30 datasets found
  1. Congressional Districts

    • catalog.data.gov
    • s.cnmilf.com
    • +4more
    Updated Oct 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (USCB) (Point of Contact) (2025). Congressional Districts [Dataset]. https://catalog.data.gov/dataset/congressional-districts5
    Explore at:
    Dataset updated
    Oct 21, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 119th Congressional Districts dataset reflects boundaries from January 3rd, 2025 from the United States Census Bureau (USCB), and the attributes are updated every Sunday from the United States House of Representatives and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Information for each member of Congress is appended to the Census Congressional District shapefile using information from the Office of the Clerk, U.S. House of Representatives' website https://clerk.house.gov/xml/lists/MemberData.xml and its corresponding XML file. Congressional districts are the 435 areas from which people are elected to the U.S. House of Representatives. This dataset also includes 9 geographies for non-voting at large delegate districts, resident commissioner districts, and congressional districts that are not defined. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 119th Congress is seated from January 3, 2025 through January 3, 2027. In Connecticut, Illinois, and New Hampshire, the Redistricting Data Program (RDP) participant did not define the CDs to cover all of the state or state equivalent area. In these areas with no CDs defined, the code "ZZ" has been assigned, which is treated as a single CD for purposes of data presentation. The TIGER/Line shapefiles for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The boundaries of all other congressional districts reflect information provided to the Census Bureau by the states by May 31, 2024. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529006

  2. d

    Census Data

    • catalog.data.gov
    • data.globalchange.gov
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    U.S. Bureau of the Census
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  3. Voting Districts

    • hub.arcgis.com
    • geodata.colorado.gov
    • +1more
    Updated Jun 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). Voting Districts [Dataset]. https://hub.arcgis.com/datasets/fedmaps::voting-districts-2?uiVersion=content-views
    Explore at:
    Dataset updated
    Jun 29, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Voting DistrictsThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), depicts Voting Districts (VTDs) in the United States and Puerto Rico. Per the USCB, "VTDs refer to the generic name for geographic entities, such as precincts, wards, and election districts, established by state governments for the purpose of conducting elections.”Voting District 027 Danbury 1 (Ottawa County, OH)Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Voting Districts) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 63 (Series Information for 2020 Census Voting District (VTD) State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (Voting Districts - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: Voting Districts; My Congressional DistrictFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  4. m

    US Congressional District Map

    • maconinsights.maconbibb.us
    • maconinsights.com
    • +1more
    Updated Feb 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Macon-Bibb County Government (2018). US Congressional District Map [Dataset]. https://maconinsights.maconbibb.us/documents/MaconBibb::us-congressional-district-map/about
    Explore at:
    Dataset updated
    Feb 16, 2018
    Dataset authored and provided by
    Macon-Bibb County Government
    Area covered
    United States
    Description

    This map shows Congressional District boundaries for the United States. The map is set to middle Georgia.

    Congressional districts are the 435 areas from which members are elected to the U.S. House of Representatives. After the apportionment of congressional seats among the states, which is based on decennial census population counts, each state with multiple seats is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The boundaries and numbers shown for the congressional districts are those specified in the state laws or court orders establishing the districts within each state.

    Congressional districts for the 108th through 112th sessions were established by the states based on the result of the 2000 Census. Congressional districts for the 113th through 115th sessions were established by the states based on the result of the 2010 Census. Boundaries are effective until January of odd number years (for example, January 2015, January 2017, etc.), unless a state initiative or court ordered redistricting requires a change. All states established new congressional districts in 2011-2012, with the exception of the seven single member states (Alaska, Delaware, Montana, North Dakota, South Dakota, Vermont, and Wyoming).

    For the states that have more than one representative, the Census Bureau requested a copy of the state laws or applicable court order(s) for each state from each secretary of state and each 2010 Redistricting Data Program state liaison requesting a copy of the state laws and/or applicable court order(s) for each state. Additionally, the states were asked to furnish their newly established congressional district boundaries and numbers by means of geographic equivalency files. States submitted equivalency files since most redistricting was based on whole census blocks. Kentucky was the only state where congressional district boundaries split some of the 2010 Census tabulation blocks. For further information on these blocks, please see the user-note at the bottom of the tables for this state.

