Burn severity layers are thematic images depicting severity as unburned to low, low, moderate, high, and increased greenness (increased post-fire vegetation response). The layer may also have a sixth class representing a mask for clouds, shadows, large water bodies, or other features on the landscape that erroneously affect the severity classification. This data has been prepared as part of the Monitoring Trends in Burn Severity (MTBS) project. Due to the lack of comprehensive fire reporting information and quality Landsat imagery, burn severity for all targeted MTBS fires are not available. Additionally, the availability of burn severity data for fires occurring in the current and previous calendar year is variable since these data are currently in production and released on an intermittent basis by the MTBS project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Burn severity layers are thematic images depicting severity as unburned to low, low, moderate, high, and increased greenness (increased post-fire vegetation response). The layer may also have a sixth class representing a mask for clouds, shadows, large water bodies, or other features on the landscape that erroneously affect the severity classification. This data has been prepared as part of the Monitoring Trends in Burn Severity (MTBS) project. Due to the lack of comprehensive fire reporting information and quality Landsat imagery, burn severity for all targeted MTBS fires are not available. Additionally, the availability of burn severity data for fires occurring in the current and previous calendar year is variable since these data are currently in production and released on an intermittent basis by the MTBS project.�Map ServicesThis record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
The data generated by Monitoring Trends in Burn Severity (MTBS) will be used to identify national trends in burn severity, providing information necessary to monitor the effectiveness of the National Fire Plan and now, the National Cohesive Wildfire Management Strategy. MTBS is sponsored by the Wildland Fire Leadership Council (WFLC), a multi-agency oversight group responsible for implementing and coordinating the National Fire Plan and Federal Wildland Fire Management Policies. The MTBS project objective is to provide consistent, 30 meter resolution burn severity data and burned area delineations that will serve four primary user groups: 1. National policies and policy makers such as the National Fire Plan and WFLC which require information about long-term trends in burn severity and recent burn severity impacts within vegetation types, fuel models, condition classes, and land management activities. 2. Field management units that benefit from mid to broad scale GIS-ready maps and data for pre- and post-fire assessment and monitoring. Field units that require finer scale burn severity data will also benefit from increased efficiency, reduced costs, and data consistency by starting with MTBS data. 3. Existing databases from other comparably scaled programs, such as Fire Regime and Condition Class (FRCC) within LANDFIRE, that will benefit from MTBS data for validation and updating of geospatial data sets. 4. Academic and agency research entities interested in fire severity data over significant geographic and temporal extents.
The burn severity mosaics consist of thematic raster images of MTBS burn severity classes for all currently completed MTBS fires for the continental United States, Alaska, Hawaii and Puerto Rico. Mosaicked burn severity images are compiled annually for each year by US State and the continental United States. Monitoring Trends in Burn Severity (MTBS) is an interagency program whose goal is to consistently map the burn severity and extent of large fires across all lands of the United States from 1984 to present. This includes all fires 1000 acres or greater in the western United States and 500 acres or greater in the eastern Unites States. The extent of coverage includes the continental U.S., Alaska, Hawaii and Puerto Rico. The program is conducted by the U.S. Geological Survey Center for Earth Resources Observation and Science (EROS) and the USDA Forest Service Geospatial Technology and Applications Center (GTAC). MTBS was first enacted in 2005, primarily to meet the information needs of the Wildland Fire Leadership Council (WFLC). The primary objective at that time was to provide data to the WFLC for monitoring the effectiveness of the ten-year National Fire Plan. The scope of the program has grown since inception and provides data to a wide range of users. These include national policy-makers such as WFLC and others who are focused on implementing and monitoring national fire management strategies; field management units such as national forests, parks and other federal and tribal lands that benefit from the availability of GIS-ready maps and data; other federal land cover mapping programs such as LANDFIRE which utilizes burn severity data in their own efforts; and academic and agency research entities interested in fire severity data over significant geographic and temporal extents. MTBS data are freely available to the public and are generated by leveraging other national programs including the Landsat satellite program, jointly developed and managed by the USGS and NASA. Landsat data are analyzed through a standardized and consistent methodology, generating products at a 30 meter resolution dating back to 1984. One of the greatest strengths of the program is the consistency of the data products which would be impossible without the historic Landsat archive, the largest in the world. You can visit the MTBS Project Website for more information. You can also visit the MTBS Data Explorer to learn more and interact with the data.
