In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.
This statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.
This file contains data on Gini coefficients, cumulative quintile shares, explanations regarding the basis on which the Gini coefficient was computed, and the source of the information. There are two data-sets, one containing the "high quality" sample and the other one including all the information (of lower quality) that had been collected.
The database was constructed for the production of the following paper:
Deininger, Klaus and Lyn Squire, "A New Data Set Measuring Income Inequality", The World Bank Economic Review, 10(3): 565-91, 1996.
This article presents a new data set on inequality in the distribution of income. The authors explain the criteria they applied in selecting data on Gini coefficients and on individual quintile groups’ income shares. Comparison of the new data set with existing compilations reveals that the data assembled here represent an improvement in quality and a significant expansion in coverage, although differences in the definition of the underlying data might still affect intertemporal and international comparability. Based on this new data set, the authors do not find a systematic link between growth and changes in aggregate inequality. They do find a strong positive relationship between growth and reduction of poverty.
In what follows, we provide brief descriptions of main features for individual countries that are included in the data-base. Without being comprehensive, these notes are intended to indicate some of the considerations underlying our decision to include or exclude certain observations.
Argentina Various permanent household surveys, all covering urban centers only, have been regularly conducted since 1972 and are quoted in a wide variety of sources and years, e.g., for 1980 (World Bank 1992), 1985 (Altimir 1994), and 1989 (World Bank 1992). Estimates for 1963, 1965, 1969/70, 1970/71, 1974, 1975, 1980, and 1981 (Altimir 1987) are based only on Greater Buenos Aires. Estimates for 1961, 1963, 1970 (Jain 1975) and for 1970 (van Ginneken 1984) have only limited geographic coverage and do not satisfy our minimum criteria.
Despite the many urban surveys, there are no income distribution data that are representative of the population as a whole. References to national income distribution for the years 1953, 1959, and 1961(CEPAL 1968 in Altimir 1986 ) are based on extrapolation from national accounts and have therefore not been included. Data for 1953 and 1961 from Weisskoff (1970) , from Lecaillon (1984) , and from Cromwell (1977) are also excluded.
Australia Household surveys, the result of which is reported in the statistical yearbook, have been conducted in 1968/9, 1975/6, 1978/9, 1981, 1985, 1986, 1989, and 1990.
Data for 1962 (Cromwell, 1977) and 1966/67 (Sawyer 1976) were excluded as they covered only tax payers. Jain's data for 1970 was excluded because it covered income recipients only. Data from Podder (1972) for 1967/68, from Jain (1975) for the same year, from UN (1985) for 78/79, from Sunders and Hobbes (1993) for 1986 and for 1989 were excluded given the availability of the primary sources. Data from Bishop (1991) for 1981/82, from Buhman (1988) for 1981/82, from Kakwani (1986) for 1975/76, and from Sunders and Hobbes (1993) for 1986 were utilized to test for the effect of different definitions. The values for 1967 used by Persson and Tabellini and Alesina and Rodrik (based on Paukert and Jain) are close to the ones reported in the Statistical Yearbook for 1969.
Austria: In addition to data referring to the employed population (Guger 1989), national household surveys for 1987 and 1991 are included in the LIS data base. As these data do not include income from self-employment, we do not report them in our high quality data-set.
Bahamas Data for Ginis and shares are available for 1973, 1977, 1979, 1986, 1988, 1989, 1991, 1992, and 1993 in government reports on population censuses and household budget surveys, and for 1973 and 1975 from UN (1981). Estimates for 1970 (Jain 1975), 1973, 1975, 1977, and 1979 (Fields 1989) have been excluded given the availability of primary sources.
Bangladesh Data from household surveys for 1973/74, 1976/77, 1977/78, 1981/82, and 1985/86 are available from the Statistical Yearbook, complemented by household-survey based information from Chen (1995) and the World Development Report. Household surveys with rural coverage for 1959, 1960, 1963/64, 1965, 1966/67 and 1968/69, and with urban coverage for 1963/64, 1965, 1966/67, and 1968/69 are also available from the Statistical yearbook. Data for 1963/64 ,1964 and 1966/67, (Jain 1975) are not included due to limited geographic coverage, We also excluded secondary sources for 1973/74, 1976/77, 1981/82 (Fields 1989), 1977 (UN 1981), 1983 (Milanovic 1994), and 1985/86 due to availability of the primary source.
