-mixed-outlook.html
    Explore at:
    Dataset updated
    Jan 10, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    MSCI World Index Forecast: Mixed Outlook

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. The MSCI World Index: A Global Benchmark? (Forecast)

    • kappasignal.com
    Updated Jun 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). The MSCI World Index: A Global Benchmark? (Forecast) [Dataset]. https://www.kappasignal.com/2024/06/the-msci-world-index-global-benchmark.html
    Explore at:
    Dataset updated
    Jun 9, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The MSCI World Index: A Global Benchmark?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. D

    Broad Based Index Fund Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Broad Based Index Fund Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/broad-based-index-fund-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Broad Based Index Fund Market Outlook



    The global broad-based index fund market size was valued at USD 5.3 trillion in 2023 and is projected to reach USD 11.2 trillion by 2032, growing at a compound annual growth rate (CAGR) of 8.5% during the forecast period. This substantial growth is driven by increasing investor interest in passive investment strategies, along with the rising emphasis on cost-effective and diversified portfolio management.



    The surge in demand for broad-based index funds can be attributed to several key growth factors. Firstly, the growing awareness and education about the benefits of passive investing over active management have played a significant role. Investors are increasingly leaning towards index funds due to their lower expense ratios, tax efficiency, and the ability to provide broad market exposure with minimal effort. Secondly, technological advancements and the rise of fintech have made these funds more accessible to a wider audience through online platforms and robo-advisors, democratizing investment opportunities for retail investors globally. Lastly, regulatory changes in many regions are encouraging greater transparency and lower fees in the financial services industry, which further bolsters the attractiveness of index funds as a preferred investment vehicle.



    The popularity of broad-based index funds is also bolstered by their performance resilience during market volatility. Historical data indicates that while actively managed funds often struggle to outperform the market consistently, index funds tend to provide more stable returns over the long term. This trend has been particularly noticeable during economic downturns and periods of market uncertainty, where investors seek the relative safety and predictability offered by broad-based diversified portfolios. Additionally, the increased focus on retirement planning and the shift from defined benefit to defined contribution retirement plans have spurred the growth of index funds as they are often the preferred choice in retirement accounts due to their long-term growth potential and lower costs.



    The regional outlook for the broad-based index fund market highlights significant growth potential across various geographies. North America, particularly the United States, remains the largest market for index funds, driven by the deep-rooted culture of investing and a well-established financial infrastructure. Europe follows closely, with growth fueled by regulatory support and increasing investor awareness. The Asia Pacific region is expected to witness the highest growth rate, propelled by the burgeoning middle class, rising disposable incomes, and increasing penetration of financial services. Latin America and the Middle East & Africa are also anticipated to demonstrate steady growth as financial markets in these regions continue to develop and mature.



    Mutual Funds Sales have seen a notable uptick as investors increasingly seek diversified investment options that align with their financial goals. This trend is particularly evident in the context of broad-based index funds, where mutual funds offer a structured approach to investing in a wide array of assets. The appeal of mutual funds lies in their ability to pool resources from multiple investors, enabling access to a diversified portfolio that might otherwise be unattainable for individual investors. This collective investment model not only reduces risk but also provides investors with professional management and oversight. As the financial landscape evolves, mutual funds continue to play a crucial role in facilitating access to index funds, thereby driving sales and expanding their market presence.



    Fund Type Analysis



    Equity index funds represent a significant portion of the broad-based index fund market. These funds track a variety of stock indices, such as the S&P 500, NASDAQ, and MSCI World Index, providing investors with exposure to a wide array of equity markets. The appeal of equity index funds lies in their ability to offer broad market diversification at a low cost. Investors benefit from the lower fees associated with passive management and the reduced risk of individual stock selection. As a result, equity index funds have become a staple in both retail and institutional portfolios, driving robust demand and growth in this segment.



