100+ datasets found
  1. d

    Lunar Grid Reference System Rasters and Shapefiles

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Lunar Grid Reference System Rasters and Shapefiles [Dataset]. https://catalog.data.gov/dataset/lunar-grid-reference-system-rasters-and-shapefiles
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids designed to NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC), but this is not released here. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like is equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy, while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized in a similar manner to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require a LPS projection and equatorial areas a transverse Mercator. We describe the difference in the techniques and methods report associated with this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These data will be released at a later date. Two versions of the shape files are provided in this data release, PCRS and Display only. See LTM_LPS_LGRS_Shapefiles.zip file. PCRS are limited to a single zone and are projected in either LTM or LPS with topocentric coordinates formatted in Eastings and Northings. Display only shapefiles are formatted in lunar planetocentric latitude and longitude, a Mercator or Equirectangular projection is best for these grids. A description of each grid is provided below: Equatorial (Display Only) Grids: Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Merged LTM zone borders Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones Merged Global Areas (8°×8° and 8°×10° extended area) for all LTM zones Merged 25km grid for all LTM zones PCRS Shapefiles:` Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones 25km Gird for North and South LPS zones Global Areas (8°×8° and 8°×10° extended area) for each LTM zone 25km grid for each LTM zone The rasters in this data release detail the linear distortions associated with the LTM and LPS system projections. For these products, we utilize the same definitions of distortion as the U.S. State Plane Coordinate System. Scale Factor, k - The scale factor is a ratio that communicates the difference in distances when measured on a map and the distance reported on the reference surface. Symbolically this is the ratio between the maps grid distance and distance on the lunar reference sphere. This value can be precisely calculated and is provided in their defining publication. See Snyder (1987) for derivation of the LPS scale factor. This scale factor is unitless and typically increases from the central scale factor k_0, a projection-defining parameter. For each LPS projection. Request McClernan et. al., (in-press) for more information. Scale Error, (k-1) - Scale-Error, is simply the scale factor differenced from 1. Is a unitless positive or negative value from 0 that is used to express the scale factor’s impact on position values on a map. Distance on the reference surface are expended when (k-1) is positive and contracted when (k-1) is negative. Height Factor, h_F - The Height Factor is used to correct for the difference in distance caused between the lunar surface curvature expressed at different elevations. It is expressed as a ratio between the radius of the lunar reference sphere and elevations measured from the center of the reference sphere. For this work, we utilized a radial distance of 1,737,400 m as recommended by the IAU working group of Rotational Elements (Archinal et. al., 2008). For this calculation, height factor values were derived from a LOLA DEM 118 m v1, Digital Elevation Model (LOLA Science Team, 2021). Combined Factor, C_F – The combined factor is utilized to “Scale-To-Ground” and is used to adjust the distance expressed on the map surface and convert to the position on the actual ground surface. This value is the product of the map scale factor and the height factor, ensuring the positioning measurements can be correctly placed on a map and on the ground. The combined factor is similar to linear distortion in that it is evaluated at the ground, but, as discussed in the next section, differs numerically. Often C_F is scrutinized for map projection optimization. Linear distortion, δ - In keeping with the design definitions of SPCS2022 (Dennis 2023), we refer to scale error when discussing the lunar reference sphere and linear distortion, δ, when discussing the topographic surface. Linear distortion is calculated using C_F simply by subtracting 1. Distances are expended on the topographic surface when δ is positive and compressed when δ is negative. The relevant files associated with the expressed LTM distortion are as follows. The scale factor for the 90 LTM projections: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_K_grid_scale_factor.tif Height Factor for the LTM portion of the Moon: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_EF_elevation_factor.tif Combined Factor in LTM portion of the Moon LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_CF_combined_factor.tif The relevant files associated with the expressed LPS distortion are as follows. Lunar North Pole The scale factor for the northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the north pole of the Moon: LUNAR_LGRS_NP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_CF_combined_factor.tif Lunar South Pole Scale factor for the northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the south pole of the Moon: LUNAR_LGRS_SP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_CF_combined_factor.tif For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude, referred to as “Display Only”, please utilize a registered lunar geographic coordinate system (GCS) such as IAU_2015:30100 or ESRI:104903. LTM, LPS, and LGRS PCRS shapefiles utilize either a custom transverse Mercator or polar Stereographic projection. For PCRS grids the LTM and LPS projections are recommended for all LTM, LPS, and LGRS grid sizes. See McClernan et. al. (in-press) for such projections. Raster data was calculated using planetocentric latitude and longitude. A LTM and LPS projection or a registered lunar GCS may be utilized to display this data. Note: All data, shapefiles and rasters, require a specific projection and datum. The projection is recommended as LTM and LPS or, when needed, IAU_2015:30100 or ESRI:104903. The datum utilized must be the Jet Propulsion Laboratory (JPL) Development Ephemeris (DE) 421 in the Mean Earth (ME) Principal Axis Orientation as recommended by the International Astronomy Union (IAU) (Archinal et. al., 2008).