    The Census Bureau entered this information into its geographic database and produced tabulation block equivalency files that depicted the newly defined congressional district boundaries. Each state liaison was furnished with their file and requested to review, submit corrections, and certify the accuracy of the boundaries.

  5. a

    Current Districts

    • tea-texas.hub.arcgis.com
    Updated Oct 8, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Texas Education Agency (2012). Current Districts [Dataset]. https://tea-texas.hub.arcgis.com/datasets/71e710cac902400baf8addf23782e7dc
    Explore at:
    Dataset updated
    Oct 8, 2012
    Dataset authored and provided by
    Texas Education Agency
    Area covered
    Description

    2014-2015 Statewide School Districts for Texas. This information was collected from all 253 county central appraisal districts and from the Texas Education Agency. GIS staff of the Texas Legislative Council created the school district boundaries using the 2010 TIGER/Line Shapefile as base geography and made further corrections to match the school district boundary updates and name changes for the 2014-2015 School Year. These changes include lines that are not census geography. Changes to school district boundaries may include one or all of the following types: school district annexations or de-annexations; school district consolidations, deletions or additions; boundary corrections to the Texas Legislative Council database; boundary adjustments due to more spatially accurate data involving land parcels and survey data received from a county central appraisal district. Note: The 2014-2015 School Year school districts in the council's geographic file are not the same as the districts in the Census Bureau's 2010 TIGER/Line Shapefile. The population data for the council's 2014-2015 school districts does not correspond with the population data reported for the school districts reported by the Census Bureau. Modified by TEA to reflect the merger of La Marque ISD into Texas City ISD effective 01-JUL-2016.Maintenance of this data will normally consist of just uploading a new copy that you obtained from TLC. However, should it ever be necessary to make changes to the data yourself, I strongly suggest you download it, modify the downloaded copy, then use the "Overwrite" button to the right to upload your changes and over-write the entire dataset. While it is possible to edit the data using ArcGIS for desktop directly from this feature service, the process is clumsy since you cannot see all of the features at once. Even worse--once you do that, the data cannot be subsequently over-written. The data ends up being enabled for disconnected editing, which AGOL does to prevent you from stepping on someone else's potential offline edits. You then have to drop and re-publish the feature service, which means you have to then correct the URLs in the public open data site, and make sure the SDL map application can still find the data. So, in practice it turns out to be way more trouble than it is worth to directly edit via the desktop.

  6. U.S. Census Blocks

    • hub.arcgis.com
    • colorado-river-portal.usgs.gov
    • +4more
    Updated Jun 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). U.S. Census Blocks [Dataset]. https://hub.arcgis.com/datasets/d795eaa6ee7a40bdb2efeb2d001bf823
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    U.S. Census BlocksThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census Blocks in the United States. A brief description of Census Blocks, per USCB, is that "Census blocks are statistical areas bounded by visible features such as roads, streams, and railroad tracks, and by nonvisible boundaries such as property lines, city, township, school district, county limits and short line-of-sight extensions of roads." Also, "the smallest level of geography you can get basic demographic data for, such as total population by age, sex, and race."Census Block 1007Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Blocks) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 69 (Series Information for 2020 Census Block State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Blocks - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocksFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  7. 2023 Cartographic Boundary File (KML), Block Group for Georgia, 1:500,000

    • catalog.data.gov
    • s.cnmilf.com
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2024). 2023 Cartographic Boundary File (KML), Block Group for Georgia, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2023-cartographic-boundary-file-kml-block-group-for-georgia-1-500000
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within BG 3 within that census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. The generalized BG boundaries in this release are based on those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.