Burn severity layers are thematic images depicting severity as unburned to low, low, moderate, high, and increased greenness (increased post-fire vegetation response). The layer may also have a sixth class representing a mask for clouds, shadows, large water bodies, or other features on the landscape that erroneously affect the severity classification. This data has been prepared as part of the Monitoring Trends in Burn Severity (MTBS) project. Due to the lack of comprehensive fire reporting information and quality Landsat imagery, burn severity for all targeted MTBS fires are not available. Additionally, the availability of burn severity data for fires occurring in the current and previous calendar year is variable since these data are currently in production and released on an intermittent basis by the MTBS project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Burn severity layers are thematic images depicting severity as unburned to low, low, moderate, high, and increased greenness (increased post-fire vegetation response). The layer may also have a sixth class representing a mask for clouds, shadows, large water bodies, or other features on the landscape that erroneously affect the severity classification. This data has been prepared as part of the Monitoring Trends in Burn Severity (MTBS) project. Due to the lack of comprehensive fire reporting information and quality Landsat imagery, burn severity for all targeted MTBS fires are not available. Additionally, the availability of burn severity data for fires occurring in the current and previous calendar year is variable since these data are currently in production and released on an intermittent basis by the MTBS project.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
This map layer is a thematic raster image of MTBS burn severity classes for all inventoried fires occurring in CONUS during calendar year 2011 that do not meet standard MTBS size criteria. These data are published to augment the data that are available from the MTBS program. This product was produced using the methods of the Monitoring Trends in Burn Severity Program (MTBS), however these fires do not meet the size criteria for a standard MTBS assessment. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. MTBS typically maps fires using an initial assessment (immediately after the fire) or an extended assessment (peak of green the season after the fire) for low-biomass and high-biomass fires respectively. Refer to MTBS.gov for more information on MTBS methods and criteria. Standard MTBS mappings must meet the size criteria of at least 500 acres for the eastern states and territories and 1,000 acres for the western states and territories to be eligible for mapping. Undersized MTBS fires are those fires that do not meet the standard MTBS size criteria but are otherwise mapped using standard MTBS methodologies.
Burn severity layers are thematic images depicting severity as unburned to low, low, moderate, high, and increased greenness (increased post-fire vegetation response). The layer may also have a sixth class representing a mask for clouds, shadows, large water bodies, or other features on the landscape that erroneously affect the severity classification. This data has been prepared as part of the Monitoring Trends in Burn Severity (MTBS) project. Due to the lack of comprehensive fire reporting information and quality Landsat imagery, burn severity for all targeted MTBS fires are not available. Additionally, the availability of burn severity data for fires occurring in the current and previous calendar year is variable since these data are currently in production and released on an intermittent basis by the MTBS project.
LANDFIRE's Annual Disturbance products track how landscapes change across space and time on an annual basis. The Annual Disturbance (Dist) product identifies satellite-detected areas larger than 4.5 hectares (11 acres) that underwent natural or human-caused changes within a specific year (for Dist23, October 1, 2022 – September 30, 2023), or represent fire activity/field treatments as small as 80 square meters. While creating the Annual Disturbance product a variety of data sources are leveraged. 1) National fire mapping programs: This includes information from Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), which offer severity information for fire-caused disturbances. 2) Agency-reported events: There are 18 designated classes for contributed polygon "Event" types such as disease, insects, development, harvest, etc. that are reported by government agencies for inclusion into the disturbance product. 3) Remotely sensed imagery: Harmonized Landsat Sentinel (HLS) satellite images offer a comprehensive-uninterrupted view of the landscape covering all lands, public and private, to fill in the gaps inherent in the previous data sources. These data are reviewed and edited by a team of image analysts to ensure and maintain high quality standards. To create the LF Annual Disturbance product, individual Landsat scenes are stacked and made into composites representing the 15th, 50th, and 90th percentiles of all stacked pixels (band-by-band) to reduce data gaps caused by clouds or other anomalies. Composite imagery from the specified mapping year and the two prior years serves as the base data from which change products such as the Normalized Differenced Vegetation Index (dNDVI), the Normalized Burn Ratio (dNBR), and the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013) are derived. Image analysts collectively use these datasets (separately or in combination) to isolate the true change from false change (commission errors). False changes can be attributed to many anomalies but are most commonly caused by differences in annual or seasonal phenology, artifacts in the image composites, or difficult to map classes such as wetlands and grasses. Fire-caused disturbances sourced from MTBS may contain data gaps where clouds obscure the full burn scar from being mapped. Models trained from pre-fire and post-fire Landsat data are used to fill these gaps. The result is gap-free continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from modeling are noted as such in the Annual Disturbance attribute table. Smaller fires that do not meet the size criteria set forth by MTBS may be attributed as fire by using Burned Area (BA) Level-3 science products derived from Landsat 8 and 9. BA data is only available in the lower 48 states (CONUS). Causality information assigned to annual disturbance products are prioritized by source, with the highest priorities reserved for fire mapping program data (MTBS, BARC, and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, satellite image-based change. Severity is assigned directly from fire program data. For events and satellite-detected change, severity is derived from pre- and post-burn standard deviation values of the differenced Normalized Burn Ratio (dNBR). When mapping the LF Annual Disturbance product, the start date is utilized for disturbances from fire program data whereas all other disturbances utilize the end date.
