Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Technologies for profiling samples using different omics platforms have been at the forefront since the human genome project. Large-scale multi-omics data hold the promise of deciphering different regulatory layers. Yet, while there is a myriad of bioinformatics tools, each multi-omics analysis appears to start from scratch with an arbitrary decision over which tools to use and how to combine them. Therefore, it is an unmet need to conceptualize how to integrate such data and implement and validate pipelines in different cases. We have designed a conceptual framework (STATegra), aiming it to be as generic as possible for multi-omics analysis, combining available multi-omic anlaysis tools (machine learning component analysis, non-parametric data combination, and a multi-omics exploratory analysis) in a step-wise manner. While in several studies, we have previously combined those integrative tools, here, we provide a systematic description of the STATegra framework and its validation using two The Cancer Genome Atlas (TCGA) case studies. For both, the Glioblastoma and the Skin Cutaneous Melanoma (SKCM) cases, we demonstrate an enhanced capacity of the framework (and beyond the individual tools) to identify features and pathways compared to single-omics analysis. Such an integrative multi-omics analysis framework for identifying features and components facilitates the discovery of new biology. Finally, we provide several options for applying the STATegra framework when parametric assumptions are fulfilled and for the case when not all the samples are profiled for all omics. The STATegra framework is built using several tools, which are being integrated step-by-step as OpenSource in the STATegRa Bioconductor package.1
According to our latest research, the global spatial multi-omics data integration software market size reached USD 392.5 million in 2024, demonstrating robust growth fueled by increasing adoption of multi-omics technologies in biomedical research and clinical practice. The market is projected to expand at a remarkable CAGR of 13.7% during the forecast period, with the value expected to reach approximately USD 1,162.8 million by 2033. This accelerated growth is primarily driven by the surging demand for integrated data solutions to unravel complex biological mechanisms, enhance drug discovery, and enable precision medicine initiatives. As per our latest research, the market’s momentum is underpinned by technological advancements, rising R&D investments, and the growing prevalence of chronic diseases necessitating advanced diagnostic and therapeutic strategies.
One of the primary growth factors propelling the spatial multi-omics data integration software market is the increasing need for comprehensive biological insights at the cellular and tissue levels. The convergence of genomics, transcriptomics, proteomics, metabolomics, and epigenomics data enables researchers and clinicians to capture a multidimensional view of biological systems. This holistic approach is essential for understanding disease heterogeneity, tumor microenvironments, and cellular interactions, particularly in oncology and immunology. The rapid evolution of spatial omics technologies, coupled with the availability of high-throughput sequencing platforms, has generated massive datasets that require sophisticated integration and analysis tools. Consequently, the demand for advanced software solutions capable of harmonizing and interpreting complex multi-omics data is experiencing a significant uptick across both academic and industrial settings.
Another critical driver for the market is the accelerating pace of drug discovery and development, which increasingly relies on spatial multi-omics data integration to identify novel therapeutic targets and biomarkers. Pharmaceutical and biotechnology companies are leveraging these software platforms to streamline the drug development pipeline, reduce attrition rates, and personalize treatment regimens based on patient-specific molecular profiles. The integration of spatial and multi-omics data enhances the ability to predict drug responses, monitor disease progression, and assess therapeutic efficacy in real time. Furthermore, collaborations between software providers, academic institutions, and life science companies are fostering the development of user-friendly, scalable, and interoperable solutions that cater to the evolving needs of end users. This collaborative ecosystem is expected to sustain market growth by facilitating knowledge transfer, standardization, and innovation.
The rising adoption of personalized medicine and precision diagnostics is further fueling the spatial multi-omics data integration software market. As healthcare systems worldwide shift toward individualized care paradigms, there is a growing emphasis on leveraging multi-layered molecular data to inform clinical decision-making. Spatial multi-omics integration software enables clinicians to correlate genetic, transcriptomic, proteomic, and metabolic alterations with spatial context, thereby improving the accuracy of disease classification, prognosis, and therapeutic selection. This paradigm shift is particularly evident in oncology, neurology, and rare disease management, where spatially resolved molecular insights can guide targeted interventions. The increasing prevalence of chronic diseases, aging populations, and the need for early disease detection are expected to drive sustained investments in multi-omics data integration capabilities across healthcare and research institutions.
Regionally, North America continues to dominate the spatial multi-omics data integration software market, accounting for the largest revenue share in 2024. This leadership position is attributed to the presence of leading life science companies, advanced healthcare infrastructure, and substantial government funding for multi-omics research. Europe follows closely, benefiting from strong academic networks and growing investments in precision medicine initiatives. The Asia Pacific region is emerging as a high-growth market, driven by expanding genomics research, increasing healthcare expenditure, and rising awareness of the benefits of integrated omics analyses.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to the latest research, the global Multi-Omics Data Integration SaaS market size reached USD 1.42 billion in 2024, reflecting a robust momentum driven by technological advancements and increasing adoption across life sciences. The market is expected to expand at a CAGR of 17.6% during the forecast period, with projections indicating a value of USD 6.13 billion by 2033. This remarkable growth is primarily fueled by the rising demand for integrated omics solutions in drug discovery, precision medicine, and clinical diagnostics, as organizations seek to leverage data-driven insights for improved outcomes and operational efficiencies.