  8. u

    American Indian Tribal Subdivision

    • colorado-river-portal.usgs.gov
    • hub.arcgis.com
    • +2more
    Updated Jun 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). American Indian Tribal Subdivision [Dataset]. https://colorado-river-portal.usgs.gov/datasets/fedmaps::american-indian-tribal-subdivision-1
    Explore at:
    Dataset updated
    Jun 23, 2021
    Dataset authored and provided by
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    American Indian Tribal SubdivisionThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays American Indian tribal subdivisions. According to the USCB, American Indian tribal subdivisions are "described as additions, administrative areas, areas, chapters, county districts, communities, districts, or segments, are legal administrative subdivisions of federally recognized American Indian reservations and off-reservation trust lands or are statistical subdivisions of Oklahoma tribal statistical areas (OTSAs)."Moenkopi DistrictData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Tribal Subdivisions) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 65 (Series Information for American Indian Tribal Subdivision (AITS) National TIGER/Line Shapefiles, Current)OGC API Features Link: (American Indian Tribal Subdivision - OGC Features) copy this link to embed it in OGC Compliant viewers.For more information, please visit: My Tribal AreaFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  9. p

    Uninsured Population Census Data CY 2009-2014 Human Services

    • data.pa.gov
    csv, xlsx, xml
    Updated Jul 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Small Area Health Insurance Estimates Program, U.S. Census Bureau (2018). Uninsured Population Census Data CY 2009-2014 Human Services [Dataset]. https://data.pa.gov/w/s782-mpqp/33ch-zxdi?cur=NpQjDR1nV-g&from=root
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Jul 25, 2018
    Dataset authored and provided by
    Small Area Health Insurance Estimates Program, U.S. Census Bureau
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This data is pulled from the U.S. Census website. This data is for years Calendar Years 2009-2014. Product: SAHIE File Layout Overview Small Area Health Insurance Estimates Program - SAHIE Filenames: SAHIE Text and SAHIE CSV files 2009 – 2014 Source: Small Area Health Insurance Estimates Program, U.S. Census Bureau. Internet Release Date: May 2016 Description: Model‐based Small Area Health Insurance Estimates (SAHIE) for Counties and States File Layout and Definitions

    The Small Area Health Insurance Estimates (SAHIE) program was created to develop model-based estimates of health insurance coverage for counties and states. This program builds on the work of the Small Area Income and Poverty Estimates (SAIPE) program. SAHIE is only source of single-year health insurance coverage estimates for all U.S. counties.

    For 2008-2014, SAHIE publishes STATE and COUNTY estimates of population with and without health insurance coverage, along with measures of uncertainty, for the full cross-classification of: •5 age categories: 0-64, 18-64, 21-64, 40-64, and 50-64

    •3 sex categories: both sexes, male, and female

    •6 income categories: all incomes, as well as income-to-poverty ratio (IPR) categories 0-138%, 0-200%, 0-250%, 0-400%, and 138-400% of the poverty threshold

    •4 races/ethnicities (for states only): all races/ethnicities, White not Hispanic, Black not Hispanic, and Hispanic (any race).

    In addition, estimates for age category 0-18 by the income categories listed above are published.

    Each year’s estimates are adjusted so that, before rounding, the county estimates sum to their respective state totals and for key demographics the state estimates sum to the national ACS numbers insured and uninsured.

    This program is partially funded by the Centers for Disease Control and Prevention's (CDC), National Breast and Cervical Cancer Early Detection ProgramLink to a non-federal Web site (NBCCEDP). The CDC have a congressional mandate to provide screening services for breast and cervical cancer to low-income, uninsured, and underserved women through the NBCCEDP. Most state NBCCEDP programs define low-income as 200 or 250 percent of the poverty threshold. Also included are IPR categories relevant to the Affordable Care Act (ACA). In 2014, the ACA will help families gain access to health care by allowing Medicaid to cover families with incomes less than or equal to 138 percent of the poverty line. Families with incomes above the level needed to qualify for Medicaid, but less than or equal to 400 percent of the poverty line can receive tax credits that will help them pay for health coverage in the new health insurance exchanges.

    We welcome your feedback as we continue to research and improve our estimation methods. The SAHIE program's age model methodology and estimates have undergone internal U.S. Census Bureau review as well as external review. See the SAHIE Methodological Review page for more details and a summary of the comments and our response.