  2. n

    NY State Plane Coordinate System Zones

    • data.gis.ny.gov
    Updated Jan 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShareGIS NY (2024). NY State Plane Coordinate System Zones [Dataset]. https://data.gis.ny.gov/datasets/4de4d1aa1d2a4b00849cdacdd1a26d41
    Explore at:
    Dataset updated
    Jan 4, 2024
    Dataset authored and provided by
    ShareGIS NY
    Area covered
    Description

    Contains NY State Plane Coordinate System Zones. For use to see what State Plane Zone in New York of an area you are working in is.Please contact NYS ITS Geospatial Services at nysgis@its.ny.gov if you have any questions

  3. d

    NM OSE Geodetic Control Points within Land Grants with MS Access database,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (Point of Contact) (2020). NM OSE Geodetic Control Points within Land Grants with MS Access database, (UTM, Zone 13, NAD83) [Dataset]. https://catalog.data.gov/dataset/nm-ose-geodetic-control-points-within-land-grants-with-ms-access-database-utm-zone-13-nad83
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    Earth Data Analysis Center (Point of Contact)
    Area covered
    New Mexico
    Description

    This data set contains geodetic control points created for State Engineer Office in 1974 in New Mexico inside land grant boundaries.

  4. g

    TIFF Sidescan-Sonar mosaic of Lake Mohave : UTM, Zone 11, NAD83 Projection |...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TIFF Sidescan-Sonar mosaic of Lake Mohave : UTM, Zone 11, NAD83 Projection | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_tiff-sidescan-sonar-mosaic-of-lake-mohave-utm-zone-11-nad83-projection/
    Explore at:
    Area covered
    Lake Mohave
    Description

    Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and high-resolution seismic-reflection profiles along widely spaced lines throughout the lake. The detailed mapping of the lake floor was used to determine the amount of sediment that had accumulated in the lake since impoundment, its distribution, and the processes of deposition.

  5. w

    Louisiana Digital Elevation Dataset from LDEQ source data, UTM Zone 15...

    • data.wu.ac.at
    • datadiscoverystudio.org
    zip
    Updated Apr 9, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisiana Geographic Information Center (2015). Louisiana Digital Elevation Dataset from LDEQ source data, UTM Zone 15 NAD83, LOSCO (2004) [24KDEM_LDEQ_2004] [Dataset]. https://data.wu.ac.at/odso/data_gov/MjcyYmU1ZWYtMDdhNS00Nzk3LWFmM2ItMmU5NzY1ZWRjOGM4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 9, 2015
    Dataset provided by
    Louisiana Geographic Information Center
    Area covered
    e3433c977222ed11ed61988846511a43dbd4e840
    Description