A key driver behind the expansion of the Multi-Omics Data Integration SaaS market is the surging volume and complexity of biological data generated through next-generation sequencing (NGS) and high-throughput omics technologies. Researchers and clinical practitioners are increasingly reliant on advanced SaaS platforms to unify genomics, proteomics, transcriptomics, and metabolomics data for comprehensive analysis. The integration of these diverse datasets enables a holistic understanding of biological systems, facilitating breakthroughs in disease characterization, biomarker discovery, and therapeutic target identification. As the need for cross-omics data analysis intensifies, SaaS-based solutions offer scalable, flexible, and cost-effective approaches, eliminating the constraints of traditional on-premises infrastructures.
Another significant growth factor is the ongoing digital transformation in healthcare and life sciences, which has accelerated the adoption of cloud-based platforms for data management and analytics. SaaS solutions for multi-omics data integration provide seamless collaboration, secure data sharing, and real-time analytics, empowering interdisciplinary teams to drive innovation at scale. The COVID-19 pandemic further underscored the importance of rapid data integration and remote accessibility, catalyzing investments in digital infrastructure and cloud-native applications. As regulatory frameworks evolve to support data privacy and interoperability, organizations are increasingly confident in leveraging SaaS platforms for sensitive multi-omics research and clinical workflows.
The emergence of artificial intelligence (AI) and machine learning (ML) technologies is also transforming the Multi-Omics Data Integration SaaS market. By harnessing advanced algorithms, SaaS platforms can automate complex data integration, normalization, and interpretation tasks, uncovering hidden patterns and actionable insights from vast multi-omics datasets. This capability is particularly valuable in precision medicine, where individualized patient profiles require sophisticated analytics to inform diagnosis, prognosis, and treatment selection. As AI-powered multi-omics platforms become more accessible and user-friendly, their adoption is expected to proliferate across academic, clinical, and commercial settings, further propelling market growth.
From a regional perspective, North America currently dominates the global Multi-Omics Data Integration SaaS market, accounting for the largest revenue share in 2024. This leadership is attributed to the region’s advanced healthcare infrastructure, significant R&D investments, and a strong presence of leading SaaS providers. Europe and Asia Pacific are also experiencing rapid growth, driven by expanding genomics research initiatives, government funding, and increasing collaborations between academic institutions and industry stakeholders. As emerging markets in Latin America and the Middle East & Africa invest in digital health infrastructure, the global footprint of multi-omics SaaS solutions is expected to broaden, fostering greater accessibility and innovation worldwide.
The Component segment of the Multi-Omics Data Integration SaaS market is bifurcated into software and services, each playing a pivotal role in enabling seamless integration and analysis of multi-omics datasets. Software solutions form the backbone of this segment, offering robust platforms for data ingestion, harmonization, visualization, and advanced analytics. These solutions are designed to handle the complexity and heterogeneity of omics data, providing researchers with intuitive interfaces and customizable workflows. The increasing sophistication of analytical tools, including AI-
According to our latest research, the global market size for the Cloud-Based Multi-Omics Data Warehouse Market reached USD 2.47 billion in 2024. The market is witnessing a robust expansion, registering a CAGR of 18.2% from 2025 to 2033, and is forecasted to achieve a value of USD 12.55 billion by 2033. This remarkable growth is primarily driven by the escalating adoption of cloud technologies in life sciences and healthcare, combined with the surging demand for integrated omics data analysis to accelerate drug discovery and personalized medicine initiatives.
The rapid proliferation of high-throughput sequencing technologies and the exponential rise in multi-omics data generation are pivotal growth factors for the Cloud-Based Multi-Omics Data Warehouse Market. As research organizations and healthcare providers increasingly focus on precision medicine, the need for scalable, secure, and interoperable platforms to store, manage, and analyze diverse datasets is more critical than ever. Cloud-based solutions offer unparalleled scalability and computational power, enabling seamless integration and real-time analysis of genomics, proteomics, transcriptomics, metabolomics, and epigenomics data. This capability is essential for uncovering novel biomarkers, understanding disease mechanisms, and tailoring therapeutic interventions, thereby fueling market expansion.
Another significant driver is the growing collaboration between pharmaceutical companies, academic institutions, and technology providers to develop advanced analytics platforms. These partnerships are fostering the development of comprehensive multi-omics data warehouses that support artificial intelligence (AI) and machine learning (ML) algorithms for predictive analytics and hypothesis generation. The increasing emphasis on reducing time-to-market for new drugs and improving clinical outcomes is compelling stakeholders to invest in cloud-based multi-omics solutions. Additionally, the adoption of regulatory-compliant cloud infrastructures is mitigating concerns related to data privacy and security, further accelerating market adoption across regulated sectors such as healthcare and pharmaceuticals.
The market is also benefiting from the rising prevalence of chronic diseases and the subsequent demand for personalized healthcare solutions. Multi-omics data integration enables clinicians to make informed decisions regarding disease diagnosis, prognosis, and treatment selection. Cloud-based platforms facilitate the aggregation and harmonization of large-scale omics datasets from diverse sources, supporting translational research and clinical applications. Furthermore, advancements in data interoperability standards and API-driven architectures are enhancing the accessibility and usability of multi-omics data warehouses, making them indispensable tools for researchers and clinicians alike.