    The SAHIE program models health insurance coverage by combining survey data from several sources, including: •The American Community Survey (ACS) •Demographic population estimates •Aggregated federal tax returns •Participation records for the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp program •County Business Patterns •Medicaid •Children's Health Insurance Program (CHIP) participation records •Census 2010

    Margin of error (MOE). Some ACS products provide an MOE instead of confidence intervals. An MOE is the difference between an estimate and its upper or lower confidence bounds. Confidence bounds can be created by adding the margin of error to the estimate (for the upper bound) and subtracting the margin of error from the estimate (for the lower bound). All published ACS margins of error are based on a 90-percent confidence level.

  10. State American Indian Reservations - OGC Features

    • gisnation-sdi.hub.arcgis.com
    • hub.arcgis.com
    Updated Sep 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2022). State American Indian Reservations - OGC Features [Dataset]. https://gisnation-sdi.hub.arcgis.com/content/dd489d9211e2492aa70eb3728b3bd27c
    Explore at:
    Dataset updated
    Sep 2, 2022
    Dataset provided by
    Federal government of the United Stateshttp://www.usa.gov/
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau, displays state-recognized American Indian reservations. Per the USCB, “state American Indian reservations are the legally defined reservations of state-recognized tribes. The reservations of state-recognized tribes are established by treaty, statute, executive order and/or court order, and represent area over which the tribal government of a state-recognized American Indian tribe may have governmental authority.”Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (American Indian, Alaska Native, and Native Hawaiian Areas) and will support mapping, analysis, data exports and OGC API – Feature access.Data.gov: TIGER/Line Shapefile, 2019, nation, U.S., Current American Indian/Alaska Native/Native Hawaiian Areas National (AIANNH) NationalGeoplatform: TIGER/Line Shapefile, 2019, nation, U.S., Current American Indian/Alaska Native/Native Hawaiian Areas National (AIANNH) NationalFor more information, please visit: My Tribal AreaFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  11. r

    Senate Districts (2022)

    • rigis.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (2023). Senate Districts (2022) [Dataset]. https://www.rigis.org/datasets/senate-districts-2022/about
    Explore at:
    Dataset updated
    Mar 3, 2023
    Dataset authored and provided by
    Environmental Data Center
    Area covered
    Description

    This hosted feature layer has been published in RI State Plane Feet NAD 83State of Rhode Island General Assembly, Senate Districts. (2022) The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. State Legislative Districts (SLDs) are the areas from which members are elected to State legislatures. The SLDs embody the upper (senate) and lower (house) chambers of the state legislature. Nebraska has a unicameral legislature and the District of Columbia has a single council, both of which the Census Bureau treats as upper-chamber legislative areas for the purpose of data presentation; there are no data by SLDL for either Nebraska or the District of Columbia. A unique three-character census code, identified by state participants, is assigned to each SLD within a state. In Connecticut, Illinois, Louisiana, New Hampshire, Wisconsin, and Puerto Rico, the Redistricting Data Program (RDP) participant did not define the SLDs to cover all of the state or state equivalent area. In these areas with no SLDs defined, the code "ZZZ" has been assigned, which is treated as a single SLD for purposes of data presentation. The most recent state legislative district boundaries collected by the Census Bureau are for the 2022 election year and were provided by state-level participants through the RDP.

  12. Historic US Census - 1870

    • redivis.com
    application/jsonl +7
    Updated Feb 1, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2019). Historic US Census - 1870 [Dataset]. http://doi.org/10.57761/jt8f-3n08
    Explore at:
    application/jsonl, sas, spss, arrow, csv, avro, parquet, stataAvailable download formats
    Dataset updated
    Feb 1, 2019
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Area covered
    United States
    Description

    Abstract

    This dataset includes all individuals from the 1870 US census.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was developed through a collaboration between the Minnesota Population Center and the Church of Jesus Christ of Latter-Day Saints. The data contain demographic variables, economic variables, migration variables and race variables. Unlike more recent census datasets, pre-1900 census datasets only contain individual level characteristics and no household or family characteristics, but household and family identifiers do exist.