    The Louisiana Digital Elevation Dataset was derived from the U.S. Geological Survey National Elevation Database (NED). This data was projected to Universal Transverse Mercator Zone 15, NAD83. The vertical units have been converted from meters to feet. The U.S. Geological Survey NED is a seamless mosaic of best-available elevation data. The 7.5-minute elevation data for the conterminous United States are the primary initial source data. In addition to the availability of complete 7.5-minute data, efficient processing methods were developed to filter production artifacts in the existing data, convert to the NAD83 datum, edge-match, and fill slivers of missing data at quadrangle seams. One of the effects of the NED processing steps is a much-improved base of elevation data for calculating slope and hydrologic derivatives.

  6. w

    Louisiana Land Cover Data Set, UTM Zone 15 NAD83, USGS...

    • data.wu.ac.at
    zip
    Updated Apr 9, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisiana Geographic Information Center (2015). Louisiana Land Cover Data Set, UTM Zone 15 NAD83, USGS [landcover_la_nlcd_usgs_2001.tif] [Dataset]. https://data.wu.ac.at/schema/data_gov/MjY3YTYxNzYtMWYzOS00MGZlLWJjZjItMjIwZjg0MGY3MDZm
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 9, 2015
    Dataset provided by
    Louisiana Geographic Information Center
    Area covered
    3aa47e0fc9724d5c0c85824a1a989bc832de532c
    Description

    The National Land Cover Database 2001 land cover layer for mapping zone 37A was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. This landcover map and all documents pertaining to it are considered "provisional" until a formal accuracy assessment can be conducted. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer et al. (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 is created by partitioning the U.S. into mapping zones. A total of 66 mapping zones were delineated within the conterminous U.S. based on ecoregion and geographical characteristics, edge matching features and the size requirement of Landsat mosaics. Mapping zone 37A encompasses whole or portions of several states, including the states of Texas, Arkansas, and Louisiana. Questions about the NLCD mapping zone 37A can be directed to the NLCD 2001 land cover mapping team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  7. Danger Zones and Restricted Areas

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact) (2025). Danger Zones and Restricted Areas [Dataset]. https://catalog.data.gov/dataset/danger-zones-and-restricted-areas4
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    These data represent the location of Danger Zones and Restricted Areas within coastal and marine waters, as outlined by the Code of Federal Regulations (CFR) and the Raster Navigational Charts (RNC). The CFR defines a Danger Zone as, "A defined water area (or areas) used for target practice, bombing, rocket firing or other especially hazardous operations, normally for the armed forces. The danger zones may be closed to the public on a full-time or intermittent basis, as stated in the regulations." The CFR defines a Restricted Area as, "A defined water area for the purpose of prohibiting or limiting public access to the area. Restricted areas generally provide security for Government property and/or protection to the public from the risks of damage or injury arising from the Government's use of that area." Other features in this dataset include: Danger Area, Missile Testing Area, Naval Operations Area, Prohibited Area, Restricted Airspace, Test Area, and Torpedo Testing Area. Authoritative information relating to these data may be found in Title 33, Chapter II of the CFR (Part 334).

  8. C

    Zone and Lot Attributes

    • data.wprdc.org
    • catalog.data.gov
    csv
    Updated May 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pittsburgh Parking Authority (2023). Zone and Lot Attributes [Dataset]. https://data.wprdc.org/dataset/zone-and-lot-attributes
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 21, 2023
    Dataset authored and provided by
    Pittsburgh Parking Authority
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes a table with space counts, number of meters, rates, and parking types for each zone, as sampled on particular dates. A second table includes lease counts by lot, also with the dates that the counts were made.

  9. SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture...

    • data.nasa.gov
    • catalog.data.gov
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update V007 [Dataset]. https://data.nasa.gov/dataset/smap-l4-global-3-hourly-9-km-ease-grid-surface-and-root-zone-soil-moisture-analysis-update
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection.

