In 2023, 8,842 murderers in the United States were white, while 6,405 were Black. A further 461 murderers were of another race, including American Indian or Alaska Native, Asian, and Native Hawaiian or Other Pacific Islander. However, not all law enforcement agencies submitted homicide data to the FBI in 2023, meaning there may be more murder offenders of each race than depicted. While the majority of circumstances behind murders in the U.S. are unknown, narcotics, robberies, and gang killings are most commonly identified.
In 2023, the FBI reported that there were 9,284 Black murder victims in the United States and 7,289 white murder victims. In comparison, there were 554 murder victims of unknown race and 586 victims of another race. Victims of inequality? In recent years, the role of racial inequality in violent crimes such as robberies, assaults, and homicides has gained public attention. In particular, the issue of police brutality has led to increasing attention following the murder of George Floyd, an African American who was killed by a Minneapolis police officer. Studies show that the rate of fatal police shootings for Black Americans was more than double the rate reported of other races. Crime reporting National crime data in the United States is based off the Federal Bureau of Investigation’s new crime reporting system, which requires law enforcement agencies to self-report their data in detail. Due to the recent implementation of this system, less crime data has been reported, with some states such as Delaware and Pennsylvania declining to report any data to the FBI at all in the last few years, suggesting that the Bureau's data may not fully reflect accurate information on crime in the United States.
This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.
This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.
The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.
How does this dataset classify victims?
The methodology by which this dataset classifies victims of violent crime differs by victimization type:
Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.
To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.
For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:
Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:
Note: All businesses identified as victims in CPD data have been removed from this dataset.
Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.”
Note: In some instances, the police department's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most recent crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).
Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.
These data examine the effects on total crime rates of changes in the demographic composition of the population and changes in criminality of specific age and race groups. The collection contains estimates from national data of annual age-by-race specific arrest rates and crime rates for murder, robbery, and burglary over the 21-year period 1965-1985. The data address the following questions: (1) Are the crime rates reported by the Uniform Crime Reports (UCR) data series valid indicators of national crime trends? (2) How much of the change between 1965 and 1985 in total crime rates for murder, robbery, and burglary is attributable to changes in the age and race composition of the population, and how much is accounted for by changes in crime rates within age-by-race specific subgroups? (3) What are the effects of age and race on subgroup crime rates for murder, robbery, and burglary? (4) What is the effect of time period on subgroup crime rates for murder, robbery, and burglary? (5) What is the effect of birth cohort, particularly the effect of the very large (baby-boom) cohorts following World War II, on subgroup crime rates for murder, robbery, and burglary? (6) What is the effect of interactions among age, race, time period, and cohort on subgroup crime rates for murder, robbery, and burglary? (7) How do patterns of age-by-race specific crime rates for murder, robbery, and burglary compare for different demographic subgroups? The variables in this study fall into four categories. The first category includes variables that define the race-age cohort of the unit of observation. The values of these variables are directly available from UCR and include year of observation (from 1965-1985), age group, and race. The second category of variables were computed using UCR data pertaining to the first category of variables. These are period, birth cohort of age group in each year, and average cohort size for each single age within each single group. The third category includes variables that describe the annual age-by-race specific arrest rates for the different crime types. These variables were estimated for race, age, group, crime type, and year using data directly available from UCR and population estimates from Census publications. The fourth category includes variables similar to the third group. Data for estimating these variables were derived from available UCR data on the total number of offenses known to the police and total arrests in combination with the age-by-race specific arrest rates for the different crime types.
Between 2021 and 2024, the homicide rate for people of the Black ethnic group was **** homicides per million population in England and Wales, far higher than that of the white ethnic group, which was *** victims per million population for the same time period.
In 2022, the prevalence of violent crime increased for all races in the United States in comparison to the previous year. In that year, around **** percent of White Americans experienced one or more violent victimizations and approximately **** percent of Black or African American people were the victims of a violent crime.
Number, percentage and rate (per 100,000 population) of homicide victims, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2024.
Section 95 of the Criminal Justice Act 1991 requires the Government to publish statistical data to assess whether any discrimination exists in how the CJS treats individuals based on their ethnicity.
These statistics are used by policy makers, the agencies who comprise the CJS and others (e.g. academics, interested bodies) to monitor differences between ethnic groups, and to highlight areas where practitioners and others may wish to undertake more in-depth analysis. The identification of differences should not be equated with discrimination as there are many reasons why apparent disparities may exist. The main findings are:
The 2012/13 Crime Survey for England and Wales shows that adults from self-identified Mixed, Black and Asian ethnic groups were more at risk of being a victim of personal crime than adults from the White ethnic group. This has been consistent since 2008/09 for adults from a Mixed or Black ethnic group; and since 2010/11 for adults from an Asian ethnic group. Adults from a Mixed ethnic group had the highest risk of being a victim of personal crime in each year between 2008/09 and 2012/13.
