Facebook
TwitterThis statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.
Life expectancy in North America
Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).
Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.
Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).
Facebook
TwitterNote: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.
This dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf
Facebook
TwitterIn 2021, women had an average life expectancy of ** years at birth, while men were expected to live 68.9 years. The average life expectancy worldwide dropped from 2019 to 2021, primarily due to the COVID-19 pandemic. This statistic depicts the average life expectancy at birth worldwide in 1990, 2019, and 2021, by gender.
Facebook
TwitterThe life expectancy for men aged 65 years in the U.S. has gradually increased since the 1960s. Now men in the United States aged 65 can expect to live 18.2 more years on average. Women aged 65 years can expect to live around 20.7 more years on average. Life expectancy in the U.S. As of 2023, the average life expectancy at birth in the United States was 78.39 years. Life expectancy in the U.S. had steadily increased for many years but has recently dropped slightly. Women consistently have a higher life expectancy than men but have also seen a slight decrease. As of 2023, a woman in the U.S. could be expected to live up to 81.1 years. Leading causes of death The leading causes of death in the United States include heart disease, cancer, unintentional injuries, and cerebrovascular diseases. However, heart disease and cancer account for around 42 percent of all deaths. Although heart disease and cancer are the leading causes of death for both men and women, there are slight variations in the leading causes of death. For example, unintentional injury and suicide account for a larger portion of deaths among men than they do among women.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides aggregated life expectancy data averaged over multiple years for various countries, along with associated socio-economic and health-related factors. It aims to facilitate analysis of global health trends, the relationship between life expectancy and development indicators, and regional disparities.
This dataset can be used for: 1. Exploratory Data Analysis (EDA): Understand trends in life expectancy across different regions and economic statuses. 2. Data Visualization: Create meaningful plots (e.g., choropleth maps, scatter plots, pair plots) to analyze relationships between variables. 3. Machine Learning: Develop predictive models for life expectancy based on socio-economic and health factors. 4. Policy Research: Support policy-making by identifying key factors influencing life expectancy.
This dataset is shared under the CC BY 4.0 License. Proper attribution is required for reuse.
Facebook
TwitterThis table contains mortality indicators by sex for Canada and all provinces except Prince Edward Island. These indicators are derived from three-year complete life tables. Mortality indicators derived from single-year life tables are also available (table 13-10-0837). For Prince Edward Island, Yukon, the Northwest Territories and Nunavut, mortality indicators derived from three-year abridged life tables are available (table 13-10-0140).
Facebook
TwitterVITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Facebook
TwitterINTRODUCTION This is my first data analysis project . This project is aim to find the average life expectancy in each country .The dataset used in this is life expectancy which freely available on Kaggle. I used R and Tableau in this project.
Facebook
TwitterLife expectancy at birth and at age 65, by sex, on a three-year average basis.
Facebook
TwitterThis table contains 2754 series, with data for years 2005/2007 - 2012/2014 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (153 items: Canada; Newfoundland and Labrador; Eastern Regional Integrated Health Authority, Newfoundland and Labrador; Central Regional Integrated Health Authority, Newfoundland and Labrador; ...); Age group (2 items: At birth; At age 65); Sex (3 items: Both sexes; Males; Females); Characteristics (3 items: Life expectancy; Low 95% confidence interval, life expectancy; High 95% confidence interval, life expectancy).
Facebook
TwitterAs of 2023, the countries with the highest life expectancy included Switzerland, Japan, and Spain. As of that time, a new-born child in Switzerland could expect to live an average of **** years. Around the world, females consistently have a higher average life expectancy than males, with females in Europe expected to live an average of *** years longer than males on this continent. Increases in life expectancy The overall average life expectancy in OECD countries increased by **** years from 1970 to 2019. The countries that saw the largest increases included Turkey, India, and South Korea. The life expectancy at birth in Turkey increased an astonishing 24.4 years over this period. The countries with the lowest life expectancy worldwide as of 2022 were Chad, Lesotho, and Nigeria, where a newborn could be expected to live an average of ** years. Life expectancy in the U.S. The life expectancy in the United States was ***** years as of 2023. Shockingly, the life expectancy in the United States has decreased in recent years, while it continues to increase in other similarly developed countries. The COVID-19 pandemic and increasing rates of suicide and drug overdose deaths from the opioid epidemic have been cited as reasons for this decrease.
Facebook
TwitterLife Expectancy of the World Population
The dataset from Worldometer provides a ranked list of countries based on life expectancy at birth, which represents the average number of years a newborn is expected to live under current mortality rates. It includes global, regional, and country-specific life expectancy figures, with separate data for males and females. The dataset highlights disparities in longevity across nations, with countries like Hong Kong, Japan, and South Korea having the highest life expectancies. This data serves as a key indicator of public health, quality of life, and healthcare effectiveness, offering valuable insights for policymakers, researchers, and global health organizations.