Burn severity layers are thematic images depicting severity as unburned to low, low, moderate, high, and increased greenness (increased post-fire vegetation response). The layer may also have a sixth class representing a mask for clouds, shadows, large water bodies, or other features on the landscape that erroneously affect the severity classification. This data has been prepared as part of the Monitoring Trends in Burn Severity (MTBS) project. Due to the lack of comprehensive fire reporting information and quality Landsat imagery, burn severity for all targeted MTBS fires are not available. Additionally, the availability of burn severity data for fires occurring in the current and previous calendar year is variable since these data are currently in production and released on an intermittent basis by the MTBS project.
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image of MTBS burn severity classes for all inventoried fires occurring in CONUS during calendar year 2013. Fires omitted from this mapped inventory are those where suitable satellite imagery was not available, or fires were not discernable from available imagery.
This dataset represents percent area burned in each burn severity class for wildfires within individual local and accumulated upstream catchments for NHDPlusV2 Waterbodies for each year for 1984-2018.The Monitoring Trends in Burn Severity MTBS project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico from the beginning of the Landsat Thematic Mapper archive to the present. See: https://catalog.data.gov/dataset/monitoring-trends-in-burn-severity-burned-area-boundaries-feature-layer-27201 and https://www.mtbs.gov/product-descriptions
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This map layer is a thematic raster image of MTBS burn severity classes for all inventoried fires occurring in CONUS during calendar year 2022 that do not meet standard MTBS size criteria. These data are published to augment the data that are available from the MTBS program. This product was produced using the methods of the Monitoring Trends in Burn Severity Program (MTBS), however these fires do not meet the size criteria for a standard MTBS assessment. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. MTBS typically maps fires using an initial assessment (immediately after the fire) or an extended assessment (peak of green the season after the fire) for low-biomass and high-biomass fires respectively. Refer to MTBS.gov for more information on MTBS methods and criteria. Standard MT ...
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
These data were generated to map spatial burn severity and emissions of each historically observed large wildfires (>404 hectares (ha)) that burned during 1984–2020 in the state of California in the US. Event-based assessments were conducted at 30-m resolution for all fires and daily emissions were calculated at 500-m resolution for fires burned since 2002. A total of 1697 wildfires were assessed using the Wildfire Burn Severity and Emissions Inventory(WBSE) framework developed by Xu et al 2022. The comprehensive, long-term event and daily emissions records described here could be used to study health effects of wildfire smoke, either by combining them with transport modeling to model air quality and estimate exposures, or by incorporating them into statistical models predicting health impacts as a direct function of estimated emissions. These data will also facilitate analyses of changing emissions impacts on the carbon cycle over the last three decades. High resolution severity and emissions raster maps are generated for each fire event to support further spatial analysis. While the emissions calculated for California with WBSE are not a substitute for real-time daily emissions estimates, it is designed to extend the estimated emissions record back to 1984 with a finer spatial resolution and provide more up-to-date estimates on emissions factors reflecting information from California's recent extreme fires. Methods This dataset provides estimates of 30 m resolution burn severity, and emissions of CO2, CO, CH4, non-methane organic compounds (NMOC), SO2, NH3, NO, NO2, nitrogen oxides (NOx = NO + NO2), PM2.5, OC, and BC. WBSE was implemented for California large wildfires on a per-fire event scale since 1984 and also a daily scale since 2002. The inventory implementation steps, input datasets, and output data are summarized in figure 1 in Xu et al, 2022. Burn severity calculation Fire records