    Bond index funds, though smaller in market share compared to their equity counterparts, are gaining traction as investors seek stable income and risk diversifi

  6. Is the MSCI World Index a Reliable Indicator of Global Market Performance?...

    • kappasignal.com
    Updated Nov 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Is the MSCI World Index a Reliable Indicator of Global Market Performance? (Forecast) [Dataset]. https://www.kappasignal.com/2024/11/is-msci-world-index-reliable-indicator.html
    Explore at:
    Dataset updated
    Nov 12, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Is the MSCI World Index a Reliable Indicator of Global Market Performance?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. Financial Asset Investing in Australia - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Financial Asset Investing in Australia - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/au/industry/financial-asset-investing/519/
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2015 - 2030
    Area covered
    Australia
    Description

    Financial asset investors have benefited from a generally strong domestic sharemarket performance and robust profit margins over the past few years. Typically, industry funds are invested in equities, and industry revenue depends on various sharemarket performances. The COVID-19 pandemic and ensuing inflationary pressures significantly disrupted both local and global equity markets, which limited industry performance. Yet, total assets have continued to accumulate over recent years, compounding returns for investors, assisted by previously low interest rates. Overall, industry revenue is expected to climb at an annualised 6.2% over the five years through 2024-25, to $176.3 billion. The low-interest rate environment that characterised the trading landscape until recently affected fixed-income assets' performance, which changed the mix of funds held in various industry investment vehicles. More recently, market volatility and cash rate hikes have led to investors increasingly moving to cash management trusts because of their perceived safety as investment instruments. Related elevated interest rates and negative business confidence are set to hurt returns for many investors in 2024-25, particularly investment portfolios geared for higher risk. Despite these pressures, investor incomes are set to swell by 1.7% in the current year off the back of an anticipated strong domestic sharemarket performance, bumped by strong business profit. A falling MSCI world index and negative consumer sentiment have the potential to continue softening investment performance over the coming years. Yet, inflationary pressures and interest rates are set to gradually ease as trading conditions improve. Projected global financial stability and a sluggish appreciation of the Australian dollar may set the stage for a resurgence in overseas investment in Australian markets, yet continued changes implemented by the FIRB may limit the willingness of overseas investors to spend domestically. The influence of superannuation funds over the industry may continue to rise, drawing funds from retail investors, yet they themselves are a large market. For this reason, continued increases to the Superannuation Guarantee Scheme are likely to boost assets at the disposal of pension funds. Overall, financial asset investor incomes are projected to continue growing at an annualised 3.2% through 2029-30, to total $206.6 billion.

  8. w

    Global Commodity Index Funds Market Research Report: By Investment Objective...

    • wiseguyreports.com
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wWiseguy Research Consultants Pvt Ltd (2024). Global Commodity Index Funds Market Research Report: By Investment Objective (Diversification, Inflation Hedging, Performance Enhancement), By Asset Class (Broad Commodity Index Funds, Sector-Specific Commodity Index Funds, Single Commodity Index Funds), By Index Provider (S&P GSCI, Bloomberg Commodity Index (BCI), Thomson Reuters/CoreCommodity CRB Index), By Investment Style (Active Commodity Index Funds, Passive Commodity Index Funds), By Investor Profile (Institutional Investors, Accredited Investors, Retail Investors) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2032. [Dataset]. https://www.wiseguyreports.com/reports/commodity-index-funds-market
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset authored and provided by
    wWiseguy Research Consultants Pvt Ltd
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Jan 7, 2024
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2024
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 2023377.63(USD Billion)
    MARKET SIZE 2024401.23(USD Billion)
    MARKET SIZE 2032651.97(USD Billion)
    SEGMENTS COVEREDInvestment Objective ,Asset Class ,Index Provider ,Investment Style ,Investor Profile ,Regional
    COUNTRIES COVEREDNorth America, Europe, APAC, South America, MEA
    KEY MARKET DYNAMICSIncreased demand for alternative investments Growing popularity of passive investing Rise in commodity prices Geopolitical uncertainty Technological advancements
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDiShares MSCI Commodity Swap Index Fund ,Rogers International Commodity Index ,S&P GSCI ,MSCI Commodity Index ,UBS Bloomberg Constant Maturity Commodity Index ,PowerShares DB Commodity Tracking Fund ,Bloomberg Commodity Index ,DB Commodity Index ,Solactive Commodity Index ,Thomson Reuters/CoreCommodity CRB Index ,Invesco DB Commodity Index Tracking Fund ,CRB Commodity Index ,Dow Jones Commodity Index ,ETFS Physical Swiss Gold Shares ,WisdomTree Enhanced Commodity Tracking Fund
    MARKET FORECAST PERIOD2024 - 2032
    KEY MARKET OPPORTUNITIESGrowing demand for diversification Increased investor interest in commodities Technological advancements
    COMPOUND ANNUAL GROWTH RATE (CAGR) 6.25% (2024 - 2032)
  9. MSCI World Index: Global Peaks or Precipice? (Forecast)

