100+ datasets found
  1. d

    Handphone Users Survey - Use of Smartphones for Phone Calls - Dataset -...

    • archive.data.gov.my
    Updated Jul 24, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Handphone Users Survey - Use of Smartphones for Phone Calls - Dataset - MAMPU [Dataset]. https://archive.data.gov.my/data/dataset/use-of-smartphones-for-phone-calls
    Explore at:
    Dataset updated
    Jul 24, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Handphone Users Survey - Use of Smartphones for Phone Calls since 2012

  2. Data from: REFERENCES DATASET: A SYSTEMATIC REVIEW OF THE EDUCATIONAL USE OF...

    • zenodo.org
    • portal.reunid.eu
    • +1more
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francisco Javier Ramos-Pardo; Francisco Javier Ramos-Pardo; Diego Calderon-Garrido; Diego Calderon-Garrido; Cristina Alonso-Cano; Cristina Alonso-Cano (2024). REFERENCES DATASET: A SYSTEMATIC REVIEW OF THE EDUCATIONAL USE OF MOBILE PHONES IN TIMES OF COVID-19 [Dataset]. http://doi.org/10.5281/zenodo.7581311
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Francisco Javier Ramos-Pardo; Francisco Javier Ramos-Pardo; Diego Calderon-Garrido; Diego Calderon-Garrido; Cristina Alonso-Cano; Cristina Alonso-Cano
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The article "A systematic review of the educational use of mobile phones in times of COVID-19" aims to review what research has delved into the educational use of mobile phones during the COVID-19 pandemic. To do this, 38 papers indexed in the Journal Citation Reports database between 2020 and 2021 were analyzed. These works were categorized into the following categories: the mobile phone as part of educational innovation, improvement of results and academic performance, positive attitude towards mobile phone use in education, and risks and/or barriers to mobile phone use. The conclusions show that most teaching innovation experiences focus more on the device than on the student. Beyond its innovative nature, the mobile phone became a tool to allow access and continuity of training during the pandemic, especially in post-compulsory and higher education.

    This data set is composed of the table with the references used for the review.

  3. Mobile broadband connections per 100 inhabitants in the United States...

    • statista.com
    Updated Nov 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Mobile broadband connections per 100 inhabitants in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/3124/mobile-internet-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Nov 19, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of mobile broadband connections per 100 inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 21.1 connections (+11.49 percent). After the fifteenth consecutive increasing year, the mobile broadband penetration is estimated to reach 204.76 connections and therefore a new peak in 2029. Notably, the number of mobile broadband connections per 100 inhabitants of was continuously increasing over the past years.Mobile broadband connections include cellular connections with a download speed of at least 256 kbit/s (without satellite or fixed-wireless connections). Cellular Internet-of-Things (IoT) or machine-to-machine (M2M) connections are excluded. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of mobile broadband connections per 100 inhabitants in countries like Canada and Mexico.

  4. My Digital Footprint

    • kaggle.com
    zip
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Girish (2023). My Digital Footprint [Dataset]. https://www.kaggle.com/datasets/girish17019/my-digital-footprint
    Explore at:
    zip(874430159 bytes)Available download formats
    Dataset updated
    Jun 29, 2023
    Authors
    Girish
    Description

    Dataset Info:

    MyDigitalFootprint (MDF) is a novel large-scale dataset composed of smartphone embedded sensors data, physical proximity information, and Online Social Networks interactions aimed at supporting multimodal context-recognition and social relationships modelling in mobile environments. The dataset includes two months of measurements and information collected from the personal mobile devices of 31 volunteer users by following the in-the-wild data collection approach: the data has been collected in the users' natural environment, without limiting their usual behaviour. Existing public datasets generally consist of a limited set of context data, aimed at optimising specific application domains (human activity recognition is the most common example). On the contrary, the dataset contains a comprehensive set of information describing the user context in the mobile environment.