Regionally, North America continues to dominate the Cloud-Based Multi-Omics Data Warehouse Market, accounting for the largest revenue share in 2024, followed by Europe and Asia Pacific. The presence of leading biotechnology firms, robust healthcare infrastructure, and significant investments in genomics research are key contributors to North America's leadership. Europe is witnessing steady growth owing to supportive regulatory frameworks and increasing funding for omics research. Meanwhile, Asia Pacific is emerging as a lucrative market, driven by expanding healthcare digitization, government initiatives to promote precision medicine, and rising adoption of cloud computing in research and clinical settings.
The Cloud-Based Multi-Omics Data Warehouse Market is segmented by component into software and services, each playing a distinct yet complementary role in the ecosystem. The software segment encompasses platforms and tools designed for data integration, management, analysis, and visualization of multi-omics datasets. These solutions are engineered to
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Through the developments of Omics technologies and dissemination of large-scale datasets, such as those from The Cancer Genome Atlas, Alzheimer’s Disease Neuroimaging Initiative, and Genotype-Tissue Expression, it is becoming increasingly possible to study complex biological processes and disease mechanisms more holistically. However, to obtain a comprehensive view of these complex systems, it is crucial to integrate data across various Omics modalities, and also leverage external knowledge available in biological databases. This review aims to provide an overview of multi-Omics data integration methods with different statistical approaches, focusing on unsupervised learning tasks, including disease onset prediction, biomarker discovery, disease subtyping, module discovery, and network/pathway analysis. We also briefly review feature selection methods, multi-Omics data sets, and resources/tools that constitute critical components for carrying out the integration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 2: Supplementary Table 1. 39 R tools for multi-omics data integration. Supplementary Table 2. Gene annotation of 'no-denoised' and 'denoised' candidate genes. Annotation information have been retrieved from PlantGenIE (https://plantgenie.org/) with Populus trichocarpa v3.1 as a reference. The column ‘common_before_and_after_denoising’ indicates whether the gene is shared between 'denoised' and 'no-denoised' data or not (TRUE/FALSE).
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global multiomics market, valued at $3.11 billion in 2025, is projected to experience robust growth, exhibiting a compound annual growth rate (CAGR) of 15.26% from 2025 to 2033. This expansion is driven by several key factors. Advancements in sequencing technologies, particularly next-generation sequencing (NGS), are enabling researchers to analyze multiple omics datasets simultaneously, providing a more comprehensive understanding of complex biological systems. This holistic approach is proving invaluable in drug discovery and development, accelerating the identification of novel therapeutic targets and biomarkers. Furthermore, the increasing prevalence of chronic diseases, such as cancer and neurodegenerative disorders, is fueling demand for more precise diagnostic and therapeutic tools, bolstering the multiomics market. Growing investments in research and development across both academia and the pharmaceutical and biotechnology sectors further contribute to this market's rapid growth. The integration of artificial intelligence (AI) and machine learning (ML) in multiomics data analysis is also significantly impacting the field, enabling faster and more accurate interpretations of complex datasets. The market segmentation reveals significant opportunities across various product types, platforms, and applications. While instruments and reagents constitute major segments, the 'Other Products' category, encompassing software and data analysis tools, is experiencing rapid growth due to the increasing complexity of multiomics data. Single-cell multiomics, offering higher resolution and insights into cellular heterogeneity, is gaining traction over bulk multiomics. Within platforms, genomics maintains a dominant position, followed by transcriptomics and proteomics. However, integrated omics platforms, offering a more comprehensive analysis of multiple datasets simultaneously, are showing significant potential for future growth. Oncology and neurology are leading application areas, with substantial research focused on developing personalized medicine approaches leveraging multiomics data. The academic and research institutes segment remains a key end-user, while pharmaceutical and biotechnology companies are increasingly adopting multiomics for drug discovery and development, promising sustained long-term market growth. Competition among established players like Illumina, Thermo Fisher Scientific, and Agilent Technologies, alongside emerging innovative companies, drives further market dynamism and technological advancement. Recent developments include: February 2024: Vizzhy Inc. launched the world's inaugural Multiomics Lab in Bengaluru, India, heralding a major advancement in healthcare innovation. Equipped with cutting-edge tools and health AI technology, the lab enables physicians to pinpoint root causes and offer personalized recommendations for their patients.September 2023: MGI, a provider of technology and tools for life science, introduced the DCS Lab Initiative to stimulate crucial scientific research. This initiative encourages large-scale multiomics laboratories. Under the initiative, the organization offers products for numerous applications, including cell omics, DNA sequencing, and spatial omics based on DNBSEQ technologies, to specified research institutions globally.April 2023: Biomodal, formerly Cambridge Epigenetix, introduced a new duet multiomics solution that can enable simultaneous phased reading of epigenetic and genetic information in a single, low-volume sample.. Key drivers for this market are: Rising Demand for Single-cell Multiomics and Advancements in Omics Technologies, Increasing Investment in Genomics R&D; Growing Demand for Personalized Medicine. Potential restraints include: Rising Demand for Single-cell Multiomics and Advancements in Omics Technologies, Increasing Investment in Genomics R&D; Growing Demand for Personalized Medicine. Notable trends are: The Bulk Multiomics Segment is Expected to Hold the Largest Share of the Market.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
As of 2023, the global single cell multi-omics market size is valued at approximately USD 2.5 billion, with a robust projected CAGR of 20.1% forecasted to propel the market to USD 9.8 billion by 2032. This remarkable growth is driven by several key factors, including technological advancements in single-cell analysis techniques, increased funding for omics research, and a growing emphasis on personalized medicine. The market is experiencing a surge in demand as researchers and healthcare providers seek more precise and comprehensive insights into cellular behavior, disease mechanisms, and therapeutic responses. The integration of multi-omics data at a single-cell level offers unparalleled resolution and depth, enabling a transformative understanding of complex biological systems.