    • kappasignal.com
    Updated Mar 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). MSCI World Index: Global Peaks or Precipice? (Forecast) [Dataset]. https://www.kappasignal.com/2024/03/msci-world-index-global-peaks-or.html
    Explore at:
    Dataset updated
    Mar 16, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    MSCI World Index: Global Peaks or Precipice?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. Fund Management Activities in Europe - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Fund Management Activities in Europe - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/europe/industry/fund-management-activities/200280/
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2015 - 2030
    Area covered
    Europe
    Description

    The Fund Management Activities industry is undergoing a period of transformation, characterised by technological disruptions and shifting investor preferences. Firms that have embraced this innovation and demonstrated their ability to adapt have been well-positioned to navigate these challenges. That being said, companies have still been plagued by numerous economic headwinds, resulting in particularly volatile revenue in recent years. Revenue is expected to fall at a compound annual rate of 1.1% over the five years through 2025 to €175.7 billion, including a forecast rise of 3.7% in 2025. Economic uncertainty has been rife in recent years, with investors remaining cautious amid muted economic growth, sticky inflation and higher interest rates. Notably, 2022 was a tough year for capital markets, with the rising base rate environment triggering mass sell-offs in fixed-income markets and clobbering bond values. Stock markets didn’t fare much better, with the MSCI World Index ending the year down by 13.1%. Optimism was hard to come by going into 2023, but capital markets defied expectations, partially due to a solid performance from large cap tech stocks and investors pricing in rate cuts at the tail-end of the year, supporting capital inflows. This momentum is set to continue over the two years through 2025 despite inflation proving sticky, with investors remaining excited around AI and pricing in further rate cuts from central banks. A notable shift over recent years has been the transition to passive investing, reflected in the growing demand for ETFs. In response, many core portfolios are shifting to passives, with active managers increasingly pushing toward niche segments like ESG. Revenue is slated to swell at a compound annual rate of 6.3% over the five years through 2030 to €238.9 billion. Investment activity is set to remain healthy as investors expect further rate cuts and the excitement around AI persists. However, uncertainty lingers, with markets unsure about the impact of the US’s protectionist trade policies. Technological advancements will continue to gather pace in the coming years, with developments like robo-advisers becoming increasingly accurate and supporting investment returns. The excitement around ESG is expected to cool, with superpowers like the US showing resistance and some states actively discouraging ESG integration. This mindset will likely trickle across Europe, forcing fund managers to adapt their offerings and use phrases like ‘sustainable investing’ instead.

  11. m

    Polar Capital Global Financials Trust plc - Interest-Expense

    • macro-rankings.com
    csv, excel
    Updated Sep 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Polar Capital Global Financials Trust plc - Interest-Expense [Dataset]. https://www.macro-rankings.com/markets/stocks/pcft-lse/income-statement/interest-expense
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Sep 4, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    uk
    Description

    Interest-Expense Time Series for Polar Capital Global Financials Trust plc. Polar Capital Global Financials Trust plc is a closed-ended equity mutual fund launched and managed by Polar Capital LLP. It invests in the public equity markets across the globe. The fund seeks to invest in stocks of companies operating in the financials sector. It invests in stocks of companies across all market capitalizations. The fund is actively managed. It benchmarks the performance of its portfolio against the MSCI World Financials Index. Polar Capital Global Financials Trust plc was formed on May 17, 2013 and is domiciled in the United Kingdom.

  12. MSCI World Index: Global Pathfinder or Market Mirage? (Forecast)

    • kappasignal.com
    Updated Apr 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). MSCI World Index: Global Pathfinder or Market Mirage? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/msci-world-index-global-pathfinder-or.html
    Explore at:
    Dataset updated
    Apr 11, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    MSCI World Index: Global Pathfinder or Market Mirage?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Global Reinsurance Carriers - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2024). Global Reinsurance Carriers - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/global/market-research-reports/global-reinsurance-carriers-industry/
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2014 - 2029
    Description