Barbados National household surveys have been conducted in 1951/52 and 1978/79 (Downs, 1988). Estimates based on personal tax returns, reported consistently for 1951-1981 (Holder and Prescott, 1989), had to be excluded as they exclude the non-wage earning population. Jain's figure (used by Alesina and Rodrik) is based on the same source.
Belgium Household surveys with national coverage are available for 1978/79 (UN 1985), and for 1985, 1988, and 1992 (LIS 1995). Earlier data for 1969, 1973, 1975, 1976 and 1977 (UN 1981) refer to taxable households only and are not included.
Bolivia The only survey with national coverage is the 1990 LSMS (World Development Report). Surveys for 1986 and 1989 cover the main cities only (Psacharopoulos et al. 1992) and are therefore not included. Data for 1968 (Cromwell 1977) do not refer to a clear definition and is therefore excluded.
Botswana The only survey with national coverage was conducted in 1985-1986 (Chen et al 1993); surveys in 74/75 and 85/86 included rural areas only (UN 1981). We excluded Gini estimates for 1971/72 that refer to the economically active population only (Jain 1975), as well as 1974/75 and 1985/86 (Valentine 1993) due to lack of national coverage or consistency in definition.
Brazil Data from 1960, 1970, 1974/75, 1976, 1977, 1978, 1980, 1982, 1983, 1985, 1987 and 1989 are available from the statistical yearbook, in addition to data for 1978 (Fields 1987) and for 1979 (Psacharopoulos et al. 1992). Other sources have been excluded as they were either not of national coverage, based on wage earners only, or because a more consistent source was available.
Bulgaria: Data from household surveys are available for 1963-69 (in two year intervals), for 1970-90 (on an annual basis) from the Statistical yearbook and for 1991 - 93 from household surveys by the World Bank (Milanovic and Ying).
Burkina Faso A priority survey has been undertaken in 1995.
Central African Republic: Except for a household survey conducted in 1992, no information was available.
Cameroon The only data are from a 1983/4 household budget survey (World Bank Poverty Assessment).
Canada Gini- and share data for the 1950-61 (in irregular intervals), 1961-81 (biennially), and 1981-91 (annually) are available from official sources (Statistical Yearbook for years before 1971 and Income Distributions by Size in Canada for years since 1973, various issues). All other references seem to be based on these primary sources.
Chad: An estimate for 1958 is available in the literature, and used by Alesina and Rodrik and Persson and Tabellini but was not included due to lack of primary sources.
Chile The first nation-wide survey that included not only employment income was carried out in 1968 (UN 1981). This is complemented by household survey-based data for 1971 (Fields 1989), 1989, and 1994. Other data that refer either only to part of the population or -as in the case of a long series available from World Bank country operations- are not clearly based on primary sources, are excluded.
China Annual household surveys from 1980 to 1992, conducted separately in rural and urban areas, were consolidated by Ying (1995), based on the statistical yearbook. Data from other secondary sources are excluded due to limited geographic and population coverage and data from Chen et al (1993) for 1985 and 1990 have not been included, to maintain consistency of sources..
Colombia The first household survey with national coverage was conducted in 1970 (DANE 1970). In addition, there are data for 1971, 1972, 1974 CEPAL (1986), and for 1978, 1988/89, and 1991 (World Bank Poverty Assessment 1992 and Chen et al. 1995). Data referring to years before 1970 -including the 1964 estimate used in Persson and Tabellini were excluded, as were estimates for the wage earning population only.
Costa Rica Data on Gini coefficients and quintile shares are available for 1961, 1971 (Cespedes 1973),1977 (OPNPE 1982), 1979 (Fields 1989), 1981 (Chen et al 1993), 1983 (Bourguignon and Morrison 1989), 1986 (Sauma-Fiatt 1990), and 1989 (Chen et al 1993). Gini coefficients for 1971 (Gonzalez-Vega and Cespedes in Rottenberg 1993), 1973 and 1985 (Bourguignon and Morrison 1989) cover urban areas only and were excluded.
Cote d'Ivoire: Data based on national-level household surveys (LSMS) are available for 1985, 1986, 1987, 1988, and 1995. Information for the 1970s (Schneider 1991) is based on national accounting information and therefore excluded
Cuba Official information on income distribution is limited. Data from secondary sources are available for 1953, 1962, 1973, and 1978, relying on personal wage income, i.e. excluding the population that is not economically active (Brundenius 1984).
