40 datasets found
  1. Google analytics - 3 years evidence of impact tracking my website which...

    • dro.deakin.edu.au
    • researchdata.edu.au
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anne Wilson (2024). Google analytics - 3 years evidence of impact tracking my website which contains a biography, catalogues, writings and video and photography work [Dataset]. https://dro.deakin.edu.au/articles/dataset/Google_analytics_-_3_years_evidence_of_impact_tracking_my_website_which_contains_a_biography_catalogues_writings_and_video_and_photography_work/20896387
    Explore at:
    Dataset updated
    Sep 22, 2024
    Dataset provided by
    Deakin Universityhttp://www.deakin.edu.au/
    Authors
    Anne Wilson
    License

    https://www.rioxx.net/licenses/all-rights-reserved/https://www.rioxx.net/licenses/all-rights-reserved/

    Description

    Google analytics - 3 years evidence of impact tracking my website which contains a biography, catalogues, writings and video and photography work

  2. c

    Google Analytics www cityofrochester gov

    • data.cityofrochester.gov
    Updated Dec 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2021). Google Analytics www cityofrochester gov [Dataset]. https://data.cityofrochester.gov/datasets/google-analytics-www-cityofrochester-gov/about
    Explore at:
    Dataset updated
    Dec 11, 2021
    Dataset authored and provided by
    Open_Data_Admin
    Description

    Data dictionary: Page_Title: Title of webpage used for pages of the website www.cityofrochester.gov Pageviews: Total number of pages viewed over the course of the calendar year listed in the year column. Repeated views of a single page are counted. Unique_Pageviews: Unique Pageviews - The number of sessions during which a specified page was viewed at least once. A unique pageview is counted for each URL and page title combination. Avg_Time: Average amount of time users spent looking at a specified page or screen. Entrances: The number of times visitors entered the website through a specified page.Bounce_Rate: " A bounce is a single-page session on your site. In Google Analytics, a bounce is calculated specifically as a session that triggers only a single request to the Google Analytics server, such as when a user opens a single page on your site and then exits without triggering any other requests to the Google Analytics server during that session. Bounce rate is single-page sessions on a page divided by all sessions that started with that page, or the percentage of all sessions on your site in which users viewed only a single page and triggered only a single request to the Google Analytics server. These single-page sessions have a session duration of 0 seconds since there are no subsequent hits after the first one that would let Google Analytics calculate the length of the session. "Exit_Rate: The number of exits from a page divided by the number of pageviews for the page. This is inclusive of sessions that started on different pages, as well as “bounce” sessions that start and end on the same page. For all pageviews to the page, Exit Rate is the percentage that were the last in the session. Year: Calendar year over which the data was collected. Data reflects the counts for each metric from January 1st through December 31st.

  3. d

    Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C...

    • datarade.ai
    .csv, .xls
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allforce (2025). Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C Website Visitor Identity Resolution [Dataset]. https://datarade.ai/data-products/traffic-continuum-from-solution-publishing-500m-us-web-traf-solution-publishing
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Allforce
    Area covered
    United States of America
    Description

    Unlock the Potential of Your Web Traffic with Advanced Data Resolution

    In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.

    Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.

    Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.

    Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.

    Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.

    Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.

    Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.

    Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.

    How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:

    Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.

    Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.

    Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.

    Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.

    Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.

    Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...

  4. Google Analytics 4 sample data

    • kaggle.com
    Updated Sep 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    preeti deshmukh (2023). Google Analytics 4 sample data [Dataset]. https://www.kaggle.com/datasets/pdaasha/ga4-obfuscated-sample-ecommerce-jan2021/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 16, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    preeti deshmukh
    Description

    Context Google Analytics 4 is Google analytics latest service that enables you to measure traffic and engagement across your website as well as app.

    Content This is a sample dataset of GA4 for Google Merchendise store for the month of Jan 2021.

    Acknowledgements This information is exported from the google bigquery public data set.

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:ga4_obfuscated_sample_ecommerce.events_*

    Inspiration To study google analytics it is really very difficult to get sample data so here's making it easy for some in need of one.