    The global reinsurance industry, a crucial element of the worldwide financial ecosystem, hinges closely on the performance of worldwide equity markets. Reinsurance carriers often invest in equities to generate investment income, thereby funding the payment of claims. When COVID-19 first struck, equity markets plummeted due to widespread uncertainty. As central banks injected liquidity into the market, equity prices rebounded in late 2020, increasing revenue for reinsurance carriers. This momentum continued in 2021 as the economic recovery was underway. However, the geopolitical instability following Russia's exclusion from the MSCI World Index in 2022, coupled with soaring inflation and recessionary fears, resulted in a downturn for the reinsurance sector, reflecting a more than 10.0% decline in revenue that year. Reinsurance carriers have also navigated a complex landscape shaped by healthcare expenditures and increasing interest rates. Expenditure on healthcare, driven by an aging population and medical advancements, has surged, leading insurers to seek reinsurance products to mitigate risk, enhancing industry revenue during this period. Rising interest rates introduced challenges by curbing property investment and many types of durable goods, reducing demand for many types of insurance. This dynamic constrained the growth of reinsurance revenue in 2022 and 2023 before seeing a partial rebound as interest rates began to ease by 2025. Regardless, profit still performed relatively well while borrowing costs were high since many reinsurance companies were able to salvage some of their investment income by purchasing fixed-income products. Overall, revenue for global reinsurance carriers is anticipated to inch downward at a CAGR of 0.1% during the current period, reaching $339.7 billion in 2025, which includes a 1.2% jump in revenue in that year. Looking ahead, the next five years present a mix of challenges and opportunities for the industry. Global economic growth and technological advancements in data analytics and climate modeling signal potential growth for the sector, especially as emerging markets like China and India develop further. These advancements are expected to enable more refined risk assessment and opportunities for geographical expansion. However, declining global stock prices resulting from economic and political uncertainty will likely dampen growth. Competition from financial substitutes like catastrophe bonds and self-insurance poses additional pressure. Overall, revenue for global reinsurance companies is forecast to expand at a CAGR of 1.4% during the outlook period, reaching $363.8 billion in 2030.

  14. The Global Market's Pulse: What Does the MSCI World Index Reveal? (Forecast)...

    • kappasignal.com
    Updated Sep 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). The Global Market's Pulse: What Does the MSCI World Index Reveal? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/the-global-markets-pulse-what-does-msci.html
    Explore at:
    Dataset updated
    Sep 28, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Global Market's Pulse: What Does the MSCI World Index Reveal?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. Currency Hedge: An Investment Safe Haven for the Global Market? (iShares...

    • kappasignal.com
    Updated Mar 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Currency Hedge: An Investment Safe Haven for the Global Market? (iShares Currency Hedged MSCI ACWI ex U.S. ETF) (Forecast) [Dataset]. https://www.kappasignal.com/2024/03/currency-hedge-investment-safe-haven.html
    Explore at:
    Dataset updated
    Mar 21, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Currency Hedge: An Investment Safe Haven for the Global Market? (iShares Currency Hedged MSCI ACWI ex U.S. ETF)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
KappaSignal (2024). MSCI World: Reflecting Global Economic Trends or Inflated Valuations? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/msci-world-reflecting-global-economic.html
Organization logo

MSCI World: Reflecting Global Economic Trends or Inflated Valuations? (Forecast)

Explore at:
Dataset updated
May 7, 2024
Dataset authored and provided by
KappaSignal
License

https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

Description

This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

MSCI World: Reflecting Global Economic Trends or Inflated Valuations?

Financial data:

  • Historical daily stock prices (open, high, low, close, volume)

  • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

  • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

Machine learning features:

  • Feature engineering based on financial data and technical indicators

  • Sentiment analysis data from social media and news articles

  • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

Potential Applications:

  • Stock price prediction

  • Portfolio optimization

  • Algorithmic trading

  • Market sentiment analysis

  • Risk management

Use Cases:

  • Researchers investigating the effectiveness of machine learning in stock market prediction

  • Analysts developing quantitative trading Buy/Sell strategies

  • Individuals interested in building their own stock market prediction models

  • Students learning about machine learning and financial applications

Additional Notes:

  • The dataset may include different levels of granularity (e.g., daily, hourly)

  • Data cleaning and preprocessing are essential before model training

  • Regular updates are recommended to maintain the accuracy and relevance of the data

Search
Clear search
Close search
Google apps
Main menu