Data Analysis & Machine Learning Approaches for Life Expectancy Data
Data Analysis Approaches Life expectancy data can be analyzed using descriptive statistics (mean, variance, distribution) and correlation analysis to identify relationships with factors like GDP, healthcare, and education. Time series analysis helps track longevity trends over time, while clustering techniques (e.g., K-Means) group countries with similar patterns. Additionally, geospatial analysis can visualize regional disparities in life expectancy.
Machine Learning Models For prediction, linear and multiple regression models estimate life expectancy based on socioeconomic indicators, while polynomial regression captures non-linear trends. Decision trees and Random Forests classify countries into high- and low-life expectancy groups. Deep learning techniques like neural networks (ANNs) can model complex relationships, while LSTMs are useful for time-series forecasting.
For pattern detection, K-Means clustering groups countries based on life expectancy trends, and DBSCAN identifies anomalies. Principal Component Analysis (PCA) helps in feature selection, improving model efficiency. These methods provide insights into longevity trends, helping policymakers and researchers improve public health strategies.
Life expectancy at birth. Data based on the latest United Nations Population Division estimates.
Source: https://www.worldometers.info/demographics/life-expectancy/#countries-ranked-by-life-expectancy
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Life Expectancy at Birth, Total for the United States (SPDYNLE00INUSA) from 1960 to 2023 about life expectancy, life, birth, and USA.
Facebook
TwitterNote: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.
This dataset gives the average life expectancy and corresponding confidence intervals for sex and racial-ethnic groups in Chicago for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/3qdj-cqb8/files/pJ3PVVyubnsS2SpGO5P5IOPtNgCJZTE3LNOeLagC3mw?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description_LE_ Sex_Race_Ethnicity.pdf
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph shows the average life insurance payout in the United States from 2003 to 2023. The x-axis represents the years, from 2003 to 2023, while the y-axis indicates the average payout amount in U.S. dollars. The data reveals a steady increase in payouts over the two-decade period, with the lowest payout of $128,000 in 2003 and the highest payout of $206,000 in 2023. The trend shows a general rise in average life insurance payouts, with significant increases occurring between 2003 and 2007, and more gradual growth in the later years.
Facebook
TwitterThis dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 24 countries was 77.36 years. The highest value was in Bermuda: 84.51 years and the lowest value was in Haiti: 66.7 years. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 192 countries was 74.94 years. The highest value was in Macao: 87.98 years and the lowest value was in Nigeria: 53.97 years. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Published by the Centers for Disease Control (CDC) National Center for Health Statistics, The U.S. Small-area Life Expectancy Estimates Project (USALEEP) is a partnership of NCHS, the Robert Wood Johnson Foundation (RWJF), and the National Association for Public Health Statistics and Information Systems (NAPHSIS) to produce a new measure of health for where you live. The USALEEP project produced estimates of life expectancy at birth—the average number of years a person can expect to live—for most of the census tracts in the United States for the period 2010-2015.
The URL for the original data is: https://www.cdc.gov/nchs/nvss/usaleep/usaleep.html#life-expectancy
There are three files in this deposit:
US_A.CSV - a csv file containing the USALEEP data for the United States
WI_A.CSV - a csv file containing the USALEEP data for Wisconsin
ME_A.CSV - a csv file containing the USALEEP data for Maine The WI and MI data are not included in the US_A dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tablice trwania życia, nazywane również tablicami wymieralności, obrazują zarówno przeciętne dalsze trwanie życia, jak również potencjalny schemat wymierania populacji. Przeciętne dalsze trwanie życia osoby w wieku x lat jest przewidywaniem długości trwania życia w przyszłości. Informuje ile przeciętnie lat ma do przeżycia osoba w wieku x ukończonych lat ma do przeżycia osoba w wieku x ukończonych lat, gdyby aktualnie obserwowane warunki umieralności utrzymywały się przez dostatecznie długi czas.
Najczęściej wykorzystywanym i cytowanym parametrem jest przeciętne trwanie życia noworodka lub krócej: przeciętne trwanie życia (oznaczane jako e0 ). Służy ono do badania zmian umieralności w czasie, jak również jest jedną z miar stanu zdrowia ludności. Służy również do porównań w obrębie kraju (np. międzywojewódzkich) oraz międzynarodowych.
Do budowy pełnych tablic trwania życia wykorzystuje się następujące dane:
• liczbę osób zmarłych w danym roku według ukończonego wieku,
• ludność według roczników wieku zgodnie ze stanem na 30 czerwca.
Źródło: GUS
Facebook
TwitterThis statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.
Life expectancy in North America
Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).
Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.
Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).