One of the primary growth drivers of the single cell multi-omics market is the rapid advancement of technology, particularly in sequencing and analytical tools. Innovations in microfluidics, next-generation sequencing, and enhanced bioinformatics capabilities have significantly lowered the cost and increased the efficiency of single-cell analysis. These technological advancements allow researchers to dissect the heterogeneity of cellular populations with unprecedented precision, facilitating breakthroughs in understanding disease pathology and developing targeted therapeutics. Moreover, the continuous evolution of these technologies fosters their adoption across various fields, further expanding the market's scope and application.
Another significant factor contributing to market growth is the escalating demand for personalized medicine. As the healthcare industry shifts towards more individualized treatment approaches, the need for comprehensive insights at a cellular level becomes paramount. Single cell multi-omics provides a holistic view of cellular function by integrating genomic, transcriptomic, proteomic, and metabolomic data. This integrated approach not only enhances the understanding of disease mechanisms but also aids in the development of personalized therapeutic strategies, thereby driving the adoption of single cell multi-omics in clinical settings. The ability to tailor treatments based on unique cellular profiles is expected to significantly boost market demand over the forecast period.
Additionally, increasing funding and investments in life sciences research is acting as a catalyst for the growth of the single cell multi-omics market. Governments, academic institutions, and private entities are investing heavily in omics research to unlock new scientific insights and address pressing healthcare challenges. This influx of funding is facilitating the establishment of state-of-the-art research facilities and fostering collaborations between academic institutions and industry players. The enhanced research infrastructure and collaborative efforts are expected to accelerate scientific discoveries and propel the market's expansion, as researchers strive to unravel the complexities of biological systems at a single-cell level.
From a regional perspective, North America currently dominates the single cell multi-omics market, owing to its robust research infrastructure, presence of leading biotechnology firms, and substantial government funding for genomics and precision medicine initiatives. However, the Asia Pacific region is anticipated to exhibit the highest growth rate over the forecast period, driven by increasing investments in healthcare research, the rising prevalence of chronic diseases, and the burgeoning biotechnology sector. European countries are also witnessing a growing adoption of single cell multi-omics technologies, supported by collaborative research initiatives and favorable regulatory frameworks. These regional dynamics underscore the diverse growth opportunities within the global market, as stakeholders capitalize on regional strengths and address specific healthcare needs.
The technology segment within the single cell multi-omics market is predominantly categorized into single cell genomics, single cell transcriptomics, single cell proteomics, and single cell metabolomics. Each of these sub-segments plays a crucial role in providing comprehensive insights into cellular functions and interactions. Single cell genomics, which involves the analysis of DNA at a single-cell level, has become a cornerstone technology in this market. It enables researchers to investigate genetic variations, mutations, and chromosomal aberrations with unprecedented accuracy. This technology is pivotal in advancing our understanding of genetic predisposit
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Bioinformatics Platforms Market market was valued at USD 16.36 Million in 2023 and is projected to reach USD 27.93 Million by 2032, with an expected CAGR of 7.94% during the forecast period. The Bioinformatics Platforms Market includes the software and tools required to understand biological data that contain genomic, proteomic, or metabolic data. These platforms include support for various applications like drug discovery, individualized medicine, and clinically related diagnostics through helps of data integration, statistical analysis and visualization. Some of the emerging trends that are driving the bioinformatics market are cloud-based bioinformatics solutions to support scalability and collaboration, advanced machine learning and artificial intelligence (AI) technologies to accurately analyze raised significance of multi-omics data integration for profound tumor bioinformatics analysis. Such factors pulling the market ahead include increasing volume of biological data in facets like research and clinical trials, evolving sequencing technologies, along with the increasing requirement for enhanced data management and analysis in genomics and proteomics. Further, the rising usage of bioinformatics for customized treatment and the growing number of research studies in genomics complement the market’s growth. Recent developments include: In June 2022, California's biotechnology research startup LatchBio launched an end-to-end bioinformatics platform for handling big biotech data to accelerate scientific discovery., In March 2022, ARUP launched Rio, a bioinformatics pipeline and analytics platform for better, faster next-generation sequencing test results.. Key drivers for this market are: Increasing Demand for Nucleic Acid and Protein Sequencing, Increasing Initiatives from Governments and Private Organizations; Accelerating Growth of Proteomics and Genomics; Increasing Research on Molecular Biology and Drug Discovery. Potential restraints include: Lack of Well-defined Standards and Common Data Formats for Integration of Data, Data Complexity Concerns and Lack of User-friendly Tools. Notable trends are: Sequence Analysis Platform Segment is Expected Hold a Significant Share Over the Forecast Period.