    The complete analysis of the data contained in MDF has been presented in the following publication:

    https://www.sciencedirect.com/science/article/abs/pii/S1574119220301383?via%3Dihub

    The full anonymised dataset is contained in the folder MDF. Moreover, in order to demonstrate the efficacy of MDF, there are three proof of concept context-aware applications based on different machine learning tasks:

    1. A social link prediction algorithm based on physical proximity data,
    2. The recognition of daily-life activities based on smartphone-embedded sensors data,
    3. A pervasive context-aware recommender system.

    For the sake of reproducibility, the data used to evaluate the proof-of-concept applications are contained in the folders link-prediction, context-recognition, and cars, respectively.

  5. Z

    Data from: A 24-hour dynamic population distribution dataset based on mobile...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Feb 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matti Manninen (2022). A 24-hour dynamic population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4724388
    Explore at:
    Dataset updated
    Feb 16, 2022
    Dataset provided by
    Tuuli Toivonen
    Olle Järv
    Henrikki Tenkanen
    Matti Manninen
    Claudia Bergroth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Helsinki Metropolitan Area, Finland
    Description

    Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.

    In this dataset:

    We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.

    Please cite this dataset as:

    Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4

    Organization of data

    The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:

    HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.

    HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.

    HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.

    target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.

    Column names

    YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.

    H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)

    In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.

    License Creative Commons Attribution 4.0 International.

    Related datasets

    Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612

    Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564

  6. Telemedicine Use in the Last 4 Weeks

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Telemedicine Use in the Last 4 Weeks [Dataset]. https://catalog.data.gov/dataset/telemedicine-use-in-the-last-4-weeks-5229c
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    To rapidly monitor recent changes in the use of telemedicine, the National Center for Health Statistics (NCHS) and the Health Resources and Services Administration’s Maternal and Child Health Bureau (HRSA MCHB) partnered with the Census Bureau on an experimental data system called the Household Pulse Survey. This 20-minute online survey was designed to complement the ability of the federal statistical system to rapidly respond and provide relevant information about the impact of the coronavirus pandemic in the U.S. The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of the COVID-19 pandemic on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, sex, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.

  7. Data from: Internet users

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Internet users [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/itandinternetindustry/datasets/internetusers
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 6, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Internet use in the UK annual estimates by age, sex, disability, ethnic group, economic activity and geographical location, including confidence intervals.

  8. R

    Data from: Myphone Dataset

    • universe.roboflow.com
    zip
    Updated Apr 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MCU (2022). Myphone Dataset [Dataset]. https://universe.roboflow.com/mcu/myphone
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 30, 2022
    Dataset authored and provided by
    MCU
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Ipad Bounding Boxes
    Description

    MyPhone

    ## Overview
    
    MyPhone is a dataset for object detection tasks - it contains Ipad annotations for 1,501 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  9. D

    Public Dataset Access and Usage

    • data.sfgov.org
    • s.cnmilf.com
    • +2more
    application/rdfxml +5
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Public Dataset Access and Usage [Dataset]. https://data.sfgov.org/City-Infrastructure/Public-Dataset-Access-and-Usage/su99-qvi4
    Explore at:
    csv, application/rssxml, json, tsv, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Jul 23, 2025
    Description

    A. SUMMARY This dataset is used to report on public dataset access and usage within the open data portal. Each row sums the amount of users who access a dataset each day, grouped by access type (API Read, Download, Page View, etc).

    B. HOW THE DATASET IS CREATED This dataset is created by joining two internal analytics datasets generated by the SF Open Data Portal. We remove non-public information during the process.

    C. UPDATE PROCESS This dataset is scheduled to update every 7 days via ETL.

    D. HOW TO USE THIS DATASET This dataset can help you identify stale datasets, highlight the most popular datasets and calculate other metrics around the performance and usage in the open data portal.

    Please note a special call-out for two fields: - "derived": This field shows if an asset is an original source (derived = "False") or if it is made from another asset though filtering (derived = "True"). Essentially, if it is derived from another source or not. - "provenance": This field shows if an asset is "official" (created by someone in the city of San Francisco) or "community" (created by a member of the community, not official). All community assets are derived as members of the community cannot add data to the open data portal.

  10. e

    Dataset for: Cognitive Ability, Reward Processing and Personality Associated...