Homicide is a rare event, therefore, homicide victims data are presented aggregated in three-year periods in order to be able to analyse the data by ethnic appearance. The most recent period for which data are available is 2009/10 to 2011/12.
The overall number of homicides has decreased over the past three three-year periods. The number of homicide victims of White and Other ethnic appearance decreased during each of these three-year periods. However the number of victims of Black ethnic appearance increased in 2006/07 to 2008/09 before falling again in 2009/10 to 2011/12.
For those homicides where there is a known suspect, the majority of victims were of the same ethnic group as the principal suspect. However, the relationship between victim and principal suspect varied across ethnic groups. In the three-year period from 2009/10 to 2011/12, for victims of White ethnic appearance the largest proportion of principal suspects were from the victim’s own family; for victims of Black ethnic appearance, the largest proportion of principal suspects were a friend or acquaintance of the victim; while for victims of Asian ethnic appearance, the largest proportion of principal suspects were strangers.
Homicide by sharp instrument was the most common method of killing for victims of White, Black and Asian ethnic appearance in the three most recent three-year periods. However, for homicide victims of White ethnic appearance hitting and kicking represented the second most common method of killing compared with shooting for victims of Black ethnic appearance, and other methods of killing for victims of Asian ethnic appearance.
In 2011/12, a person aged ten or older (the age of criminal responsibility), who self-identified as belonging to the Black ethnic group was six times more likely than a White person to be stopped and searched under section 1 (s1) of the Police and Criminal Evidence Act 1984 and other legislation in England and Wales; persons from the Asian or Mixed ethnic group were just over two times more likely to be stopped and searched than a White person.
Despite an increase across all ethnic groups in the number of stops and searches conducted under s1 powers between 2007/08 and 2011/12, the number of resultant arrests decreased across most ethnic groups. Just under one in ten stop and searches in 2011/12 under s1 powers resulted in an arrest in the White and Black self-identified ethnic groups, compared with 12% in 2007/08. The proportion of resultant arrests has been consistently lower for the Asian self-identified ethnic group.
In 2011/12, for those aged 10 or older, a Black person was nearly three times more likely to be arrested per 1,000 population than a White person, while a person from the Mixed ethnic group was twice as likely. There was no difference in the rate of arrests between Asian and White persons.
The number of arrests decreased in each year between 2008/09 and 2011/12, consistent with a downward trend in police recorded crime since 2004/05. Overall, the number of arrests decreased for all ethnic groups between 2008/09 and 2011/12, however arrests of suspects from the Black, Asian and Mixed ethnic groups peaked in 2010/11.
Arrests for drug offences and sexual offences increased for suspects in all ethnic groups except the Chinese or Other ethnic group between 2008/09 and 2011/12. In addition, there were increases in arrests for burglary, robbery and the other offences category for suspects from the Black and Asian ethnic groups.
The use of out of court disposals (Penalty Notices for Disorder and caution
The areas of focus include: Victimisation, Police Activity, Defendants and Court Outcomes, Offender Management, Offender Characteristics, Offence Analysis, and Practitioners.
This is the latest biennial compendium of Statistics on Race and the Criminal Justice System and follows on from its sister publication Statistics on Women and the Criminal Justice System, 2017.
This publication compiles statistics from data sources across the Criminal Justice System (CJS), to provide a combined perspective on the typical experiences of different ethnic groups. No causative links can be drawn from these summary statistics. For the majority of the report no controls have been applied for other characteristics of ethnic groups (such as average income, geography, offence mix or offender history), so it is not possible to determine what proportion of differences identified in this report are directly attributable to ethnicity. Differences observed may indicate areas worth further investigation, but should not be taken as evidence of bias or as direct effects of ethnicity.
In general, minority ethnic groups appear to be over-represented at many stages throughout the CJS compared with the White ethnic group. The greatest disparity appears at the point of stop and search, arrests, custodial sentencing and prison population. Among minority ethnic groups, Black individuals were often the most over-represented. Outcomes for minority ethnic children are often more pronounced at various points of the CJS. Differences in outcomes between ethnic groups over time present a mixed picture, with disparity decreasing in some areas are and widening in others.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Black people were over twice as likely to be arrested as white people – there were 20.4 arrests for every 1,000 black people, and 9.4 for every 1,000 white people.