New tools for cell signaling pathway inference from multi-omics data that are independent of previous knowledge are needed. Here we propose a new de novo method, the de novo multi-omics pathway analysis (DMPA), to model and combine omics data into network modules and pathways. DMPA was validated with published omics data and was found accurate in discovering published molecular associations in transcriptome, interactome, phosphoproteome, methylome, and metabolomics data and signaling pathways in multi-omics data. DMPA was benchmarked against module discovery and multi-omics integration methods and outperformed previous methods in module and pathway discovery especially when applied to datasets with low sample sizes. Transcription factor, kinase, subcellular location and function prediction algorithms were devised for transcriptome, phosphoproteome and interactome regulatory complexes and pathways, respectively. To apply DMPA in a biologically relevant context, interactome, phosphoproteome, transcriptome and proteome data were collected from analyses carried out using melanoma cells to address gamma-secretase cleavage-dependent signaling characteristics of the receptor tyrosine kinase TYRO3. The pathways modeled with DMPA reflected the predicted function and its direction in validation experiments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Supplementary Table 1. List of input features in autoencoder.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The size of the U.S. Multiomics Market was valued at USD XX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 15.55 % during the forecast period. The U.S. multiomics market is the integration and analysis of data from multiple omics fields, such as genomics, proteomics, metabolomics, and transcriptomics, in order to gain a comprehensive understanding of biological systems and disease mechanisms. Multiomics involves combining various types of molecular data to uncover deeper insights into the interactions between genes, proteins, metabolites, and other cellular components. This is changing the face of fields such as personalized medicine, drug development, and disease diagnosis, allowing for targeted and precise treatments. Multiomics in the United States market is growing rapidly, fueled by advances in high-throughput technologies, improving bioinformatics tools, and increased attention to precision medicine. Researchers and healthcare providers apply multiomics to better understand the nature of complex diseases like cancer, cardiovascular diseases, and neurological disorders. As the demand for personalized healthcare solutions increases, the U.S. multiomics market is expected to grow, providing more accurate and tailored diagnostic and therapeutic options. Recent developments include: In January 2023, Agilent Technologies, Inc. announced the acquisition of Avida Biomed, a company that develops target enrichment workflows for clinical researchers who use NGS methods to study cancers. , In February 2023, BD introduced the BD Rhapsody HT Xpress System to help scientists conduct high-throughput studies without compromising the integrity of their samples. , In September 2023, Bruker introduced novel 4D-Proteomics timsTOF, which offers precise quantification of peptides & proteins within hundreds or thousands of samples by employing global retention time and Collision Cross-Section (CCS) prediction models. .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COSMOS is a computational tool crafted to overcome the challenges associated with integrating spatially resolved multi-omics data. This software harnesses a graph neural network algorithm to deliver cutting-edge solutions for analyzing biological data that encompasses various omics types within a spatial framework. Key features of COSMOS include domain segmentation, effective visualization, and the creation of spatiotemporal maps. These capabilities empower researchers to gain a deeper understanding of the spatial and temporal dynamics within biological samples, distinguishing COSMOS from other tools that may only support single omics types or lack comprehensive spatial integration. The proven superior performance of COSMOS underscores its value as an essential resource in the realm of spatial omics.
Paper: Cooperative Integration of Spatially Resolved Multi-Omics Data with COSMOS, Zhou Y., X. Xiao, L. Dong, C. Tang, G. Xiao*, and L Xu*, 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Computational models that can explain and predict complex sub-cellular, cellular, and tissue-level drug response mechanisms could speed drug discovery and prioritize patient-specific treatments (i.e., precision medicine). Some models are mechanistic with detailed equations describing known (or supposed) physicochemical processes, while some are statistical or machine learning-based approaches, that explain datasets but have no mechanistic or causal guarantees. These two types of modeling are rarely combined, missing the opportunity to explore possibly causal but data-driven new knowledge while explaining what is already known. Here, we explore combining machine learned associations with mechanistic models to develop computational models that could more fully represent cellular behavior. In this proposed MEMMAL (MEchanistic Modeling with MAchine Learning) framework, machine learning/statistical models built using omics datasets provide predictions for new interactions between genes and proteins where there is physicochemical uncertainty. These interactions are used as a basis for new reactions in mechanistic models. As a test case, we focused on incorporating novel IFNγ/PD-L1 related associations into a large-scale mechanistic model for cell proliferation and death to better recapitulate the recently released NIH LINCS Consortium MCF10A dataset and enable description of the cellular response to checkpoint inhibitor immunotherapies. This work is a template for combining big-data-inferred interactions with mechanistic models, which could be more broadly applicable for building multi-scale precision medicine and whole cell models.