    • b2find.eudat.eu
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dataset for: Cognitive Ability, Reward Processing and Personality Associated with Different Aspects of Smartphone Use - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/8156a131-bacd-5e0e-b3e4-97e53f80d61b
    Explore at:
    Dataset updated
    Jul 23, 2025
    Description

    This is the full data set (N=121) on a study of psychological factors associated with smartphone use. The data was collected between October 2016 and November 2017 by Dr Graham Pluck and colleagues, in a university in Ecuador. The dataset forms the basis of a single research paper to be submitted for publication in a psychology journal. It will be initially submitted to British Journal of Psychology. The main data set comprises item by item scores on a personality measures (EPQ-R, BIS-15) and a psychological distress scale (HADS). There is a measure of problem phone use (MPPUS). These were administered in Spanish. Also included are data from a the D-KEFS Trail Making Test, the (Spanish) Reading the Mind in the Eyes Test, a Continuous Performance Test, a Stop-signal Task, Card Arrange Reward Responsivity Objective Test (CARROT) and a 'Taffel-type' test of verbal operant conditioning. A secondary data set contains scores from a test-retest study of two of the measures, the BIS-15 and the MPPUS.

  11. d

    App + Web Consumer Data | MFour's 1st Party - App + Web Usage Data | 2M...

    • datarade.ai
    .csv
    Updated Nov 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mfour (2023). App + Web Consumer Data | MFour's 1st Party - App + Web Usage Data | 2M consumers, 3B+ events verified, US consumers | CCPA Compliant [Dataset]. https://datarade.ai/data-categories/app-data/datasets
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Nov 14, 2023
    Dataset authored and provided by
    mfour
    Area covered
    United States of America
    Description

    At MFour, our Behavioral Data stands out for its uniqueness and depth of insights. What makes our data genuinely exceptional is the combination of several key factors:

    • First-Party Opt-In Data: Our data is sourced directly from our opt-in panel of consumers who willingly participate in research and provide observed behaviors. This ensures the highest data quality and eliminates privacy concerns. CCPA compliant.

    • Unparalleled Data Coverage: With access to 3B+ billion events, we have an extensive pool of participants who allow us to observe their brick + mortar location visitation, app + web smartphone usage, or both. This large-scale coverage provides robust and reliable insights.

    • Our data is generally sourced through our Surveys On The Go (SOTG) mobile research app, where consumers are incentivized with cash rewards to participate in surveys and share their observed behaviors. This incentivized approach ensures a willing and engaged panel, leading to the highest-quality data.

    The primary use cases and verticals of our Behavioral Data Product are diverse and varied. Some key applications include:

    • Data Acquisition and Modeling: Our data helps businesses acquire valuable insights into consumer behavior and enables modeling for various research objectives.

    • Shopper Data Analysis: By understanding purchase behavior and patterns, businesses can optimize their strategies, improve targeting, and enhance customer experiences.

    • Media Consumption Insights: Our data provides a deep understanding of viewer behavior and patterns across popular platforms like YouTube, Amazon Prime, Netflix, and Disney+, enabling effective media planning and content optimization.

    • App Performance Optimization: Analyzing app behavior allows businesses to monitor usage patterns, track key performance indicators (KPIs), and optimize app experiences to drive user engagement and retention.

    • Location-Based Targeting: With our detailed location data, businesses can map out consumer visits to physical venues and combine them with web and app behavior to create predictive ad targeting strategies.

    • Audience Creation for Ad Placement: Our data enables the creation of highly targeted audiences for ad campaigns, ensuring better reach and engagement with relevant consumer segments.

    The Behavioral Data Product complements our comprehensive suite of data solutions in the broader context of our data offering. It provides granular and event-level insights into consumer behaviors, which can be combined with other data sets such as survey responses, demographics, or custom profiling questions to offer a holistic understanding of consumer preferences, motivations, and actions.

    MFour's Behavioral Data empowers businesses with unparalleled consumer insights, allowing them to make data-driven decisions, uncover new opportunities, and stay ahead in today's dynamic market landscape.