  10. c

    Data from: California State Waters Map Series--Monterey Canyon and Vicinity...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Monterey Canyon and Vicinity Web Services [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/california-state-waters-map-series-monterey-canyon-and-vicinity-web-services
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Monterey Canyon, Monterey County
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery, seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Monterey Canyon and Vicinity map area data layers. Data layers are symbolized as shown on the associated map sheets.

  11. d

    California State Waters Map Series--Offshore of Fort Ross Web Services

    • datasets.ai
    • data.usgs.gov
    • +2more
    55
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2023). California State Waters Map Series--Offshore of Fort Ross Web Services [Dataset]. https://datasets.ai/datasets/california-state-waters-map-series-offshore-of-fort-ross-web-services
    Explore at:
    55Available download formats
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Department of the Interior
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore Fort Ross map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Fort Ross map area data layers. Data layers are symbolized as shown on the associated map sheets.

  12. c

    California State Waters Map Series--Offshore of Point Reyes Web Services

    • s.cnmilf.com
    • data.usgs.gov
    • +3more
    Updated Sep 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Offshore of Point Reyes Web Services [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-point-reyes-web-services
    Explore at:
    Dataset updated
    Sep 30, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Reyes, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Reyes map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Reyes map area data layers. Data layers are symbolized as shown on the associated map sheets.

  13. b

    Time Zones

    • geodata.bts.gov
    • catalog.data.gov
    • +2more
    Updated Jul 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (2019). Time Zones [Dataset]. https://geodata.bts.gov/datasets/usdot::time-zones/about
    Explore at:
    Dataset updated
    Jul 1, 2019
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    Area covered
    Description

    The Time Zones dataset was compiled on October 04, 2019 and was updated January 05, 2023 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This layer is a digital representation of the geographic boundaries of the nine time zones that cover the United States and its territories (the Atlantic, Eastern, Central, Mountain, Pacific, Alaska, Hawaii–Aleutian, Samoa, and Chamorro time zones). The U.S. Department of Transportation (DOT) oversees the Nation's time zones and the uniform observance of Daylight-Saving Time. The oversight of time zones was assigned to DOT due to the importance of time coordination for transportation related activities. The time zones were established by the Standard Time Act of 1918 and amended by the Uniform Time Act of 1966. Time zones in the U.S. are defined in the U.S. Code, Title 15, Chapter 6, Subchapter IX - Standard Time. The time zone boundaries are defined in the Code of Federal Regulations (CFR), Title 49, Subtitle A, Part 71 - Standard Time Zone Boundaries. Segments used to compile the geospatial layer were derived from the CFR’s time zone descriptions (https://www.ecfr.gov/current/title-49/subtitle-A/part-71). Descriptions consist of segments referencing administrative boundaries, infrastructure, natural features, and geodesic lines. These segments are contained in various data layers in the National Geospatial Data Asset (NGDA) portfolio, the federal government’s authoritative geospatial data repository. Referenced segments were extracted from their NGDA and then merged to form continuous boundaries. In instances where there were multiple scales for a given dataset, the largest scale or most detailed layer was used. The standard time of the Atlantic zone is the Coordinated Universal Time (UTC) minus 4 hours; Eastern zone is UTC minus 5 hours; Central zone is UTC minus 6 hours; Mountain zone is UTC minus 7 hours; Pacific zone is UTC minus 8 hours; Alaska zone is UTC minus 9 hours; Hawaii–Aleutian zone is UTC minus 10 hours; Samoa zone is UTC minus 11 hours; and Chamorro zone is UTC plus 10 hours. For more information, please visit: https://doi.org/10.21949/1519143.

  14. d

    3-m Hill-Shaded Bathymetric Grid of National Oceanic and Atmospheric...