  5. d

    Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve...

    • datarade.ai
    .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VisitIQ™, Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve Website Visitors | Pixel | B2B2C 300 Million records | US [Dataset]. https://datarade.ai/data-products/visitiq-web-traffic-data-cookieless-first-party-opt-in-p-visitiq
    Explore at:
    .csvAvailable download formats
    Dataset authored and provided by
    VisitIQ™
    Area covered
    United States of America
    Description

    Be ready for a cookieless internet while capturing anonymous website traffic data!

    By installing the resolve pixel onto your website, business owners can start to put a name to the activity seen in analytics sources (i.e. GA4). With capture/resolve, you can identify up to 40% or more of your website traffic. Reach customers BEFORE they are ready to reveal themselves to you and customize messaging toward the right product or service.

    This product will include Anonymous IP Data and Web Traffic Data for B2B2C.

    Get a 360 view of the web traffic consumer with their business data such as business email, title, company, revenue, and location.

    Super easy to implement and extraordinarily fast at processing, business owners are thrilled with the enhanced identity resolution capabilities powered by VisitIQ's First Party Opt-In Identity Platform. Capture/resolve and identify your Ideal Customer Profiles to customize marketing. Identify WHO is looking, WHAT they are looking at, WHERE they are located and HOW the web traffic came to your site.

    Create segments based on specific demographic or behavioral attributes and export the data as a .csv or through S3 integration.

    Check our product that has the most accurate Web Traffic Data for the B2B2C market.

  6. g

    Website analytics for Newcastle.gov | gimi9.com

    • gimi9.com
    Updated Jan 25, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Website analytics for Newcastle.gov | gimi9.com [Dataset]. https://gimi9.com/dataset/uk_website-analytics-for-newcastle-gov1
    Explore at:
    Dataset updated
    Jan 25, 2017
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Newcastle upon Tyne
    Description

    Daily analytics data on the number of visitors to the council website. Additional information For more information click the following link:https://www.newcastle.gov.uk/your-council-and-democracy/open-data-and-access-information/open-data/data-sets/website-analytics

  7. Web Analytics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Web Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/web-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States, Global
    Description

    Snapshot img

    Web Analytics Market Size 2025-2029

    The web analytics market size is forecast to increase by USD 3.63 billion, at a CAGR of 15.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the rising preference for online shopping and the increasing adoption of cloud-based solutions. The shift towards e-commerce is fueling the demand for advanced web analytics tools that enable businesses to gain insights into customer behavior and optimize their digital strategies. Furthermore, cloud deployment models offer flexibility, scalability, and cost savings, making them an attractive option for businesses of all sizes. However, the market also faces challenges associated with compliance to data privacy and regulations. With the increasing amount of data being generated and collected, ensuring data security and privacy is becoming a major concern for businesses.
    Regulatory compliance, such as GDPR and CCPA, adds complexity to the implementation and management of web analytics solutions. Companies must navigate these challenges effectively to maintain customer trust and avoid potential legal issues. To capitalize on market opportunities and address these challenges, businesses should invest in robust web analytics solutions that prioritize data security and privacy while providing actionable insights to inform strategic decision-making and enhance customer experiences.
    

    What will be the Size of the Web Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The market continues to evolve, with dynamic market activities unfolding across various sectors. Entities such as reporting dashboards, schema markup, conversion optimization, session duration, organic traffic, attribution modeling, conversion rate optimization, call to action, content calendar, SEO audits, website performance optimization, link building, page load speed, user behavior tracking, and more, play integral roles in this ever-changing landscape. Data visualization tools like Google Analytics and Adobe Analytics provide valuable insights into user engagement metrics, helping businesses optimize their content strategy, website design, and technical SEO. Goal tracking and keyword research enable marketers to measure the return on investment of their efforts and refine their content marketing and social media marketing strategies.