  12. Phone Number Data | 50M+ Verified Phone Numbers for Global Professionals |...

    • datarade.ai
    Updated Jan 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Phone Number Data | 50M+ Verified Phone Numbers for Global Professionals | Contact Details from 170M+ Profiles - Best Price Guarantee [Dataset]. https://datarade.ai/data-products/phone-number-data-50m-verified-phone-numbers-for-global-pr-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    Area covered
    Panama, Algeria, Mongolia, Mozambique, Timor-Leste, Korea (Democratic People's Republic of), Tonga, Uganda, Germany, San Marino
    Description

    Success.ai’s Phone Number Data offers direct access to over 50 million verified phone numbers for professionals worldwide, extracted from our expansive collection of 170 million profiles. This robust dataset includes work emails and key decision-maker profiles, making it an essential resource for companies aiming to enhance their communication strategies and outreach efficiency. Whether you're launching targeted marketing campaigns, setting up sales calls, or conducting market research, our phone number data ensures you're connected to the right professionals at the right time.

    Why Choose Success.ai’s Phone Number Data?

    Direct Communication: Reach out directly to professionals with verified phone numbers and work emails, ensuring your message gets to the right person without delay. Global Coverage: Our data spans across continents, providing phone numbers for professionals in North America, Europe, APAC, and emerging markets. Continuously Updated: We regularly refresh our dataset to maintain accuracy and relevance, reflecting changes like promotions, company moves, or industry shifts. Comprehensive Data Points:

    Verified Phone Numbers: Direct lines and mobile numbers of professionals across various industries. Work Emails: Reliable email addresses to complement phone communications. Professional Profiles: Decision-makers’ profiles including job titles, company details, and industry information. Flexible Delivery and Integration: Success.ai offers this dataset in various formats suitable for seamless integration into your CRM or sales platform. Whether you prefer API access for real-time data retrieval or static files for periodic updates, we tailor the delivery to meet your operational needs.

    Competitive Pricing with Best Price Guarantee: We provide this essential data at the most competitive prices in the industry, ensuring you receive the best value for your investment. Our best price guarantee means you can trust that you are getting the highest quality data at the lowest possible cost.

    Targeted Applications for Phone Number Data:

    Sales and Telemarketing: Enhance your telemarketing campaigns by reaching out directly to potential customers, bypassing gatekeepers. Market Research: Conduct surveys and research directly with industry professionals to gather insights that can shape your business strategy. Event Promotion: Invite prospects to webinars, conferences, and seminars directly through personal calls or SMS. Customer Support: Improve customer service by integrating accurate contact information into your support systems. Quality Assurance and Compliance:

    Data Accuracy: Our data is verified for accuracy to ensure over 99% deliverability rates. Compliance: Fully compliant with GDPR and other international data protection regulations, allowing you to use the data with confidence globally. Customization and Support:

    Tailored Data Solutions: Customize the data according to geographic, industry-specific, or job role filters to match your unique business needs. Dedicated Support: Our team is on hand to assist with data integration, usage, and any questions you may have. Start with Success.ai Today: Engage with Success.ai to leverage our Phone Number Data and connect with global professionals effectively. Schedule a consultation or request a sample through our dedicated client portal and begin transforming your outreach and communication strategies today.

    Remember, with Success.ai, you don’t just buy data; you invest in a partnership that grows with your business needs, backed by our commitment to quality and affordability.

  13. d

    EBRP Library Computer Usage Stats

    • catalog.data.gov
    • data.brla.gov
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2025). EBRP Library Computer Usage Stats [Dataset]. https://catalog.data.gov/dataset/ebrp-library-computer-usage-stats
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    data.brla.gov
    Description

    East Baton Rouge Parish Library computer usage statistics are organized by branch, year, and month. This dataset only includes the count for library patrons who have logged in to the Library’s public computers, located at any of the 14 locations.