Proteogenomics is an emerging approach to improve gene annotation and interpretation of proteomics data. Here we present JUMPg, an integrative proteogenomics pipeline including customized database construction, tag-based database search, peptide-spectrum match filtering, and data visualization. JUMPg creates multiple databases of DNA polymorphisms, mutations, splice junctions, partially trypticity, as well as protein fragments translated from the whole transcriptome in all six frames after RNA-seq de novo assembly. We use a multistage strategy to search these databases sequentially, in which the performance is optimized by re-searching only unmatched high quality spectra, and re-using amino acid tags generated by the JUMP search engine. The identified peptides/proteins are displayed with gene loci using the UCSC genome browser. The JUMPg is applied to process a label-free mass spectrometry dataset of Alzheimer’s disease postmortem brain, uncovering 496 new peptides of amino acid substitutions, alternative splicing, frame shift, and “non-coding gene” translation. The novel protein PNMA6BL specifically expressed in the brain is highlighted. We also tested JUMPg to analyze a stable-isotope labeled dataset of multiple myeloma cells, revealing 991 sample-specific peptides that include protein sequences in the immunoglobulin light chain variable region. Thus, the JUMPg program is an effective proteogenomics tool for multi-omics data integration.
According to our latest research, the Lab-On-Glass Slide Multi-Omics Chip market size reached USD 1.62 billion globally in 2024, driven by the rapid adoption of integrated multi-omics solutions in biomedical and life science research. The market is expected to expand at a robust CAGR of 13.6% during the forecast period, with a projected value of USD 4.33 billion by 2033. This impressive growth is primarily fueled by advancements in microfluidics, nanotechnology, and the increasing demand for high-throughput, cost-effective platforms for multi-omics analysis. As per our comprehensive market analysis, the integration of genomics, proteomics, and metabolomics on a single glass slide is revolutionizing precision medicine and translational research, setting new benchmarks for diagnostics and therapeutic development.
One of the primary growth drivers for the Lab-On-Glass Slide Multi-Omics Chip market is the escalating need for personalized medicine and targeted therapies. As healthcare systems worldwide pivot towards individualized treatment regimens, the demand for platforms that can simultaneously analyze multiple omics layers from minimal sample volumes is surging. Multi-omics chips on glass slides offer a unique advantage by enabling comprehensive molecular profiling, which is critical for understanding complex disease mechanisms, identifying biomarkers, and predicting patient responses to therapies. This has led to increased investments by pharmaceutical and biotechnology companies in adopting these platforms for drug discovery, biomarker identification, and clinical diagnostics. Moreover, the integration of advanced surface chemistry and microfluidics has enhanced the sensitivity, throughput, and reproducibility of these chips, further propelling market expansion.
Another significant factor contributing to market growth is the technological evolution in microfabrication and nanotechnology. The development of highly miniaturized, high-density chip formats has enabled researchers to conduct parallel analyses of thousands of biological molecules on a single slide, drastically reducing time, reagent consumption, and operational costs. This technological leap has not only democratized access to multi-omics research for academic and clinical laboratories but has also opened new avenues for high-throughput screening in pharmaceutical and biotechnological research. Furthermore, collaborations between academic institutions and industry players are accelerating the translation of these innovations into commercially viable products, fostering a competitive and dynamic market landscape.
The increasing prevalence of chronic diseases, such as cancer, cardiovascular disorders, and neurodegenerative conditions, is also catalyzing the adoption of Lab-On-Glass Slide Multi-Omics Chips. These conditions often involve complex molecular interactions that cannot be deciphered by single-omics approaches. Multi-omics chips provide a holistic view of the molecular landscape, enabling clinicians and researchers to uncover novel therapeutic targets and develop more effective diagnostic tools. Additionally, the ongoing global focus on pandemic preparedness and infectious disease surveillance has underscored the importance of rapid, multiplexed molecular diagnostics, further boosting market demand. Government funding and public-private partnerships are playing a pivotal role in supporting research and development activities in this sector, especially in North America and Europe.
Regionally, North America continues to dominate the Lab-On-Glass Slide Multi-Omics Chip market owing to its robust healthcare infrastructure, significant R&D investments, and the presence of leading biotechnology firms. However, Asia Pacific is emerging as a high-growth region, driven by increasing healthcare expenditure, expanding biopharmaceutical industries, and a growing focus on precision medicine initiatives. Europe also maintains a strong position, supported by collaborative research networks and favorable regulatory frameworks. The Middle East & Africa and Latin America, while currently smaller in market share, are witnessing gradual adoption as awareness and investment in advanced diagnostics and research technologies increase.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Rare endocrine cancers such as Adrenocortical Carcinoma (ACC) present a serious diagnostic and prognostication challenge. The knowledge about ACC pathogenesis is incomplete, and patients have limited therapeutic options. Identification of molecular drivers and effective biomarkers is required for timely diagnosis of the disease and stratify patients to offer the most beneficial treatments. In this study we demonstrate how machine learning methods integrating multi-omics data, in combination with system biology tools, can contribute to the identification of new prognostic biomarkers for ACC.Methods: ACC gene expression and DNA methylation datasets were downloaded from the Xena Browser (GDC TCGA Adrenocortical Carcinoma cohort). A highly correlated multi-omics signature discriminating groups of samples was identified with the data integration analysis for biomarker discovery using latent components (DIABLO) method. Additional regulators of the identified signature were discovered using Clarivate CBDD (Computational Biology for Drug Discovery) network propagation and hidden nodes algorithms on a curated network of molecular interactions (MetaBase™). The discriminative power of the multi-omics signature and their regulators was delineated by training a random forest classifier using 55 samples, by employing a 10-fold cross validation with five iterations. The prognostic value of the identified biomarkers was further assessed on an external ACC dataset obtained from GEO (GSE49280) using the Kaplan-Meier estimator method. An optimal prognostic signature was finally derived using the stepwise Akaike Information Criterion (AIC) that allowed categorization of samples into high and low-risk groups.Results: A multi-omics signature including genes, micro RNA's and methylation sites was generated. Systems biology tools identified additional genes regulating the features included in the multi-omics signature. RNA-seq, miRNA-seq and DNA methylation sets of features revealed a high power to classify patients from stages I-II and stages III-IV, outperforming previously identified prognostic biomarkers. Using an independent dataset, associations of the genes included in the signature with Overall Survival (OS) data demonstrated that patients with differential expression levels of 8 genes and 4 micro RNA's showed a statistically significant decrease in OS. We also found an independent prognostic signature for ACC with potential use in clinical practice, combining 9-gene/micro RNA features, that successfully predicted high-risk ACC cancer patients.Conclusion: Machine learning and integrative analysis of multi-omics data, in combination with Clarivate CBDD systems biology tools, identified a set of biomarkers with high prognostic value for ACC disease. Multi-omics data is a promising resource for the identification of drivers and new prognostic biomarkers in rare diseases that could be used in clinical practice.