for California from 1984 to 2019 were retrieved from MTBS (https://mtbs.gov/viewer/index.html) via interactive viewer on 8 May 2021, resulting in a dataset with a total of 1623 wildfires. We also acquired fire perimeters for 74 large wildfires in 2020 from CAL FIRE (https://frap.fire.ca.gov/frap-projects/fire-perimeters/) and calculated dNBR for each 2020 fire using the dNBR calculation tool with Google Earth Engine (GEE). This process first selects either initial assessment or extended assessment for each fire. The initial assessment utilizes Landsat images acquired immediately after a fire to capture first-order fire effects. The extended assessment uses images obtained during the growing season following the fire to identify delayed first-order effects and dominant second-order effects (Eidenshink et al 2007). We utilized LANDFIRE Biophysical Settings (BPS) to determine which assessment type to apply for each fire burned in 2020. After Picotte et al (2021), we used extended assessment if the majority of general vegetation groups within the fire perimeter are forests, while initial assessment is used when the majority of general vegetation groups are grassland/shrubland. By contrast, MTBS uses extended assessment for forest and shrubland types. We did not delineate grasslands into burn severity categories. Instead, we classified them as burned ('grass burn') because of difficulties in assessing vegetation change. Post-fire images for extended assessment were selected during the next peak of the green season (June–September) using the mean compositing approach suggested by Parks et al (2018). Composite post-fire images acquired immediately within two months after the fire containment dates were used for the initial assessment. Composite pre-fire images for extended and initial assessments were acquired with the matching periods from the preceding year. The dNBR images were produced by quantifying the spectral difference between composite pre-fire and post-fire Landsat scenes. We calculated the unitless, continuous CBI variable from dNBR/NBR values using the linear and Sigmoid B regression models developed for the CONUS by Picotte et al (2021). CBI values were then classified following thresholds modified based on Crotteau et al(2014) into six severity classes: unburned, low severity, moderate severity, high severity, grass burn, and non-processing area. Emissions calculation Emissions of all species are calculated as a function of area burned, fuel loading, the fraction of vegetation burned based on burn severity, and an emissions factor specific to each vegetation type using the following equation modified from the FINN model (Wiedinmyer et al 2011). Fuel categories were assigned from LANDFIRE EVT products. For emissions calculations, EVT data were then categorized into five general vegetation categories: grass, shrub, forest under 5500 feet (1676 m), forest between 5500–7500 feet (1676–2286 m), and forest above 7500 feet (2286 m), updated for California ecosystems. Fuel consumption was determined following Hurteau et el 2014 assigning fuel loading and consumption values for each severity class for the five general vegetation categories based on the First Order Fire Effects Model v5 (Reinhardt et al 1997). Emission factors for greenhouse gases, particulate matter, and reactive trace gases were updated with recent data for each general vegetation class using results from recent field campaigns and studies specific for California ecosystems and Western U.S. ecosystems. Day of burning and daily emissions To assign the day of burning for individual pixels, NASA fire information for resource management system (FIRMS) active fire products from MODIS (Collection 6) within 750 m of the fire perimeter shapefiles supplied by MTBS or CAL FIRE were selected for interpolation to account for detections that might be outside the boundary due to detection radius. VIIRS 375 m data, when available since 2012, was added to complement MODIS data with improved performance to assign burn dates using the fire progression raster tool (figure 4). We filtered the MODIS/VIIRS detection points to the date range of interest and created a 500 m buffer around each point. Points were then converted to circle polygons to represent each point's detection extent properly. The average date was selected as the proper date in regions of overlapping buffers. We then calculated daily emissions and assigned them to the centroids of the aggregated daily progression polygons.