  14. Z

    Gig economy in Poland

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Jan 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Beręsewicz, Maciej (2022). Gig economy in Poland [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5834790
    Explore at:
    Dataset updated
    Jan 11, 2022
    Dataset authored and provided by
    Beręsewicz, Maciej
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Poland
    Description

    This repository contains four datasets about the number of active users of selected mobile apps purchased from Selectivv company (https://selectivv.com/). Details regarding the data may be found below:

    How data was collected: Selectivv uses programmatic advertisements systems that collect information on about 24 mln smartphone users in Poland

    Apps:

    Transportation: Uber, Bolt Driver, FREE NOW, iTaxi,

    Delivery: Glover, Takeaway, Bolt Courier, Wolt;

    Unit: an active user of a given app. Active = used given app at least 1 minute in a given period (e.g. 1 unit during whole month, half-year).

    Period: 2018-2018; monthly and half-year data

    Spatial aggregation: country level, city level, functional area level, voivodeship level. Functional area is defined as here https://stat.gov.pl/en/regional-statistics/regional-surveys/urban-audit/larger-urban-zones-luz/

    Activity time: measured by activity time of given app (in hours; average and standard deviation)

    Datasets:

    gig-table1-monthly-counts-stats.csv -- the monthly number of active users;

    gig-table2-halfyear-demo-stats.csv -- the half-year number of active users by socio-demographic variables;

    gig-table3-halfyear-region-stats.csv -- the half-year number of active users by spatial aggregation;

    gig-table4-halfyear-activity-stats.csv -- the half-year activity time by working week, weekend, day (8-18) and night (18-8).

    Detailed description:

    1. gig-table1-monthly-counts-stats.csv

    Structure:

    month - YYYY-MM-DD -- we set all dates to 15th of given month but actually the data is about the whole month (active users in whole period); 2018-01-15 to 2021-12-15

    app -- app name (Uber, Bolt Driver, FREE NOW, iTaxi, Glover, Takeaway, Bolt Courier, Wolt)

    number_of_users -- the number of active users

    category -- Transportation, Deliver

    1. gig-table2-halfyear-demo-stats.csv

    Structure:

    gender -- men, women

    age -- 18-30, 31-50, 51-64

    country -- Poland, Ukraine, Other

    period -- 2018.1, 2018.2, 2019.1, 2019.2, 2020.1, 2021.2

    apps -- app name (Uber, Bolt Driver, FREE NOW, iTaxi, Glover, Takeaway, Bolt Courier, Wolt)

    number_of_users -- the number of active users

    students -- the share of students within a given row

    parents_of_children_0_4_years -- the share of parents of 0-4 years children in a given row

    parents_of_children_5_10_years -- the share of parents of 5-10 years children in a given row

    women_planning_a_baby -- the share of women planing a baby in a given row

    standard -- the share of standard smartphones in a given row

    premium_i_phone -- the share of iPhone smartphones in a given row

    other_premium -- the share of other premium smartphones in a given row

    category -- Transportation, Delivery

    1. gig-table3-halfyear-region-stats.csv

    Structure:

    group -- Voivodeship, Functional Area, Cities

    period -- 2018.1, 2018.2, 2019.1, 2019.2, 2020.1, 2021.2

    region_name:

    Cities -- Białystok, Bydgoszcz, Gdańsk, Gdynia, Gorzów Wielkopolski, Katowice, Kielce, Kraków, Łódź, Lublin, Olsztyn, Opole, Poznań, Rzeszów, Sopot, Szczecin, Toruń, Warszawa, Wrocław, Zielona Góra

    Functional Area -- Functional area - Białystok, Functional area - Bydgoszcz, Functional area - Gorzów Wielkopolski, Functional area - GZM, Functional area - GZM2, Functional area - Kielce, Functional area - Kraków, Functional area - Łódź, Functional area - Lublin, Functional area - Olsztyn, Functional area - Opole, Functional area - Poznań, Functional area - Rzeszów, Functional area - Szczecin, Functional area - Toruń, Functional area - Trójmiasto, Functional area - Warszawa, Functional area - Wrocław, Functional area - Zielona Góra