Czech Republic Household surveys for 1993 and 1994 were obtained from Milanovic and Ying. While it is in principle possible to go back further, splitting national level surveys for the former Czechoslovakia into their independent parts, we decided not to do so as the same argument could be used to
About 50.4 percent of the household income of private households in the U.S. were earned by the highest quintile in 2023, which are the upper 20 percent of the workers. In contrast to that, in the same year, only 3.5 percent of the household income was earned by the lowest quintile. This relation between the quintiles is indicative of the level of income inequality in the United States. Income inequalityIncome inequality is a big topic for public discussion in the United States. About 65 percent of U.S. Americans think that the gap between the rich and the poor has gotten larger in the past ten years. This impression is backed up by U.S. census data showing that the Gini-coefficient for income distribution in the United States has been increasing constantly over the past decades for individuals and households. The Gini coefficient for individual earnings of full-time, year round workers has increased between 1990 and 2020 from 0.36 to 0.42, for example. This indicates an increase in concentration of income. In general, the Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing. Income distribution is also affected by region. The state of New York had the widest gap between rich and poor people in the United States, with a Gini coefficient of 0.51, as of 2019. In global comparison, South Africa led the ranking of the 20 countries with the biggest inequality in income distribution in 2018. South Africa had a score of 63 points, based on the Gini coefficient. On the other hand, the Gini coefficient stood at 16.6 in Azerbaijan, indicating that income is widely spread among the population and not concentrated on a few rich individuals or families. Slovenia led the ranking of the 20 countries with the greatest income distribution equality in 2018.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘GapMinder - Income Inequality’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/psterk/income-inequality on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This analysis focuses on income inequailty as measured by the Gini Index* and its association with economic metrics such as GDP per capita, investments as a % of GDP, and tax revenue as a % of GDP. One polical metric, EIU democracy index, is also included.
The data is for years 2006 - 2016
This investigation can be considered a starting point for complex questions such as:
This analysis uses the gapminder dataset from the Gapminder Foundation. The Gapminder Foundation is a non-profit venture registered in Stockholm, Sweden, that promotes sustainable global development and achievement of the United Nations Millennium Development Goals by increased use and understanding of statistics and other information about social, economic and environmental development at local, national and global levels.
*The Gini Index is a measure of statistical dispersion intended to represent the income or wealth distribution of a nation's residents, and is the most commonly used measurement of inequality. It was developed by the Italian statistician and sociologist Corrado Gini and published in his 1912 paper Variability and Mutability.
The dataset contains data from the following GapMinder datasets:
"This democracy index is using the data from the Economist Inteligence Unit to express the quality of democracies as a number between 0 and 100. It's based on 60 different aspects of societies that are relevant to democracy universal suffrage for all adults, voter participation, perception of human rights protection and freedom to form organizations and parties. The democracy index is calculated from the 60 indicators, divided into five ""sub indexes"", which are:
The sub-indexes are based on the sum of scores on roughly 12 indicators per sub-index, converted into a score between 0 and 100. (The Economist publishes the index with a scale from 0 to 10, but Gapminder has converted it to 0 to 100 to make it easier to communicate as a percentage.)" https://docs.google.com/spreadsheets/d/1d0noZrwAWxNBTDSfDgG06_aLGWUz4R6fgDhRaUZbDzE/edit#gid=935776888
GDP per capita measures the value of everything produced in a country during a year, divided by the number of people. The unit is in international dollars, fixed 2011 prices. The data is adjusted for inflation and differences in the cost of living between countries, so-called PPP dollars. The end of the time series, between 1990 and 2016, uses the latest GDP per capita data from the World Bank, from their World Development Indicators. To go back in time before the World Bank series starts in 1990, we have used several sources, such as Angus Maddison. https://www.gapminder.org/data/documentation/gd001/
Capital formation is a term used to describe the net capital accumulation during an accounting period for a particular country. The term refers to additions of capital goods, such as equipment, tools, transportation assets, and electricity. Countries need capital goods to replace the older ones that are used to produce goods and services. If a country cannot replace capital goods as they reach the end of their useful lives, production declines. Generally, the higher the capital formation of an economy, the faster an economy can grow its aggregate income.
refers to compulsory transfers to the central governement for public purposes. Does not include social security. https://data.worldbank.org/indicator/GC.TAX.TOTL.GD.ZS
Gapminder is an independent Swedish foundation with no political, religious or economic affiliations. Gapminder is a fact tank, not a think tank. Gapminder fights devastating misconceptions about global development. Gapminder produces free teaching resources making the world understandable based on reliable statistics. Gapminder promotes a fact-based worldview everyone can understand. Gapminder collaborates with universities, UN, public agencies and non-governmental organizations. All Gapminder activities are governed by the board. We do not award grants. Gapminder Foundation is registered at Stockholm County Administration Board. Our constitution can be found here.