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Oct 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 3-m Hill-Shaded Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of Great Round Shoal Channel (H11079_UTM_HS, UTM Zone 19) [Dataset]. https://catalog.data.gov/dataset/3-m-hill-shaded-bathymetric-grid-of-national-oceanic-and-atmospheric-administration-noaa-s
    Explore at:
    Dataset updated
    Oct 7, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. Interpretive data layers were derived from multibeam echo-sounder and sidescan sonar data collected in Great Round Shoal Channel, a passage through the shoals at the eastern entrance to Nantucket Sound, off Cape Cod, Massachusetts. In June 2006, bottom photographs and surficial sediment data were acquired as part of a ground-truth reconaissance survey.

  15. d

    Data from: Stratigraphic and fault surfaces from the Three–Dimensional...

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Stratigraphic and fault surfaces from the Three–Dimensional Geologic Map of the southeastern Gabbs Valley Geothermal Area [Dataset]. https://catalog.data.gov/dataset/stratigraphic-and-fault-surfaces-from-the-threedimensional-geologic-map-of-the-southeaster
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This digital dataset represents the 3D fault and stratigraphic surfaces of the three dimensional geologic map of the southeastern Gabbs Valley, Nevada. The data define the easting, northing (meters, NAD83 Zone 11N), and elevations (meters, NAVD88) of points that define the top contacts of stratigraphic units and fault surfaces.

  16. a

    CollegesUniversities1

    • data-syruniv.opendata.arcgis.com
    Updated Feb 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Syracuse University (2019). CollegesUniversities1 [Dataset]. https://data-syruniv.opendata.arcgis.com/datasets/collegesuniversities1
    Explore at:
    Dataset updated
    Feb 21, 2019
    Dataset authored and provided by
    Syracuse University
    Area covered
    Description

    This shapefile contains the locations of nine 2- and 4-year, public and private colleges and universities in Onondaga County, NY. The shapefile was created in July 2012 and updated February 2015. It is projected in UTM NAD83, Zone 18.

  17. o

    Code for: Parental Deportation, Safe Zone Schools, and the Socio-Emotional...

    • openicpsr.org
    Updated Apr 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Catalina Amuedo-Dorantes; Jose Bucheli; Ana Martinez-Donate (2022). Code for: Parental Deportation, Safe Zone Schools, and the Socio-Emotional and Behavioral Health of Children Left Behind [Dataset]. http://doi.org/10.3886/E167021V1
    Explore at:
    Dataset updated
    Apr 6, 2022
    Dataset provided by
    American Economic Association
    Authors
    Catalina Amuedo-Dorantes; Jose Bucheli; Ana Martinez-Donate
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2019 - 2020
    Area covered
    United States
    Description

    These files reproduce the results in "Parental Deportation, Safe Zone Schools, and the Socio-Emotional and Behavioral Health of Children Left Behind" published in the AEA Papers and Proceedings. Access to the individual-level data is restricted and must be requested.

  18. Digital Geologic Map of Golden Gate National Recreation Area and Vicinity,...

    • data.wu.ac.at
    • catalog.data.gov
    • +1more
    xml, zip
    Updated Sep 3, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2009). Digital Geologic Map of Golden Gate National Recreation Area and Vicinity, California (NPS, GRD, GRI, GOGA, PORE, MUWO, FOPO, RORI, SAFR, GOGA digital map) [Dataset]. https://data.wu.ac.at/schema/data_gov/MjExYjEzMmMtMGVhZS00OWY0LTg3NGQtZjQzYzA0NzdlMzJk
    Explore at:
    zip, xmlAvailable download formats
    Dataset updated
    Sep 3, 2009
    Dataset provided by
    United States Department of the Interiorhttp://www.doi.gov/
    Area covered
    Golden Gate, 2730fa509992825c39fc5baec89218dfaa260893
    Description

    The Digital Geologic Map of Golden Gate National Recreation Area and Vicinity, California is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: USGS and California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (goga_metadata.txt; available at http://nrdata.nps.gov/goga/nrdata/geology/gis/goga_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (goga_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 10N. That data is within the area of interest of Golden Gate National Recreation Area, Point Reyes National Seashore, Muir Woods National Monument, Fort Point National Historic Site, Rosie the Riveter National Historical Park and San Francisco Maritime National Historical Park.