    The official enumeration day of the 1870 census was 1 June 1870. The main goal of an early census like the 1870 U.S. census was to allow Congress to determine the collection of taxes and the appropriation of seats in the House of Representatives. Each district was assigned a U.S. Marshall who organized other marshals to administer the census. These enumerators visited households and recorder names of every person, along with their age, sex, color, profession, occupation, value of real estate, place of birth, parental foreign birth, marriage, literacy, and whether deaf, dumb, blind, insane or “idiotic”.

    Sources: Szucs, L.D. and Hargreaves Luebking, S. (1997). Research in Census Records, The Source: A Guidebook of American Genealogy. Ancestry Incorporated, Salt Lake City, UT Dollarhide, W.(2000). The Census Book: A Genealogist’s Guide to Federal Census Facts, Schedules and Indexes. Heritage Quest, Bountiful, UT

  13. i

    Unified School District Boundaries 2021

    • indianamap.org
    • data-isdh.opendata.arcgis.com
    • +2more
    Updated Jan 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2023). Unified School District Boundaries 2021 [Dataset]. https://www.indianamap.org/datasets/unified-school-district-boundaries-2021/about
    Explore at:
    Dataset updated
    Jan 19, 2023
    Dataset authored and provided by
    IndianaMap
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    From the 2019 TIGER/Line Technical Documentation: The Census Bureau obtains school district boundaries, names, local education agency codes, grade ranges, and school district levels annually from state education officials. The Census Bureau collects this information for the primary purpose of providing the U.S. Department of Education with annual estimates of the number of children aged 5 through 17 in families in poverty within each school district, county, and state. This information serves as the basis for the Department of Education to determine the annual allocation of Title I funding to states and school districts. The 2023 118th Congressional District TIGER/Line Shapefiles include separate shapefiles for elementary, secondary, and unified school districts. The 2020 shapefiles contain information from the 2020 school year (i.e., districts in operation as of January 1, 2020). Unified school districts provide education to children of all school ages. In general, if there is a unified school district, no elementary or secondary school district exists. If there is an elementary school district, the secondary school district may or may not exist. In addition to regular functioning school districts, the TIGER/Line Shapefiles contain pseudoschool districts.

  14. s

    Legislative District

    • opendata.suffolkcountyny.gov
    Updated Jun 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suffolk County GIS (2025). Legislative District [Dataset]. https://opendata.suffolkcountyny.gov/datasets/SuffolkGIS::legislative-district/about
    Explore at:
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    Suffolk County GIS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The county is divided into 18 legislative districts. Every two years, the residents of each of the districts elect a representative to the Legislature. Every 10 years, after each census is tallied, the boundaries of the districts are redrawn according to the redistribution of the population.

  15. Housing by Race 2022 (all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Housing by Race 2022 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/d5c475d1744448a980f549c5a416faa3
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  16. U.S. adults favorability of Representative Marjorie Taylor Greene 2025

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. adults favorability of Representative Marjorie Taylor Greene 2025 [Dataset]. https://www.statista.com/statistics/1201814/favorability-marjorie-taylor-green-us-adults/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In a survey of U.S. adults conducted in March 2025, ***** percent of respondents held a very favorable opinion of Congresswoman Marjorie Taylor Greene. On the other hand, ***percent of respondents had a very unfavorable opinion of the Congresswoman.Congresswoman Greene is the U.S. representative for Georgia's **** congressional district. She is a member of the Republican Party, and has served her district since 2021.