Thanks to gapminder.org for organizing the above datasets.
Below are some research questions associated with the data and some initial conclusions:
Research Question 1 - Is Income Inequality Getting Worse or Better in the Last 10 Years?
Answer:
Yes, it is getting better, improving from 38.7 to 37.3
On a continent basis, all were either declining or mostly flat, except for Africa.
Research Question 2 - What Top 10 Countries Have the Lowest and Highest Income Inequality?
Answer:
Lowest: Slovenia, Ukraine, Czech Republic, Norway, Slovak Republic, Denmark, Kazakhstan, Finland, Belarus,Kyrgyz Republic
Highest: Colombia, Lesotho, Honduras, Bolivia, Central African Republic, Zambia, Suriname, Namibia, Botswana, South Africa
Research Question 3 Is a higher tax revenue as a % of GDP associated with less income inequality?
Answer: No
Research Question 4 - Is Higher Income Per Person - GDP Per Capita associated with less income inequality?
Answer: No, but weak negative correlation.
Research Question 5 - Is Higher Investment as % GDP associated with less income inequality?
Answer: No
Research Question 6 - Is Higher EIU Democracy Index associated with less income inequality?
Answer: No, but weak negative correlation.
The above results suggest that there are other drivers for the overall reduction in income inequality. Futher analysis of additional factors should be undertaken.
--- Original source retains full ownership of the source dataset ---
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/OPOX9Uhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/OPOX9U
This dissertation argues that public opinion regarding the acceptability and desirability of income differences is affected by actual income inequality. Cross-national survey evidence is combined with laboratory and survey experiments to show that estimates regarding appropriate income differences depend on (perceptions of) real income differences. When income inequality changes, public opinion "habituates" by adjusting expectations for fair levels of inequality in the same direction as the factual change. The adjustment occurs because humans are subject to status quo bias and have a motivated tendency to believe in a just world. In the context of increasing inequality in developed democracies over the last 40 years, the implication is that normative expectations for appropriate levels of inequality have adjusted up. This habituation process helps explain why increases in inequality have not been accompanied by increased demands for redistribution and why cross-national variation in income inequality is not clearly linked to public opposition to such inequality. The dissertation starts by showing that in each of 32 countries, perceptions of occupational income inequality predict inequality ideals. The causal relationship is then established in a series of experiments. In a laboratory experiment, participants who take part in a game with unequal money prizes subsequently recommend a more unequal split of prize money than participants who play a more equal game. A survey experiment shows that the predicted adjustment also occurs with perceptions of real income inequality: survey respondents who receive information regarding true income inequality in the United States recommend larger occupational income differences as ideal than do individuals who do not receive this information. The final chapter shows that the habituation phenomenon is affected by the motivation to think of the social system as fai r: activating the system justification motive among Democrats reduces the otherwise robust partisan gap in ideal income inequalities to statistically insignificant levels. This last finding implies that the broader political context can affect the strength of the habituation process in public opinion.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -2.590 % from Dec 2021 (Median) to 2021, with 1 observations. The data reached an all-time high of -2.590 % in 2021 and a record low of -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper discusses how the issue of income distribution has resumed its importance in recent decades, showing the evolution of income inequality from the post-Second World War to the present, based on data from studies elaborated by researchers who work in internationally renowned academic centers. Income inequality starts to increase with the rise of neoliberalism in the 1980s, becoming greater in the 2000s, concentrated in the richest 1% of capitalist countries. This reality has demanded new interpretations by scholars, bringing to the debate contributions from Sociology, Political Science and Political Economy. Authors have shown how changes in the international order and its consequences on the pattern of capitalist accumulation in favor of rentier capitalism – a predominantly financial accumulation of capital – have altered the functioning of representative Democracies and affected economic inequality in capitalist countries, contrasting what happened in the “Golden Age” of capitalism (1945-1980) with what has been happening since the 1980s and especially in the 2000s.