    Mobile optimization, form optimization, and landing page optimization are crucial aspects of website performance optimization, ensuring a seamless user experience across devices and improving customer acquisition cost. Search console and page speed insights offer valuable insights into website traffic analysis and help businesses address technical issues that may impact user behavior. Continuous optimization efforts, such as multivariate testing, data segmentation, and data filtering, allow businesses to fine-tune their customer journey mapping and cohort analysis. Search engine optimization, both on-page and off-page, remains a critical component of digital marketing, with backlink analysis and page authority playing key roles in improving domain authority and organic traffic.

    The ongoing integration of user behavior tracking, click-through rate, and bounce rate into marketing strategies enables businesses to gain a deeper understanding of their audience and optimize their customer experience accordingly. As market dynamics continue to evolve, the integration of these tools and techniques into comprehensive digital marketing strategies will remain essential for businesses looking to stay competitive in the digital landscape.

    How is this Web Analytics Industry segmented?

    The web analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      Cloud-based
      On-premises
    
    
    Application
    
      Social media management
      Targeting and behavioral analysis
      Display advertising optimization
      Multichannel campaign analysis
      Online marketing
    
    
    Component
    
      Solutions
      Services
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    .

    By Deployment Insights

    The cloud-based segment is estimated to witness significant growth during the forecast period.

    In today's digital landscape, web analytics plays a pivotal role in driving business growth and optimizing online performance. Cloud-based deployment of web analytics is a game-changer, enabling on-demand access to computing resources for data analysis. This model streamlines business intelligence processes by collecting,

  8. E

    Google Analytics Statistics By Revenue, Market, Customer, Usage And Facts...

    • electroiq.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Electro IQ (2025). Google Analytics Statistics By Revenue, Market, Customer, Usage And Facts (2025) [Dataset]. https://electroiq.com/stats/google-analytics-statistics/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Electro IQ
    License

    https://electroiq.com/privacy-policyhttps://electroiq.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Google Analytics Statistics: Google Analytics is one of the most popular tools to monitor your website’s performance, as it gathers data regarding customer behaviour, engagement, and preferences. They are segmented into two different versions: Google Analytics 4 (GA4) and Google Analytics 360 (GA360). Google Analytics was developed by Google and was released on November 14, 2005.

    This article includes several detailed analyses from different insights, including overall market analysis, user bases, visitors' interaction with a website, such as page views, session duration, traffic sources, and conversion rates.

  9. A

    ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-popular-website-traffic-over-time-62e4/62549059/?iid=003-357&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Popular Website Traffic Over Time ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/popular-website-traffice on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Background

    Have you every been in a conversation and the question comes up, who uses Bing? This question comes up occasionally because people wonder if these sites have any views. For this research study, we are going to be exploring popular website traffic for many popular websites.

    Methodology

    The data collected originates from SimilarWeb.com.

    Source

    For the analysis and study, go to The Concept Center

    This dataset was created by Chase Willden and contains around 0 samples along with 1/1/2017, Social Media, technical information and other features such as: - 12/1/2016 - 3/1/2017 - and more.

    How to use this dataset

    • Analyze 11/1/2016 in relation to 2/1/2017
    • Study the influence of 4/1/2017 on 1/1/2017
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Chase Willden