LANDFIRE's Annual Disturbance products track how landscapes change across space and time on an annual basis. The Annual Disturbance (Dist) product identifies satellite-detected areas larger than 4.5 hectares (11 acres) that underwent natural or human-caused changes within a specific year (for Dist23, October 1, 2022 – September 30, 2023), or represent fire activity/field treatments as small as 80 square meters. While creating the Annual Disturbance product a variety of data sources are leveraged. 1) National fire mapping programs: This includes information from Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), which offer severity information for fire-caused disturbances. 2) Agency-reported events: There are 18 designated classes for contributed polygon "Event" types such as disease, insects, development, harvest, etc. that are reported by government agencies for inclusion into the disturbance product. 3) Remotely sensed imagery: Harmonized Landsat Sentinel (HLS) satellite images offer a comprehensive-uninterrupted view of the landscape covering all lands, public and private, to fill in the gaps inherent in the previous data sources. These data are reviewed and edited by a team of image analysts to ensure and maintain high quality standards. To create the LF Annual Disturbance product, individual Landsat scenes are stacked and made into composites representing the 15th, 50th, and 90th percentiles of all stacked pixels (band-by-band) to reduce data gaps caused by clouds or other anomalies. Composite imagery from the specified mapping year and the two prior years serves as the base data from which change products such as the Normalized Differenced Vegetation Index (dNDVI), the Normalized Burn Ratio (dNBR), and the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013) are derived. Image analysts collectively use these datasets (separately or in combination) to isolate the true change from false change (commission errors). False changes can be attributed to many anomalies but are most commonly caused by differences in annual or seasonal phenology, artifacts in the image composites, or difficult to map classes such as wetlands and grasses. Fire-caused disturbances sourced from MTBS may contain data gaps where clouds obscure the full burn scar from being mapped. Models trained from pre-fire and post-fire Landsat data are used to fill these gaps. The result is gap-free continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from modeling are noted as such in the Annual Disturbance attribute table. Smaller fires that do not meet the size criteria set forth by MTBS may be attributed as fire by using Burned Area (BA) Level-3 science products derived from Landsat 8 and 9. BA data is only available in the lower 48 states (CONUS). Causality information assigned to annual disturbance products are prioritized by source, with the highest priorities reserved for fire mapping program data (MTBS, BARC, and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, satellite image-based change. Severity is assigned directly from fire program data. For events and satellite-detected change, severity is derived from pre- and post-burn standard deviation values of the differenced Normalized Burn Ratio (dNBR). When mapping the LF Annual Disturbance product, the start date is utilized for disturbances from fire program data whereas all other disturbances utilize the end date.
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image of MTBS burn severity classes for all inventoried and mappable fires occurring in the continental United States during calendar year 2004.
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image of burn severity classes for all NPS-requested burn severity fires, occurring in CONUS during calendar year 2015. Fires omitted from this mapped inventory are those where suitable satellite imagery was not available, or fires which were not discernable from available imagery.
The U. S. Fish and Wildlife Service (FWS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. These data products are burned area boundary shapefiles derived from post-fire sensor data (including Landsat TM, Landsat ETM+, Landsat OLI). The pre-fire and post-fire subsets included were used to create Normalized Burn Ratio (NBR) and then a differenced Normalized Burn Ratio (dNBR) image. The objective of this assessment was to generate burned area boundaries for each fire. Data bundles also include post-fire subset, pre-fire subset, NBR, and dNBR images. This map layer is a thematic raster image of burn severity classes for all inventoried fires occurring in CONUS during calendar year 1992. Fires omitted from this mapped inventory are those where suitable satellite imagery was not available, or fires which were not discernable from available imagery.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Burn severity layers are thematic images depicting severity as unburned to low, low, moderate, high, and increased greenness (increased post-fire vegetation response). The layer may also have a sixth class representing a mask for clouds, shadows, large water bodies, or other features on the landscape that erroneously affect the severity classification. This data has been prepared as part of the Monitoring Trends in Burn Severity (MTBS) project. Due to the lack of comprehensive fire reporting information and quality Landsat imagery, burn severity for all targeted MTBS fires are not available. Additionally, the availability of burn severity data for fires occurring in the current and previous calendar year is variable since these data are currently in production and released on an intermittent basis by the MTBS project. Direct Download
This map layer is a thematic raster image of MTBS burn severity classes for all inventoried fires occurring in CONUS during calendar year 2000 that do not meet standard MTBS size criteria. These data are published to augment the data that are available from the MTBS program. This product was produced using the methods of the Monitoring Trends in Burn Severity Program (MTBS), however these fires do not meet the size criteria for a standard MTBS assessment. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. MTBS typically maps fires using an initial assessment (immediately after the fire) or an extended assessment (peak of green the season after the fire) for low-biomass and high-biomass fires respectively. Refer to MTBS.gov for more information on MTBS methods and criteria. Standard MTBS mappings must meet the size criteria of at least 500 acres for the eastern states and territories and 1,000 acres for the western states and territories to be eligible for mapping. Undersized MTBS fires are those fires that do not meet the standard MTBS size criteria but are otherwise mapped using standard MTBS methodologies.
Burn severity layers are thematic images depicting severity as unburned to low, low, moderate, high, and increased greenness (increased post-fire vegetation response). The layer may also have a sixth class representing a mask for clouds, shadows, large water bodies, or other features on the landscape that erroneously affect the severity classification. This data has been prepared as part of the Monitoring Trends in Burn Severity (MTBS) project. Due to the lack of comprehensive fire reporting information and quality Landsat imagery, burn severity for all targeted MTBS fires are not available. Additionally, the availability of burn severity data for fires occurring in the current and previous calendar year is variable since these data are currently in production and released on an intermittent basis by the MTBS project.