There has been little research on United States homicide rates from a long-term perspective, primarily because there has been no consistent data series on a particular place preceding the Uniform Crime Reports (UCR), which began its first full year in 1931. To fill this research gap, this project created a data series on homicides per capita for New York City that spans two centuries. The goal was to create a site-specific, individual-based data series that could be used to examine major social shifts related to homicide, such as mass immigration, urban growth, war, demographic changes, and changes in laws. Data were also gathered on various other sites, particularly in England, to allow for comparisons on important issues, such as the post-World War II wave of violence. The basic approach to the data collection was to obtain the best possible estimate of annual counts and the most complete information on individual homicides. The annual count data (Parts 1 and 3) were derived from multiple sources, including the Federal Bureau of Investigation's Uniform Crime Reports and Supplementary Homicide Reports, as well as other official counts from the New York City Police Department and the City Inspector in the early 19th century. The data include a combined count of murder and manslaughter because charge bargaining often blurs this legal distinction. The individual-level data (Part 2) were drawn from coroners' indictments held by the New York City Municipal Archives, and from daily newspapers. Duplication was avoided by keeping a record for each victim. The estimation technique known as "capture-recapture" was used to estimate homicides not listed in either source. Part 1 variables include counts of New York City homicides, arrests, and convictions, as well as the homicide rate, race or ethnicity and gender of victims, type of weapon used, and source of data. Part 2 includes the date of the murder, the age, sex, and race of the offender and victim, and whether the case led to an arrest, trial, conviction, execution, or pardon. Part 3 contains annual homicide counts and rates for various comparison sites including Liverpool, London, Kent, Canada, Baltimore, Los Angeles, Seattle, and San Francisco.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
In response to a growing concern about hate crimes, the United States Congress enacted the Hate Crime Statistics Act of 1990. The Act requires the attorney general to establish guidelines and collect, as part of the Uniform Crime Reporting (UCR) Program, data "about crimes that manifest evidence of prejudice based on race, religion, sexual orientation, or ethnicity, including where appropriate the crimes of murder and non-negligent manslaughter, forcible rape, aggravated assault, simple assault, intimidation, arson, and destruction, damage or vandalism of property." Hate crime data collection was required by the Act to begin in calendar year 1990 and to continue for four successive years. In September 1994, the Violent Crime Control and Law Enforcement Act amended the Hate Crime Statistics Act to add disabilities, both physical and mental, as factors that could be considered a basis for hate crimes. Although the Act originally mandated data collection for five years, the Church Arson Prevention Act of 1996 amended the collection duration "for each calendar year," making hate crime statistics a permanent addition to the UCR program. As with the other UCR data, law enforcement agencies contribute reports either directly or through their state reporting programs. Information contained in the data includes number of victims and offenders involved in each hate crime incident, type of victims, bias motivation, offense type, and location type.
This chart shows the distribution of people involved in homicide cases in France in 2022, by nationality. It displays that ** percent of individuals accused of homicide in France were French.
As of 2021, Black men had the highest firearm homicide rate in the United States, with ***** homicides by firearm per 100,000 of the population. In comparison, Black women had a firearm homicide rate of **** per 100,000 of the population. In that year, the risk of gun homicide was lowest among Asian people across all genders.
The purpose of this project was to examine possible defendant and victim race effects in capital decisions in the federal system. Per the terms of their grant, the researchers selected cases that were handled under the revised Death Penalty Protocol of 1995 and were processed during Attorney General Janet Reno's term in office. The researchers began the project by examining a sample of Department of Justice Capital Case Unit (CCU) case files. These files contained documents submitted by the United States Attorney's Office (USAO), a copy of the indictment, a copy of the Attorney General's Review Committee on Capital Cases (AGRC's) draft and final memorandum to the Attorney General (AG), and a copy of the AG's decision letter. Next, they created a list of the types of data that would be feasible and desirable to collect and constructed a case abstraction form and coding rules for recording data on victims, defendants, and case characteristics from the CCU's hard-copy case files. The record abstractors did not have access to information about defendant or victim gender or race. Victim and defendant race and gender data were obtained from the CCU's electronic files. Five specially trained coders used the case abstraction forms to record and enter salient information in the CCU hard-copy files into a database. Coders worked on only one case at a time. The resulting database contains 312 cases for which defendant- and victim-race data were available for the 94 federal judicial districts. These cases were received by the CCU between January 1, 1995 and July 31, 2000, and for which the AG at the time had made a decision about whether to seek the death penalty prior to December 31, 2000. The 312 cases includes a total of 652 defendants (see SAMPLING for cases not included). The AG made a seek/not-seek decision for 600 of the defendants, with the difference between the counts stemming mainly from defendants pleading guilty prior to the AG making a charging decision. The database was structured to allow researchers to examine two stages in the federal prosecution process, namely the USAO recommendation to seek or not to seek the death penalty and the final AG charging decision. Finally, dispositions (e.g., sentence imposed) were obtained for all but 12 of the defendants in the database. Variables include data about the defendants and victims such as age, gender, race/ethnicity, employment, education, marital status, and the relationship between the defendant and victim. Data are provided on the defendant's citizenship (United States citizen, not United States citizen), place of birth (United States born, foreign born), offense dates, statute code, counts for the ten most serious offenses committed, defendant histories of alcohol abuse, drug abuse, mental illness, physical or sexual abuse as a child, serious head injury, intelligence (IQ), or other claims made in the case. Information is included for up to 13 USAO assessments and 13 AGRC assessments of statutory and non-statutory aggravating factors and mitigating factors. Victim characteristics included living situation and other reported factors, such as being a good citizen, attending school, past abuse by the defendant, gross size difference between the victim and defendant, if the victim was pregnant, if the victim had a physical handicap, mental or emotional problems or developmental disability, and the victim's present or former status (e.g., police informant, prison inmate, law enforment officer). Data are also provided for up to 13 factors each regarding the place and nature of the killing, defendant motive, coperpetrators, weapons, injuries, witnesses, and forensic and other evidence.