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  10. c

    ckanext-googleanalyticsbasic

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-googleanalyticsbasic [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-googleanalyticsbasic
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The googleanalyticsbasic extension for CKAN provides a simple way to integrate Google Analytics tracking into your CKAN-based data catalog. It injects the Google Analytics asynchronous tracking code into the page headers of your CKAN site, enabling basic page view tracking. This allows you to monitor site traffic and user behavior via the Google Analytics dashboard and therefore gain insights into how users interact with your data portal. This extension is compatible with CKAN versions 2.9 and 2.10. Key Features: Easy Google Analytics Integration: Simplifies the process of adding Google Analytics tracking to a CKAN site. You do not need to edit templates or write complex code, as the extension handles the injection of the tracking code. Asynchronous Tracking: Uses the asynchronous Google Analytics tracking code, which is designed to minimize any potential impact on page load times. Configuration via INI File: Enables the setting of Google Analytics tracking IDs via the CKAN configuration file (development.ini or similar). The extension uses a space-separated list of these google ids. Basic Page Tracking: Provides standard page view tracking functionality within Google Analytics. This is suited to monitoring how many hits each CKAN page receives and gives you an overview of site engagement. Compatibility: Supports CKAN versions 2.9 and 2.10. Use Cases: Usage Monitoring: Administrators can track essential metrics such as page views and user visits. Effectiveness Assessment: Evaluating the performance of data portals over time is improved with analytical insights. Informed Decisions: Providing data-driven basis for decisions, such as the prioritization of new features. Technical Integration: The googleanalyticsbasic extension integrates with CKAN by adding the required HTML to CKAN's pages using CKAN's plugin system. You need to activate the plugin in your CKAN configuration file and specify the Google Analytics tracking IDs you want to use. The extension then automatically inserts the tracking code into the appropriate sections of your CKAN pages. This is a simple process that requires no modification of the CKAN core code or installed template files. Benefits & Impact: By implementing the googleanalyticsbasic extension, CKAN site administrators can effortlessly monitor website traffic and user behaviour. This understanding can refine data portal content, improve site usability, and ultimately drive greater data accessibility and user engagement. This monitoring leads to better content development and resource prioritisation across the CKAN catalog.

  11. Website statistics—Your rights, crime and the law

    • data.qld.gov.au
    csv
    Updated Apr 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Communities, Housing and Digital Economy (2021). Website statistics—Your rights, crime and the law [Dataset]. https://www.data.qld.gov.au/dataset/website-statistics-your-rights-crime-and-the-law
    Explore at:
    csv(345.5 KiB), csv(298.5 KiB), csv(270 KiB), csv(265.5 KiB), csv(129.5 KiB), csv(315 KiB), csv(506.5 KiB), csv(16 bytes), csv(164 KiB), csv(238 KiB), csv(502.5 KiB), csv(211.5 KiB), csv(310.5 KiB), csv(388.5 KiB)Available download formats
    Dataset updated
    Apr 24, 2021
    Dataset provided by
    Department of Communities, Housing and Digital Economyhttp://housing.qld.gov.au/
    Authors
    Communities, Housing and Digital Economy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly statistics for pages viewed by visitors to the Queensland Government website—Your rights, crime and the law franchise. Source: Google Analytics

  12. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    Latvia, Monaco, Saint Vincent and the Grenadines, India, Jordan, Uzbekistan, Belarus, Jamaica, Liechtenstein, Russian Federation
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  13. b

    Dental Website Performance Statistics

    • bite-sites.com
    html
    Updated Jan 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bite-Sites (2019). Dental Website Performance Statistics [Dataset]. https://bite-sites.com/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 17, 2019
    Dataset authored and provided by
    Bite-Sites
    Description

    Key statistics about dental website performance and patient behavior

  14. W

    Website Down Checker Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Feb 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Website Down Checker Report [Dataset]. https://www.marketresearchforecast.com/reports/website-down-checker-17553
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Feb 1, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Website Down Checker Market Overview: The global website down checker market is expected to reach a value of approximately USD 65.6 million by 2033, exhibiting a CAGR of 6.7% during the forecast period (2025-2033). This growth can be attributed to the increasing reliance on websites for business operations and online transactions, coupled with the growing prevalence of sophisticated cyber threats. The demand for website down checkers is also driven by the need for proactive monitoring and rapid response to website outages. Cloud-based solutions are gaining traction due to their flexibility, scalability, and cost-effectiveness. The market is segmented based on type (cloud-based and on-premises) and application (personal and enterprise). Competitive Landscape and Regional Insights: Major players in the website down checker market include: • Website Down Checker • Website Status Checker • IsSiteDown.co.uk • Downdetector • Is My Website Down • Domsignal • Is Site Down • OnlineOrNot • Uptrends • Site24x7 Check Website Availability North America is expected to retain its dominant position in the market due to the high adoption of advanced technologies and stringent data privacy regulations. The Asia Pacific region is projected to exhibit significant growth potential due to the rapidly expanding digital landscape and increasing awareness about the importance of website uptime. Key factors shaping the market include the rise of mobile internet, growing adoption of the Internet of Things (IoT), and the need for ensuring uninterrupted online services.