  17. c

    CA State Senate Districts and Membership 2025-2030

    • gis.data.ca.gov
    • data.ca.gov
    • +4more
    Updated Jan 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2025). CA State Senate Districts and Membership 2025-2030 [Dataset]. https://gis.data.ca.gov/datasets/California::ca-state-senate-districts-and-membership-2025-2030
    Explore at:
    Dataset updated
    Jan 9, 2025
    Dataset authored and provided by
    California Department of Technology
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This is the last boundary change until the next redistricting following the 2030 Census. All of the districts now reflect the 2021 Citizens Redistricting Commission(CRC) plan. The only thing that will change is the members' names and parties as elections are held, appointments are made, or party affiliations change.Senate Districts feature layer is updated as-needed and we expect to update it more regularly in the future.Schema:F2020_POP: The 2020 population of the district as reported by the census.F2020_HU: Number of housing units in the district in 2020 as reported by the census.CRC_POP: Citizen's Redistricting Commission population.District: The District is the district number.Party: The Party is the party represented.last_name: The last name is the last name of the representative.first_name: The first name is the first name of the representative.district_website: The district website is the link to the district website.For more information about the F2020_Pop and the F2020_HU visit: https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html

  18. n

    National Population and Housing Census 2021, 12th Population Census - Nepal

    • microdata.nsonepal.gov.np
    Updated May 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistics Office (2023). National Population and Housing Census 2021, 12th Population Census - Nepal [Dataset]. https://microdata.nsonepal.gov.np/index.php/catalog/124
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset authored and provided by
    National Statistics Office
    Time period covered
    2021
    Area covered
    Nepal
    Description

    Abstract

    The 2021 NPHC is tthe first census conducted under the federal structure of Nepal. The main census enumeration was originally scheduled to take place over 15 days- from June 8 to 22, 2021, but due to the COVID-19 pandemic, the enumeration was postponed for five months. Once the impact of the pandemic subsided, the enumeration was carried out according to a new work plan for a 15 dya period from November 11 to 25, 2021.

    This report contains statistical tables at the national, provincial, district and municipal levels, derived from the topics covered in the census questionaires. The work of the analyzing the data in detail is still in progress. The report provides insights into the different aspects of the census operation, including its procedure, concepts, methodology, quality control, logistics, communication, data processing, challenges faced, and other management aspects.

    This census slightly differs from the previous censuses mainly due to the following activities: i. three modes of data collection (CAPI, PAPI and e-census); ii. a full count of all questions instead of sampling for certain questions, as was done in the previous two censuses, iii. collaboration with Ministry of Health and Population to ascertain the likely maternal mortality cases reported in the census by skilled health personnel; iv. data processing within its premises; v. recuitment of fresh youths as supervisor and enumerators; and vi. using school teachers as master trainers, especially for the local level training of enumerators.

    The objectives of the 2021 Population Census were:

    a) to develop a set of benchmark data for different purposes. b) to provide distribution of population by demographic, social and economic characteristics. c) to provide data for small administrative areas of the country on population and housing characteristics. d) to provide reliable frames for different types of sample surveys. e) to provide many demographic indicators like birth rates, death rates and migration rates. f) to project population for the coming years.

    The total population of Nepal, as of the census day (25 November 2021) is 29,164,578, of which the number of males is 14,253,551 (48.87 %) and the number of females is 14,911,027 (51.13 %). Accordingly, the sex ratio is 95.59 males per 100 females. Annual average population growth rate is 0.92 percent in 2021.

    Geographic coverage

    National Level, Ecological belt, Urban and Rural, Province, District, Municipality, Ward Level

    Analysis unit

    The census results provide information up to the ward level (the lowest administrative level of Nepal), household and indivisual.

    Universe

    The census covered all modified de jure household members (usual residents)

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f] and online

    Research instrument

    In this census three main questionnaires were developed for data collection. The first was the Listing Form deveoped mainly for capturing the basic household informatioin in each Enumeration area of the whole country. The second questionnaire was the main questionnaire with eight major Sections as mentioned hereunder.

    Listing Questionaire Section 1. Introduction Section 2. House information Section 3. Household information Section 4. Agriculture and livestock information Section 5. Other information

    Main Questionaire Section 1. Introduction Section 2. Household Information Section 3. Individual Information Section 4. Educational Information Section 5. Migration Section 6. Fertility Section 7.Disability Section 8. Economic Activity

    For the first time, the NPHC, 2021 brougt a Community Questionnaire aiming at capturing the socio-economic and demographic characteristics of the Wards (the lowest administrative division under Rural/Urban Municipalities). The Community Questionnaire contains 6 Chapters. The information derived from community questionnaire is expected to validate (cross checks) certain information collected from main questionnaire.