Extracellular Vesicles (EVs) derived from seminal plasma have achieved considerable attention due to their potential role in male reproductive physiology and pathology. In this study, we employed a comprehensive proteomic and transcriptomic approach to investigate the molecular signatures of EVs isolated from human seminal plasma. EVs from Normozoospermic (NORMO,15), OligoAsthenoTeratozoospermic (OAT,12) and Azoospermic (AZO,12) subjects, were isolated by an in house modified polymer precipitation-based protocol and characterized for their size and morphology by NTA and TEM. Full proteomic analysis, by gel-free and gel-based approaches, revealed distinct protein profiles in each group, highlighting potential molecules and pathways implicated in sperm function and fertility. Furthermore, transcriptomic analysis confirmed the trend of general down-regulation of AZO and OAT groups compared to NORMO offering insights into the regulatory mechanisms underlying sperm development and function. Bioinformatic tools were applied for functional Omics analysis; integration of proteomic and transcriptomic data provided a comprehensive understanding of the cargo content and regulatory networks. This study contributes to elucidating the key role of EVs in the paracrine communication regulating spermatogenesis. The full understanding of these pathways not only suggests potential mechanisms regulating male fertility but also offers new insight for the development of diagnostic tools targeting male reproductive disorders.
According to our latest research, the global saliva-based multiomics testing market size is valued at USD 1.42 billion in 2024, with a robust compound annual growth rate (CAGR) of 17.6% expected from 2025 to 2033. By 2033, the market is anticipated to reach approximately USD 6.15 billion, reflecting the rapid adoption of non-invasive diagnostic tools and the integration of multiomics technologies across healthcare and research sectors. This growth is primarily driven by increasing demand for personalized medicine, advancements in omics technologies, and growing awareness of the benefits of saliva-based testing for disease diagnosis and health monitoring.
The primary growth factor for the saliva-based multiomics testing market is the significant shift towards non-invasive diagnostic methods in both clinical and research settings. Saliva, as a biofluid, offers a convenient, pain-free, and easily accessible alternative to blood or tissue samples, enabling frequent and large-scale population screening. The integration of genomics, proteomics, metabolomics, transcriptomics, and epigenomics into a single saliva sample allows for comprehensive health profiling, early disease detection, and continuous monitoring. This capability is especially crucial for chronic diseases, infectious diseases, and cancer, where early intervention can drastically improve patient outcomes. The rising prevalence of such conditions globally, coupled with the growing emphasis on preventive healthcare, is catalyzing the adoption of saliva-based multiomics testing.
Another critical driver is the rapid technological advancements in omics platforms and bioinformatics. Next-generation sequencing (NGS), mass spectrometry, and advanced data analytics have significantly enhanced the sensitivity, accuracy, and throughput of multiomics assays. These innovations have made it feasible to extract detailed molecular information from minute volumes of saliva, enabling the detection of subtle biomarker changes associated with disease onset or progression. Furthermore, the cost of omics technologies has steadily decreased, making saliva-based multiomics testing more accessible for routine clinical use, research studies, and even direct-to-consumer applications. Strategic collaborations between biotechnology firms, academic institutions, and healthcare providers are also accelerating the translation of these technologies into market-ready solutions.
Regulatory support and growing investments in precision medicine initiatives are further boosting the market. Governments and private entities are increasingly funding research focused on non-invasive diagnostics, recognizing their potential to reduce healthcare costs and improve public health outcomes. The COVID-19 pandemic has also heightened the demand for remote and self-administered testing methods, with saliva-based assays playing a pivotal role in large-scale screening programs. As a result, regulatory agencies have expedited the approval process for innovative saliva-based multiomics tests, fostering a favorable environment for market expansion. The convergence of these factors is expected to sustain high growth rates for the saliva-based multiomics testing market over the next decade.