  15. March Madness Historical DataSet (2002 to 2025)

    • kaggle.com
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Pilafas (2025). March Madness Historical DataSet (2002 to 2025) [Dataset]. https://www.kaggle.com/datasets/jonathanpilafas/2024-march-madness-statistical-analysis/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 22, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Jonathan Pilafas
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This Kaggle dataset comes from an output dataset that powers my March Madness Data Analysis dashboard in Domo. - Click here to view this dashboard: Dashboard Link - Click here to view this dashboard features in a Domo blog post: Hoops, Data, and Madness: Unveiling the Ultimate NCAA Dashboard

    This dataset offers one the most robust resource you will find to discover key insights through data science and data analytics using historical NCAA Division 1 men's basketball data. This data, sourced from KenPom, goes as far back as 2002 and is updated with the latest 2025 data. This dataset is meticulously structured to provide every piece of information that I could pull from this site as an open-source tool for analysis for March Madness.

    Key features of the dataset include: - Historical Data: Provides all historical KenPom data from 2002 to 2025 from the Efficiency, Four Factors (Offense & Defense), Point Distribution, Height/Experience, and Misc. Team Stats endpoints from KenPom's website. Please note that the Height/Experience data only goes as far back as 2007, but every other source contains data from 2002 onward. - Data Granularity: This dataset features an individual line item for every NCAA Division 1 men's basketball team in every season that contains every KenPom metric that you can possibly think of. This dataset has the ability to serve as a single source of truth for your March Madness analysis and provide you with the granularity necessary to perform any type of analysis you can think of. - 2025 Tournament Insights: Contains all seed and region information for the 2025 NCAA March Madness tournament. Please note that I will continually update this dataset with the seed and region information for previous tournaments as I continue to work on this dataset.

    These datasets were created by downloading the raw CSV files for each season for the various sections on KenPom's website (Efficiency, Offense, Defense, Point Distribution, Summary, Miscellaneous Team Stats, and Height). All of these raw files were uploaded to Domo and imported into a dataflow using Domo's Magic ETL. In these dataflows, all of the column headers for each of the previous seasons are standardized to the current 2025 naming structure so all of the historical data can be viewed under the exact same field names. All of these cleaned datasets are then appended together, and some additional clean up takes place before ultimately creating the intermediate (INT) datasets that are uploaded to this Kaggle dataset. Once all of the INT datasets were created, I joined all of the tables together on the team name and season so all of these different metrics can be viewed under one single view. From there, I joined an NCAAM Conference & ESPN Team Name Mapping table to add a conference field in its full length and respective acronyms they are known by as well as the team name that ESPN currently uses. Please note that this reference table is an aggregated view of all of the different conferences a team has been a part of since 2002 and the different team names that KenPom has used historically, so this mapping table is necessary to map all of the teams properly and differentiate the historical conferences from their current conferences. From there, I join a reference table that includes all of the current NCAAM coaches and their active coaching lengths because the active current coaching length typically correlates to a team's success in the March Madness tournament. I also join another reference table to include the historical post-season tournament teams in the March Madness, NIT, CBI, and CIT tournaments, and I join another reference table to differentiate the teams who were ranked in the top 12 in the AP Top 25 during week 6 of the respective NCAA season. After some additional data clean-up, all of this cleaned data exports into the "DEV _ March Madness" file that contains the consolidated view of all of this data.

    This dataset provides users with the flexibility to export data for further analysis in platforms such as Domo, Power BI, Tableau, Excel, and more. This dataset is designed for users who wish to conduct their own analysis, develop predictive models, or simply gain a deeper understanding of the intricacies that result in the excitement that Division 1 men's college basketball provides every year in March. Whether you are using this dataset for academic research, personal interest, or professional interest, I hope this dataset serves as a foundational tool for exploring the vast landscape of college basketball's most riveting and anticipated event of its season.