    Community questionaire Section 1. Introduction Section 2. Basic information of wards Section 3. Caste and mother tongue information Section 4. Current status of service within wards Section 5. Access of urban services and facilities within wards Section 6. Status of Disaster Risk

    It is noteworty that the digital version of questionnare was applied in collecting data within the selected municipalities of Kathmandu Valley. Enumerators mobilized in Kathmandu Valley were well trained to use tablets. Besides, online mode of data collection was adpoted for all the Nepalese Diplomatic Agencies located abroad.

    Cleaning operations

    For the concistency of data required logics were set in the data entry programme. For the processing and analysis of data SPSS and STATA programme were employed.

  19. Tribal Designated Statistical Areas

    • gisnation-sdi.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). Tribal Designated Statistical Areas [Dataset]. https://gisnation-sdi.hub.arcgis.com/datasets/fedmaps::tribal-designated-statistical-areas
    Explore at:
    Dataset updated
    Jun 23, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Tribal Designated Statistical AreasThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Tribal Designated Statistical Areas (TDSA) in the United States. Per the USCB, “TDSAs are statistical geographic entities identified and delineated for the Census Bureau by federally recognized American Indian tribes that do not currently have an American Indian reservation and/or off-reservation trust land. A TDSA is intended to encompass a compact and contiguous area that contains a concentration of individuals who identify with the delineating federally recognized American Indian tribe. TDSAs are also intended to be comparable to American Indian reservations within the same state or region and provide a means for reporting statistical data for the area.”Cayuga Nation & Samish Tribal Designated Statistical AreasData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Tribal Designated Statistical Areas) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 64 (Series Information for American Indian/Alaska Native/Native Hawaiian Areas (AIANNH) National TIGER/Line Shapefiles, Current)OGC API Features Link: (Tribal Designated Statistical Areas - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: My Tribal Area; TIGERwebFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  20. w

    Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel)...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Social Affairs (2020). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://microdata.worldbank.org/index.php/catalog/81
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset provided by
    Ministry of Social Affairs
    Strategic Marketing & Media Research Institute Group (SMMRI)
    Time period covered
    2003
    Area covered
    Serbia and Montenegro
    Description

    Abstract

    The study included four separate surveys:

    1. The LSMS survey of general population of Serbia in 2002
    2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

    3. The LSMS survey of general population of Serbia in 2003 (panel survey)

    4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

    Objectives

    LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

    The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

    Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

    Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

    Geographic coverage

    The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

    The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

    The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

    Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

    Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

    Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

    The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

    Response rate

    During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

    In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
United States Census Bureau (USCB) (Point of Contact) (2025). Congressional Districts [Dataset]. https://catalog.data.gov/dataset/congressional-districts5
Organization logo

Congressional Districts

Explore at:
Dataset updated
Oct 21, 2025
Dataset provided by
United States Census Bureauhttp://census.gov/
Description

The 119th Congressional Districts dataset reflects boundaries from January 3rd, 2025 from the United States Census Bureau (USCB), and the attributes are updated every Sunday from the United States House of Representatives and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Information for each member of Congress is appended to the Census Congressional District shapefile using information from the Office of the Clerk, U.S. House of Representatives' website https://clerk.house.gov/xml/lists/MemberData.xml and its corresponding XML file. Congressional districts are the 435 areas from which people are elected to the U.S. House of Representatives. This dataset also includes 9 geographies for non-voting at large delegate districts, resident commissioner districts, and congressional districts that are not defined. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 119th Congress is seated from January 3, 2025 through January 3, 2027. In Connecticut, Illinois, and New Hampshire, the Redistricting Data Program (RDP) participant did not define the CDs to cover all of the state or state equivalent area. In these areas with no CDs defined, the code "ZZ" has been assigned, which is treated as a single CD for purposes of data presentation. The TIGER/Line shapefiles for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The boundaries of all other congressional districts reflect information provided to the Census Bureau by the states by May 31, 2024. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529006

Search
Clear search
Close search
Google apps
Main menu