In the first quarter of 2024, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States follows closely behind China as the country with the most billionaires in the world. Elon Musk alone held around 219 billion U.S. dollars in 2022. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.
In 2024, the national gross income per capita in Brazil amounted to around 9,950 U.S. dollars, an increase from 9,310 dollars per person in the previous year. Gross national income (GNI) is the aggregated sum of the value added by residents in an economy, plus net taxes (minus subsidies) and net receipts of primary income from abroad. Excluding countries and territories in the Caribbean, Uruguay and Chile were the Latin American countries with the highest national income per capita. Demographic elements and income There are many factors that may influence the income level, such as gender, academic attainment, location, ethnicity, etc. The gender pay gap, for example, is significant in Brazil. As of 2024, the monthly income per capita of men was 3,549 Brazilian reals, while the figure was 2,793 reals in the case of women. Additionally, monthly per capita household income varies greatly from state to state; the figures registered in Distrito Federal and São Paulo more than double the income of federative units like Acre, Alagoas or Maranhão. A high degree of inequality The Gini coefficient measures the degree of income inequality on a scale from 0 (total equality of incomes) to 100 (total inequality). Between 2010 and 2023, Brazil's degree of inequality in wealth distribution based on the Gini coefficient reached 52. That year, Brazil was deemed one of the most unequal countries in Latin America. Although the latest result represented one of the worst values in recent years, the Gini index is projected to improve slightly in the near future.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mass shootings are becoming a more common occurrence in the United States. Data show that mass shootings increased steadily over the past nearly 50 years. Crucial is that the wide-ranging adverse effects of mass shootings generate negative mental health outcomes on millions of Americans, including fear, anxiety, and ailments related to such afflictions. This study extends previous research that finds a strong positive relationship between income inequality and mass shootings by examining the effect of household income as well as the interaction between inequality and income. To conduct our analyses, we compile a panel dataset with information across 3,144 counties during the years 1990 to 2015. Mass shootings was measured using a broad definition of three or more victim injuries. Income inequality was calculated using the post-tax version of the Gini coefficient. Our results suggest that while inequality and income alone are both predictors of mass shootings, their impacts on mass shootings are stronger when combined via interaction. Specifically, the results indicate areas with the highest number of mass shootings are those that combine both high levels of inequality and high levels of income. Additionally, robustness checks incorporating various measures of mass shootings and alternative regression techniques had analogous results. Our findings suggest that to address the mass shootings epidemic at its core, it is essential to understand how to stem rising income inequality and the unstable environments that we argue are created by such inequality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chad Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at 0.010 % in 2022. Chad Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging 0.010 % from Dec 2022 (Median) to 2022, with 1 observations. The data reached an all-time high of 0.010 % in 2022 and a record low of 0.010 % in 2022. Chad Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chad – Table TD.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Income inequality is a good indicator reflecting the quality of people's livelihood. There are many studies on the determinants of income inequality. However, few have studied the impacts of industrial agglomeration on income inequality, and even fewer have studied the spatial correlation of income inequality. The goal of this paper is to investigate the impact of China's industrial agglomeration on income inequality from a spatial perspective. Using data on China's 31 provinces from 2003 to 2020 and the spatial panel Durbin model, our results show that industrial agglomeration and income inequality present an inverted "U-shape" relationship, proving that they are non-linear changes. As the degree of industrial agglomeration increases, income inequality will rise; after it reaches a certain value, income inequality will drop. Therefore, the Chinese government and enterprises had better pay attention to the spatial distribution of industrial agglomeration, thereby reducing China's regional income inequality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Research Hypothesis
The research investigates the relationship between economic growth and income inequality, drawing on Kuznets' theory of an inverted U-shaped relationship. The central hypotheses are:
H0: Income inequality is not affected by GDP growth, indicating no relationship between economic growth and income inequality.
H1: GDP growth influences income inequality, which may increase or decrease depending on societal and economic contexts.
H2: GDP growth positively affects income inequality, widening income disparities.
H3: GDP growth negatively affects income inequality, reducing disparities and promoting equitable distribution.
H4: In lower-middle-income countries, GDP growth reduces income inequality.
Description of Data
The study utilizes data from the World Bank for 39 countries spanning the years 2004 to 2019. The dataset includes:
Gross Domestic Product (GDP): Measured in constant local currency units (LOGGDP), used as a proxy for economic growth.