  16. d

    Altosight | AI Custom Web Scraping Data | 100% Global | Free Unlimited Data...

    • datarade.ai
    .json, .csv, .xls
    Updated Sep 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altosight (2024). Altosight | AI Custom Web Scraping Data | 100% Global | Free Unlimited Data Points | Bypassing All CAPTCHAs & Blocking Mechanisms | GDPR Compliant [Dataset]. https://datarade.ai/data-products/altosight-ai-custom-web-scraping-data-100-global-free-altosight
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset authored and provided by
    Altosight
    Area covered
    Tajikistan, Wallis and Futuna, Czech Republic, Guatemala, Paraguay, Svalbard and Jan Mayen, Singapore, Côte d'Ivoire, Greenland, Chile
    Description

    Altosight | AI Custom Web Scraping Data

    ✦ Altosight provides global web scraping data services with AI-powered technology that bypasses CAPTCHAs, blocking mechanisms, and handles dynamic content.

    We extract data from marketplaces like Amazon, aggregators, e-commerce, and real estate websites, ensuring comprehensive and accurate results.

    ✦ Our solution offers free unlimited data points across any project, with no additional setup costs.

    We deliver data through flexible methods such as API, CSV, JSON, and FTP, all at no extra charge.

    ― Key Use Cases ―

    ➤ Price Monitoring & Repricing Solutions

    🔹 Automatic repricing, AI-driven repricing, and custom repricing rules 🔹 Receive price suggestions via API or CSV to stay competitive 🔹 Track competitors in real-time or at scheduled intervals

    ➤ E-commerce Optimization

    🔹 Extract product prices, reviews, ratings, images, and trends 🔹 Identify trending products and enhance your e-commerce strategy 🔹 Build dropshipping tools or marketplace optimization platforms with our data

    ➤ Product Assortment Analysis

    🔹 Extract the entire product catalog from competitor websites 🔹 Analyze product assortment to refine your own offerings and identify gaps 🔹 Understand competitor strategies and optimize your product lineup

    ➤ Marketplaces & Aggregators

    🔹 Crawl entire product categories and track best-sellers 🔹 Monitor position changes across categories 🔹 Identify which eRetailers sell specific brands and which SKUs for better market analysis

    ➤ Business Website Data

    🔹 Extract detailed company profiles, including financial statements, key personnel, industry reports, and market trends, enabling in-depth competitor and market analysis

    🔹 Collect customer reviews and ratings from business websites to analyze brand sentiment and product performance, helping businesses refine their strategies

    ➤ Domain Name Data

    🔹 Access comprehensive data, including domain registration details, ownership information, expiration dates, and contact information. Ideal for market research, brand monitoring, lead generation, and cybersecurity efforts

    ➤ Real Estate Data

    🔹 Access property listings, prices, and availability 🔹 Analyze trends and opportunities for investment or sales strategies

    ― Data Collection & Quality ―

    ► Publicly Sourced Data: Altosight collects web scraping data from publicly available websites, online platforms, and industry-specific aggregators

    ► AI-Powered Scraping: Our technology handles dynamic content, JavaScript-heavy sites, and pagination, ensuring complete data extraction

    ► High Data Quality: We clean and structure unstructured data, ensuring it is reliable, accurate, and delivered in formats such as API, CSV, JSON, and more

    ► Industry Coverage: We serve industries including e-commerce, real estate, travel, finance, and more. Our solution supports use cases like market research, competitive analysis, and business intelligence

    ► Bulk Data Extraction: We support large-scale data extraction from multiple websites, allowing you to gather millions of data points across industries in a single project

    ► Scalable Infrastructure: Our platform is built to scale with your needs, allowing seamless extraction for projects of any size, from small pilot projects to ongoing, large-scale data extraction

    ― Why Choose Altosight? ―

    ✔ Unlimited Data Points: Altosight offers unlimited free attributes, meaning you can extract as many data points from a page as you need without extra charges