Attributes/demographics of FBI Uniform Crime Reporting Part I violent crime victims and offenders, updated monthly, aggregated to the CMPD jurisdiction, Neighborhood Profile Area (NPA), and Violent Crime Hotspot (focus areas for the City's violence reduction initiative). Monthly counts cover the time frame Jan-2015 to present. Crime categories comprising violent crime include homicide, rape, robbery, and aggravated assault. Attributes of violent crime victims include counts of domestic violence (DV and Non-DV), age group, gender, and race/ethnicity. Attributes of violent crime offenders include counts of age group, gender, and race/ethnicity.
This dataset shows City level data for all over the United States, and has various attributes for different crimes. Cities are shown as Latitude and longitude points. Attributes include murder, manslaughter, violent crimes, arson, motor vehicle theft, property crimes, aggravated assault, burglary, larceny, theft, and rape. Data was provided by the Federal Bureau of Investigation. Source: FBI URL: http://www.fbi.gov/ucr/cius2006/data/table_08.html
Biennial statistics on the representation of Black, Asian and Minority Ethnic groups as victims, suspects, offenders and employees in the Criminal Justice System.
These reports are released by the Ministry of Justice and produced in accordance with arrangements approved by the UK Statistics Authority.
This report provides information about how members of Black, Asian and Minority Ethnic (BME) Groups in England and Wales were represented in the Criminal Justice System (CJS) in the most recent year for which data were available, and, wherever possible, across the last five years. Section 95 of the Criminal Justice Act 1991 requires the Government to publish statistical data to assess whether any discrimination exists in how the CJS treats people based on their race.
These statistics are used by policy makers, the agencies who comprise the CJS and others to monitor differences between ethnic groups and where practitioners and others may wish to undertake more in-depth analysis. The identification of differences should not be equated with discrimination as there are many reasons why apparent disparities may exist.
The most recent data on victims showed differences in the risks of crime between ethnic groups and, for homicides, in the relationship between victims and offenders. Overall, the number of racist incidents and racially or religiously aggravated offences recorded by the police had decreased over the last five years. Key Points:
Per 1,000 population, higher rates of s1 Stop and Searches were recorded for all BME groups (except for Chinese or Other) than for the White group. While there were decreases across the last five years in the overall number of arrests and in arrests of White people, arrests of those in the Black and Asian group increased.
Data on out of court disposals and court proceedings show some differences in the sanctions issued to people of differing ethnicity and also in sentence lengths. These differences are likely to relate to a range of factors including variations in the types of offences committed and the plea entered, and should therefore be treated with caution. Key points:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Police - Homicide Data Birmingham Contains: Case #, Victim Name, Sex, Race and Age. Location of Homicide and Zip code. Status of Case Terms: HOM - Homicide; CBA - Cleared by Arrest; Open - Case not Solved; Justified - Killing Justified (i.e., Self Defense)
In 2023, 8,842 murderers in the United States were white, while 6,405 were Black. A further 461 murderers were of another race, including American Indian or Alaska Native, Asian, and Native Hawaiian or Other Pacific Islander. However, not all law enforcement agencies submitted homicide data to the FBI in 2023, meaning there may be more murder offenders of each race than depicted. While the majority of circumstances behind murders in the U.S. are unknown, narcotics, robberies, and gang killings are most commonly identified.