    Voivodeship -- dolnośląskie, kujawsko-pomorskie, łódzkie, lubelskie, lubuskie, małopolskie, mazowieckie, opolskie, podkarpackie, podlaskie, pomorskie, śląskie, świętokrzyskie, warmińsko-mazurskie, wielkopolskie, zachodniopomorskie

    apps -- app name (Uber, Bolt Driver, FREE NOW, iTaxi, Glover, Takeaway, Bolt Courier, Wolt)

    number_of_users -- the number of active users

    category -- Transportation, Delivery

    Please note that:

    the number of active users in a given functional area = number of active users in a city and a functional area of this city

    the number of active users in voivodeship = number of active users in a city, its functional area and the rest of the voivodeship where this city and functional area is located

    More details here: https://stat.gov.pl/en/regional-statistics/regional-surveys/urban-audit/larger-urban-zones-luz/

    1. gig-table4-halfyear-activity-stats.csv

    Structure:

    period -- 2018.1, 2018.2, 2019.1, 2019.2, 2020.1, 2021.2

    apps -- app name (Uber, Bolt Driver, FREE NOW, iTaxi, Glover, Takeaway, Bolt Courier, Wolt)

    day -- Mondays-Thursdays, Fridays-Sundays

    hour -- day (8-18), night (18-8)

    activity_time -- in hours

    statistic -- Average, Std.Dev. (standard deviation)

    category -- Transportation, Delivery

  15. f

    Data from: Temporal and Cultural Limits of Privacy in Smartphone App Usage

    • figshare.com
    • data.dtu.dk
    txt
    Updated Jan 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Alessandretti (2021). Temporal and Cultural Limits of Privacy in Smartphone App Usage [Dataset]. http://doi.org/10.11583/DTU.13650797.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 29, 2021
    Dataset provided by
    Technical University of Denmark
    Authors
    Laura Alessandretti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The file anonymized_app_data.csv contains a sample of smartphone app-fingerprints from 20,000 randomly selected individuals, collected in May 2016.Each record in the table corresponds to a (user, app) pair, and reveals that a given app was used at least once by a given user during May 2016. The table contains the following field:user_id : hashed user idapp_id: hashed id the smartphone app The data accompanies the publication: "Temporal and Cultural Limits of Privacy in Smartphone App Usage"

  16. A

    ‘LinkNYC Usage Statistics (Historical Data)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Mar 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘LinkNYC Usage Statistics (Historical Data)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-linknyc-usage-statistics-historical-data-bdc1/e0f6020f/?iid=001-105&v=presentation
    Explore at:
    Dataset updated
    Mar 8, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘LinkNYC Usage Statistics (Historical Data)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3fd12f6f-57ed-4414-89d4-e56a388e0432 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    LinkNYC is replacing the City’s outdated public telephones with a network of kiosks that provide free high-speed Wi-Fi, nationwide calling, a dedicated 911 button, charging ports for mobile devices, and access to selected websites. This dataset contains data on how the LinkNYC kiosks are being used, including numbers of users, number of Wi-Fi sessions, amount of data transmitted, and other information.

    --- Original source retains full ownership of the source dataset ---

  17. COVID-19 Case Surveillance Public Use Data

    • catalog.data.gov
    • opendatalab.com
    • +5more
    Updated Mar 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2022). COVID-19 Case Surveillance Public Use Data [Dataset]. https://catalog.data.gov/dataset/covid-19-case-surveillance-public-use-data
    Explore at:
    Dataset updated
    Mar 3, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Beginning March 1, 2022, the "COVID-19 Case Surveillance Public Use Data" will be updated on a monthly basis. This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data. CDC has three COVID-19 case surveillance datasets: COVID-19 Case Surveillance Public Use Data with Geography: Public use, patient-level dataset with clinical data (including symptoms), demographics, and county and state of residence. (19 data elements) COVID-19 Case Surveillance Public Use Data: Public use, patient-level dataset with clinical and symptom data and demographics, with no geographic data. (12 data elements) COVID-19 Case Surveillance Restricted Access Detailed Data: Restricted access, patient-level dataset with clinical and symptom data, demographics, and state and county of residence. Access requires a registration process and a data use agreement. (32 data elements) The following apply to all three datasets: Data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. Data are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. Some data cells are suppressed to protect individual privacy. The datasets will include all cases with the earliest date available in each record (date received by CDC or date related to illness/specimen collection) at least 14 days prior to the creation of the previously updated datasets. This 14-day lag allows case reporting to be stabilized and ensures that time-dependent outcome data are accurately captured. Datasets are updated monthly. Datasets are created using CDC’s operational Policy on Public Health Research and Nonresearch Data Management and Access and include protections designed to protect individual privacy. For more information about data collection and reporting, please see https://wwwn.cdc.gov/nndss/data-collection.html For more information about the COVID-19 case surveillance data, please see https://www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html Overview The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020 to clarify the interpretation of antigen detection tests and serologic test results within the case classification. The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported volun