    ✔ Proprietary Anti-Blocking Technology: Altosight utilizes proprietary techniques to bypass blocking mechanisms, including CAPTCHAs, Cloudflare, and other obstacles. This ensures uninterrupted access to data, no matter how complex the target websites are

    ✔ Flexible Across Industries: Our crawlers easily adapt across industries, including e-commerce, real estate, finance, and more. We offer customized data solutions tailored to specific needs

    ✔ GDPR & CCPA Compliance: Your data is handled securely and ethically, ensuring compliance with GDPR, CCPA and other regulations

    ✔ No Setup or Infrastructure Costs: Start scraping without worrying about additional costs. We provide a hassle-free experience with fast project deployment

    ✔ Free Data Delivery Methods: Receive your data via API, CSV, JSON, or FTP at no extra charge. We ensure seamless integration with your systems

    ✔ Fast Support: Our team is always available via phone and email, resolving over 90% of support tickets within the same day

    ― Custom Projects & Real-Time Data ―

    ✦ Tailored Solutions: Every business has unique needs, which is why Altosight offers custom data projects. Contact us for a feasibility analysis, and we’ll design a solution that fits your goals

    ✦ Real-Time Data: Whether you need real-time data delivery or scheduled updates, we provide the flexibility to receive data when you need it. Track price changes, monitor product trends, or gather...

  17. Website Screenshots

    • kaggle.com
    • universe.roboflow.com
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pooria Mostafapoor (2025). Website Screenshots [Dataset]. https://www.kaggle.com/datasets/pooriamst/website-screenshots
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Pooria Mostafapoor
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The Website Screenshots dataset is a synthetically generated dataset composed of screenshots from over 1000 of the world's top websites. They have been automatically annotated to label the following classes: :fa-spacer: * button - navigation links, tabs, etc. * heading - text that was enclosed in <h1> to <h6> tags. * link - inline, textual <a> tags. * label - text labeling form fields. * text - all other text. * image - <img>, <svg>, or <video> tags, and icons. * iframe - ads and 3rd party content.

    Example

    This is an example image and annotation from the dataset: https://i.imgur.com/mOG3u3Z.png" alt="WIkipedia Screenshot">

    Usage

    Annotated screenshots are very useful in Robotic Process Automation. But they can be expensive to label. This dataset would cost over $4000 for humans to label on popular labeling services. We hope this dataset provides a good starting point for your project. Try it with a model from our model library.

    The dataset contains 1689 train data, 243 test data and 483 valid data.

  18. Datasets for Sentiment Analysis

    • zenodo.org
    csv
    Updated Dec 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie R. Repository creator - Campos Arias; Julie R. Repository creator - Campos Arias (2023). Datasets for Sentiment Analysis [Dataset]. http://doi.org/10.5281/zenodo.10157504
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 10, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Julie R. Repository creator - Campos Arias; Julie R. Repository creator - Campos Arias
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.

    Below are the datasets specified, along with the details of their references, authors, and download sources.

    ----------- STS-Gold Dataset ----------------

    The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.

    Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.

    File name: sts_gold_tweet.csv

    ----------- Amazon Sales Dataset ----------------

    This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.

    Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)

    Features:

    • product_id - Product ID
    • product_name - Name of the Product
    • category - Category of the Product
    • discounted_price - Discounted Price of the Product
    • actual_price - Actual Price of the Product
    • discount_percentage - Percentage of Discount for the Product
    • rating - Rating of the Product
    • rating_count - Number of people who voted for the Amazon rating
    • about_product - Description about the Product
    • user_id - ID of the user who wrote review for the Product
    • user_name - Name of the user who wrote review for the Product
    • review_id - ID of the user review
    • review_title - Short review
    • review_content - Long review
    • img_link - Image Link of the Product
    • product_link - Official Website Link of the Product

    License: CC BY-NC-SA 4.0

    File name: amazon.csv

    ----------- Rotten Tomatoes Reviews Dataset ----------------

    This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.