Gini Index: A standardized measure of income inequality, ranging from 0 (perfect equality) to 100 (maximum inequality).
Income Categories: Countries are grouped into high, upper-middle, and lower-middle income categories based on the World Bank’s GNI per capita classification.
Methodology and Data Gathering
Selection Criteria: Countries were selected to represent diverse income groups, ensuring a balanced and comprehensive analysis of varying economic contexts.
Data Source: All data were sourced from the World Bank’s publicly available databases.
Data Analysis:
Correlation analysis to explore the general relationship between GDP and inequality.
Linear regression models to identify causal relationships across income categories.
Group-specific analysis to investigate how GDP impacts inequality within high-, upper-middle-, and lower-middle-income countries.
Notable Findings
Overall Trends:
Across all countries, a positive correlation was observed between GDP and the Gini index, indicating that GDP growth is generally associated with increasing income inequality.
The regression model (GINI = 23.931 + 0.937 × LOGGDP) confirmed a statistically significant relationship, with an F-value (p < 0.05) supporting the model’s validity.
Income Group Analysis:
High-Income Countries: No statistically significant relationship between GDP growth and inequality.
Upper-Middle-Income Countries: A weak relationship was observed, but it lacked statistical significance.
Lower-Middle-Income Countries: A significant negative relationship was identified (β = -22.291, p < 0.001), suggesting that in these countries, GDP growth reduces income inequality.
Interpretation and Use of Data: The findings can be interpreted in light of Kuznets' hypothesis, which posits that inequality first rises and then falls as economies develop.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Regression results of threshold model.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The deposited data allows replication of the statistical analysis and figures in "Warfare and Economic Inequality: Evidence from Preindustrial Germany (c. 1400-1800)". The question the project adresses is simple: What was the impact of military conflict on economic inequality? I argue that ordinary military conflicts increased local economic inequality. Warfare raised the financial needs of towns in preindustrial times, leading to more resource extraction from the population. This resource extraction happened via inequality-promoting channels, such as regressive taxation. Only in truly major wars might inequality-reducing destruction outweigh inequality-promoting extraction and reduce inequality. To test this argument I construct a novel panel dataset combining information about economic inequality in 75 localities, and more than 700 conflicts over four centuries. I find that the many ordinary conflicts — paradigmatic of life in the preindustrial world — were continuous reinforcers of economic inequality. I confirm that the Thirty Years’ War was indeed a great equaliser, but this was an exception and not the rule. Rising inequality is an underappreciated negative externality in times of conflict.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Rising Sun. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Rising Sun. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Rising Sun, where there exist only two delineated age groups, the median household income is $120,461 for householders within the 25 to 44 years age group, compared to $34,688 for the 65 years and over age group.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rising Sun median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in New Grand Chain. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in New Grand Chain. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in New Grand Chain, where there exist only two delineated age groups, the median household income is $67,188 for householders within the 45 to 64 years age group, compared to $50,625 for the 25 to 44 years age group.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Grand Chain median household income by age. You can refer the same here
In 2024, the average annual per capita disposable income of households in China amounted to approximately 41,300 yuan. Annual per capita income in Chinese saw a significant rise over the last decades and is still rising at a high pace. During the last ten years, per capita disposable income roughly doubled in China. Income distribution in China As an emerging economy, China faces a large number of development challenges, one of the most pressing issues being income inequality. The income gap between rural and urban areas has been stirring social unrest in China and poses a serious threat to the dogma of a “harmonious society” proclaimed by the communist party. In contrast to the disposable income of urban households, which reached around 54,200 yuan in 2024, that of rural households only amounted to around 23,100 yuan. Coinciding with the urban-rural income gap, income disparities between coastal and western regions in China have become apparent. As of 2023, households in Shanghai and Beijing displayed the highest average annual income of around 84,800 and 81,900 yuan respectively, followed by Zhejiang province with 63,800 yuan. Gansu, a province located in the West of China, had the lowest average annual per capita household income in China with merely 25,000 yuan. Income inequality in China The Gini coefficient is the most commonly used measure of income inequality. For China, the official Gini coefficient also indicates the astonishing inequality of income distribution in the country. Although the Gini coefficient has dropped from its high in 2008 at 49.1 points, it still ranged at a score of 46.5 points in 2023. The United Nations have set an index value of 40 as a warning level for serious inequality in a society.
In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.