  18. My NASA Data

    • data.nasa.gov
    • s.cnmilf.com
    • +4more
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). My NASA Data [Dataset]. https://data.nasa.gov/dataset/my-nasa-data
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    MY NASA DATA (MND) is a tool that allows anyone to make use of satellite data that was previously unavailable.Through the use of MND’s Live Access Server (LAS) a multitude of charts, plots and graphs can be generated using a wide variety of constraints. This site provides a large number of lesson plans with a wide variety of topics, all with the students in mind. Not only can you use our lesson plans, you can use the LAS to improve the ones that you are currently implementing in your classroom.

  19. Trending eBay Phone Charger Prices Dataset🔋🔌⚡

    • kaggle.com
    Updated Jan 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kanchana1990 (2024). Trending eBay Phone Charger Prices Dataset🔋🔌⚡ [Dataset]. http://doi.org/10.34740/kaggle/ds/4246786
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kanchana1990
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Dataset Description: Trending eBay Phone Charger Prices Dataset🔋⚡

    Overview:

    This dataset encapsulates a dynamic snapshot of over 3500 phone charger listings from eBay, reflecting the latest market trends, pricing variations, and consumer choices. Each entry is carefully curated to provide a comprehensive understanding of the current online marketplace for phone chargers.

    Columns:

    • Title: The product name as listed, reflecting brand, model, and key features.
    • Price: Listed price, captured as a snapshot of the market's current state.

    Ethical Consideration:

    The data was ethically obtained, adhering to eBay's terms of service and respecting user privacy. It's a product of meticulous aggregation aimed at providing insights into pricing trends and market behavior for educational and analytical purposes.

    User Advisory:

    We encourage users to utilize this dataset responsibly, considering the dynamic nature of online marketplaces. It's ideal for trend analysis, market research, or academic study. Ensure your use of this data complies with legal standards and respects intellectual property rights. As market conditions fluctuate, we advise cross-referencing with current data for time-sensitive projects.

    In General:

    The "Trending eBay Phone Charger Prices Dataset" serves as a powerful tool for understanding e-commerce trends, pricing strategies, and consumer preferences. Dive into this electrifying compilation and energize your research and analysis with the most current and comprehensive data available.

  20. d

    Mobile Location Data | United States | +300M Unique Devices | +150M Daily...

    • datarade.ai
    .json, .xml, .csv
    Updated Jul 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Quadrant (2020). Mobile Location Data | United States | +300M Unique Devices | +150M Daily Users | +200B Events / Month [Dataset]. https://datarade.ai/data-products/mobile-location-data-us
    Explore at:
    .json, .xml, .csvAvailable download formats
    Dataset updated
    Jul 7, 2020
    Dataset authored and provided by
    Quadrant
    Area covered
    United States
    Description

    Quadrant provides Insightful, accurate, and reliable mobile location data.

    Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.

    These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.

    We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.

    We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.

    Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.

    Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2017). Handphone Users Survey - Use of Smartphones for Phone Calls - Dataset - MAMPU [Dataset]. https://archive.data.gov.my/data/dataset/use-of-smartphones-for-phone-calls

Handphone Users Survey - Use of Smartphones for Phone Calls - Dataset - MAMPU

Explore at:
Dataset updated
Jul 24, 2017
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Handphone Users Survey - Use of Smartphones for Phone Calls since 2012

Search
Clear search
Close search
Google apps
Main menu