    This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).

    Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics

    File name: data_rt.csv

    ----------- Preprocessed Dataset Sentiment Analysis ----------------

    Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
    Stemmed and lemmatized using nltk.
    Sentiment labels are generated using TextBlob polarity scores.

    The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).

    DOI: 10.34740/kaggle/dsv/3877817

    Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }

    This dataset was used in the experimental phase of my research.

    File name: EcoPreprocessed.csv

    ----------- Amazon Earphones Reviews ----------------

    This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.

    This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.

    The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)

    License: U.S. Government Works

    Source: www.amazon.in

    File name (original): AllProductReviews.csv (contains 14337 reviews)

    File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)

    ----------- Amazon Musical Instruments Reviews ----------------

    This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.

    This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.

    The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).

    Source: http://jmcauley.ucsd.edu/data/amazon/

    File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)

    File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)

  19. Website statistics—Your rights, crime and the law

    • data.wu.ac.at
    • data.qld.gov.au
    • +1more
    csv
    Updated Aug 31, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Housing and Public Works (2018). Website statistics—Your rights, crime and the law [Dataset]. https://data.wu.ac.at/schema/data_qld_gov_au/MDRmN2NiZDEtYzA3NC00ZWViLWFjZmYtMjI2MzMyMDY2MmJi
    Explore at:
    csv(168228.0), csv(397996.0), csv(216704.0), csv(306116.0), csv(243853.0), csv(133019.0), csv(514677.0), csv(519162.0), csv(16.0), csv(276603.0), csv(354136.0), csv(272312.0), csv(322609.0), csv(318166.0)Available download formats
    Dataset updated
    Aug 31, 2018
    Dataset provided by
    Department of Communities, Housing and Digital Economyhttp://housing.qld.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly statistics for pages viewed by visitors to the Queensland Government website—Your rights, crime and the law franchise. Source: Google Analytics

  20. d

    Market Analysis | Consumer Behavior Data | Europe

    • datarade.ai
    .csv, .xls, .xml
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Echo Analytics (2024). Market Analysis | Consumer Behavior Data | Europe [Dataset]. https://datarade.ai/data-products/in-progress-v2-echo-analytics-market-analysis-europe-echo-analytics
    Explore at:
    .csv, .xls, .xmlAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset authored and provided by
    Echo Analytics
    Area covered
    Sweden, Germany, United Kingdom, Belgium, France, Italy, Spain, Europe
    Description

    Our Market Analysis dataset reveals where your visitors also shop, helping you define trade areas, uncover cross-shopping behavior, and enhance location strategy.

    Focused on major European markets, this GDPR-compliant, non-PII dataset shows which brands and categories are most visited by people frequenting your POI — supporting smarter site selection, lease renegotiation, and market expansion.

    Key data points include: - Cross-visitation by brand/category - Trade area reach and behavior mapping - Aggregated weekly, monthly, quarterly - Cleaned, normalized, GDPR-compliant data - Coverage across key European countries

    Built for retailers, landlords, and consultants seeking actionable insights into regional consumer behavior and competitive dynamics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anne Wilson (2024). Google analytics - 3 years evidence of impact tracking my website which contains a biography, catalogues, writings and video and photography work [Dataset]. https://dro.deakin.edu.au/articles/dataset/Google_analytics_-_3_years_evidence_of_impact_tracking_my_website_which_contains_a_biography_catalogues_writings_and_video_and_photography_work/20896387
Organization logo

Google analytics - 3 years evidence of impact tracking my website which contains a biography, catalogues, writings and video and photography work

Explore at:
Dataset updated
Sep 22, 2024
Dataset provided by
Deakin Universityhttp://www.deakin.edu.au/
Authors
Anne Wilson
License

https://www.rioxx.net/licenses/all-rights-reserved/https://www.rioxx.net/licenses/all-rights-reserved/

Description

Google analytics - 3 years evidence of impact tracking my website which contains a biography, catalogues, writings and video and photography work

Search
Clear search
Close search
Google apps
Main menu