From a regional perspective, North America currently dominates the saliva-based multiomics testing market due to its advanced healthcare infrastructure, high adoption of precision medicine, and strong presence of leading biotechnology companies. Europe follows closely, with substantial investments in biomedical research and supportive regulatory frameworks. The Asia Pacific region is emerging as a significant growth engine, fueled by rising healthcare expenditures, increasing awareness of non-invasive diagnostics, and expanding research capabilities in countries such as China, Japan, and South Korea. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as healthcare modernization and disease burden drive demand for innovative diagnostic solutions.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global bioinformatics software market size was valued at approximately USD 10 billion in 2023, and it is projected to reach around USD 25 billion by 2032, growing at a robust CAGR of 11% during the forecast period. This remarkable growth is fueled by the increased application of bioinformatics in drug discovery and development, the rising demand for personalized medicine, and the ongoing advancements in sequencing technologies. The convergence of biology and information technology has led to the optimization of biological data management, propelling the market's expansion as it transforms the landscape of biotechnology and pharmaceutical research. The rapid integration of artificial intelligence and machine learning techniques to process complex biological data further accentuates the growth trajectory of this market.
An essential growth factor for the bioinformatics software market is the burgeoning demand for sequencing technologies. The decreasing cost of sequencing has led to a massive increase in the volume of genomic data generated, necessitating advanced software solutions to manage and interpret this data efficiently. This demand is particularly evident in genomics and proteomics, where bioinformatics software plays a critical role in analyzing and visualizing large datasets. Additionally, the adoption of cloud computing in bioinformatics offers scalable resources and cost-effective solutions for data storage and processing, further fueling market growth. The increasing collaboration between research institutions and software companies to develop innovative bioinformatics tools is also contributing positively to market expansion.
Another significant driver is the growth of personalized medicine, which relies heavily on bioinformatics for the analysis of individual genetic information to tailor therapeutic strategies. As healthcare systems worldwide move towards precision medicine, the demand for bioinformatics software that can integrate genetic, phenotypic, and environmental data becomes more pronounced. This trend is not only transforming patient care but also significantly impacting drug development processes, as pharmaceutical companies aim to create more effective and targeted therapies. The strategic partnerships and collaborations between biotech firms and bioinformatics software providers are critical in advancing personalized medicine and enhancing patient outcomes.
The increasing prevalence of complex diseases such as cancer and neurological disorders necessitates comprehensive research efforts, driving the need for robust bioinformatics software. These diseases require multi-omics approaches for better understanding, diagnosis, and treatment, where bioinformatics tools are indispensable. The ongoing research and development activities in this area, supported by government funding and private investments, are fostering innovation in bioinformatics solutions. Furthermore, the development of user-friendly and intuitive software interfaces is expanding the market beyond specialized research labs to include clinical settings and hospitals, broadening the potential user base and enhancing market penetration.
From a regional perspective, North America currently leads the bioinformatics software market, thanks to its advanced technological infrastructure, significant investment in healthcare R&D, and the presence of numerous key market players. The region accounted for the largest market share in 2023 and is expected to maintain its dominance throughout the forecast period. Meanwhile, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by increasing investments in biotechnology and pharmaceutical research, expanding healthcare infrastructure, and the rising adoption of bioinformatics in emerging economies like China and India. Europe's market growth is also significant, supported by substantial funding for genomic research and a strong focus on precision medicine initiatives.
Lifesciences Data Mining and Visualization are becoming increasingly vital in the bioinformatics software market. As the volume of biological data continues to grow exponentially, the need for sophisticated tools to mine and visualize this data is paramount. These tools enable researchers to uncover hidden patterns and insights from complex datasets, facilitating breakthroughs in genomics, proteomics, and other life sciences fields. The integration of advanced data mining techniques with visualization capabilities allows for a more intuitive
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Technologies for profiling samples using different omics platforms have been at the forefront since the human genome project. Large-scale multi-omics data hold the promise of deciphering different regulatory layers. Yet, while there is a myriad of bioinformatics tools, each multi-omics analysis appears to start from scratch with an arbitrary decision over which tools to use and how to combine them. Therefore, it is an unmet need to conceptualize how to integrate such data and implement and validate pipelines in different cases. We have designed a conceptual framework (STATegra), aiming it to be as generic as possible for multi-omics analysis, combining available multi-omic anlaysis tools (machine learning component analysis, non-parametric data combination, and a multi-omics exploratory analysis) in a step-wise manner. While in several studies, we have previously combined those integrative tools, here, we provide a systematic description of the STATegra framework and its validation using two The Cancer Genome Atlas (TCGA) case studies. For both, the Glioblastoma and the Skin Cutaneous Melanoma (SKCM) cases, we demonstrate an enhanced capacity of the framework (and beyond the individual tools) to identify features and pathways compared to single-omics analysis. Such an integrative multi-omics analysis framework for identifying features and components facilitates the discovery of new biology. Finally, we provide several options for applying the STATegra framework when parametric assumptions are fulfilled and for the case when not all the samples are profiled for all omics. The STATegra framework is built using several tools, which are being integrated step-by-step as OpenSource in the STATegRa Bioconductor package.1