  19. A

    OCSLA Sec. 8(g) Revenue Zone Boundary - Atlantic Region NAD83

    • data.amerigeoss.org
    • datasets.ai
    • +1more
    ashp, esri rest, wms +1
    Updated Jul 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). OCSLA Sec. 8(g) Revenue Zone Boundary - Atlantic Region NAD83 [Dataset]. https://data.amerigeoss.org/es_AR/dataset/ocsla-sec-8g-revenue-zone-boundary-atlantic-region-nad83
    Explore at:
    wms, ashp, zip, esri restAvailable download formats
    Dataset updated
    Jul 29, 2019
    Dataset provided by
    United States
    Area covered
    Atlantic Canada
    Description

    This data set contains the Limit of '8(g) Zone' line in ESRI shapefile format for the BOEM Atlantic Region. The '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, revenues are shared with the coastal state(s). Further information on the SLA and development of this line from baseline points can be found in OCS Report BOEM 99-0006: Boundary Development on the Outer Continental Shelf. https://www.boem.gov/BOEM-Newsroom/Library/Publications/1999/99-0006-pdf.aspx Because GIS projection and topology functions can change or generalize coordinates, these GIS files are considered to be approximate and are NOT an OFFICIAL record for the exact Submerged Lands Act Boundary. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs) serve as the legal definition for offshore boundary coordinates and area descriptions.

  20. A

    Geospatial data for the Vegetation Mapping Inventory Project of Golden Spike...

    • data.amerigeoss.org
    • catalog.data.gov
    api, zip
    Updated Jan 1, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2007). Geospatial data for the Vegetation Mapping Inventory Project of Golden Spike National Historic Site [Dataset]. https://data.amerigeoss.org/dataset/072d69e7-2adc-47d8-833b-27d49778c872
    Explore at:
    api, zipAvailable download formats
    Dataset updated
    Jan 1, 2007
    Dataset provided by
    United States
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.

    The mapping component of the GOSP project used a combination of methods to interpret and delineate vegetation polygons. The initial set of polygons was drawn and annotated in the field on a 1:3500-scale print of the base true-color orthoimagery. The lines were transferred to a digital environment in an ArcMap personal geodatabase using on-screen digitizing methods.

    Each polygon was assigned a map class number, alpha code and name, Anderson land use class, and vegetation density, pattern, and height attributes. In order to improve the utility of the map and related data, the spatial database was moved into a geodatabase format, the general structure of which is illustrated in Figure 13. This format allows text and image information to be incorporated and linked to spatial coordinates. Detailed documentation of the geodatabase is provided in Appendix C. All geospatial products associated with this project are in the UTM projection, NAD83, Zone 12.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2025). Lunar Grid Reference System Rasters and Shapefiles [Dataset]. https://catalog.data.gov/dataset/lunar-grid-reference-system-rasters-and-shapefiles

Lunar Grid Reference System Rasters and Shapefiles

Explore at:
Dataset updated
Oct 2, 2025
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Description

USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids designed to NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC), but this is not released here. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like is equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy, while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized in a similar manner to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require a LPS projection and equatorial areas a transverse Mercator. We describe the difference in the techniques and methods report associated with this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These data will be released at a later date. Two versions of the shape files are provided in this data release, PCRS and Display only. See LTM_LPS_LGRS_Shapefiles.zip file. PCRS are limited to a single zone and are projected in either LTM or LPS with topocentric coordinates formatted in Eastings and Northings. Display only shapefiles are formatted in lunar planetocentric latitude and longitude, a Mercator or Equirectangular projection is best for these grids. A description of each grid is provided below: Equatorial (Display Only) Grids: Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Merged LTM zone borders Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones Merged Global Areas (8°×8° and 8°×10° extended area) for all LTM zones Merged 25km grid for all LTM zones PCRS Shapefiles:` Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones 25km Gird for North and South LPS zones Global Areas (8°×8° and 8°×10° extended area) for each LTM zone 25km grid for each LTM zone The rasters in this data release detail the linear distortions associated with the LTM and LPS system projections. For these products, we utilize the same definitions of distortion as the U.S. State Plane Coordinate System. Scale Factor, k - The scale factor is a ratio that communicates the difference in distances when measured on a map and the distance reported on the reference surface. Symbolically this is the ratio between the maps grid distance and distance on the lunar reference sphere. This value can be precisely calculated and is provided in their defining publication. See Snyder (1987) for derivation of the LPS scale factor. This scale factor is unitless and typically increases from the central scale factor k_0, a projection-defining parameter. For each LPS projection. Request McClernan et. al., (in-press) for more information. Scale Error, (k-1) - Scale-Error, is simply the scale factor differenced from 1. Is a unitless positive or negative value from 0 that is used to express the scale factor’s impact on position values on a map. Distance on the reference surface are expended when (k-1) is positive and contracted when (k-1) is negative. Height Factor, h_F - The Height Factor is used to correct for the difference in distance caused between the lunar surface curvature expressed at different elevations. It is expressed as a ratio between the radius of the lunar reference sphere and elevations measured from the center of the reference sphere. For this work, we utilized a radial distance of 1,737,400 m as recommended by the IAU working group of Rotational Elements (Archinal et. al., 2008). For this calculation, height factor values were derived from a LOLA DEM 118 m v1, Digital Elevation Model (LOLA Science Team, 2021). Combined Factor, C_F – The combined factor is utilized to “Scale-To-Ground” and is used to adjust the distance expressed on the map surface and convert to the position on the actual ground surface. This value is the product of the map scale factor and the height factor, ensuring the positioning measurements can be correctly placed on a map and on the ground. The combined factor is similar to linear distortion in that it is evaluated at the ground, but, as discussed in the next section, differs numerically. Often C_F is scrutinized for map projection optimization. Linear distortion, δ - In keeping with the design definitions of SPCS2022 (Dennis 2023), we refer to scale error when discussing the lunar reference sphere and linear distortion, δ, when discussing the topographic surface. Linear distortion is calculated using C_F simply by subtracting 1. Distances are expended on the topographic surface when δ is positive and compressed when δ is negative. The relevant files associated with the expressed LTM distortion are as follows. The scale factor for the 90 LTM projections: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_K_grid_scale_factor.tif Height Factor for the LTM portion of the Moon: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_EF_elevation_factor.tif Combined Factor in LTM portion of the Moon LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_CF_combined_factor.tif The relevant files associated with the expressed LPS distortion are as follows. Lunar North Pole The scale factor for the northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the north pole of the Moon: LUNAR_LGRS_NP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_CF_combined_factor.tif Lunar South Pole Scale factor for the northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the south pole of the Moon: LUNAR_LGRS_SP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_CF_combined_factor.tif For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude, referred to as “Display Only”, please utilize a registered lunar geographic coordinate system (GCS) such as IAU_2015:30100 or ESRI:104903. LTM, LPS, and LGRS PCRS shapefiles utilize either a custom transverse Mercator or polar Stereographic projection. For PCRS grids the LTM and LPS projections are recommended for all LTM, LPS, and LGRS grid sizes. See McClernan et. al. (in-press) for such projections. Raster data was calculated using planetocentric latitude and longitude. A LTM and LPS projection or a registered lunar GCS may be utilized to display this data. Note: All data, shapefiles and rasters, require a specific projection and datum. The projection is recommended as LTM and LPS or, when needed, IAU_2015:30100 or ESRI:104903. The datum utilized must be the Jet Propulsion Laboratory (JPL) Development Ephemeris (DE) 421 in the Mean Earth (ME) Principal Axis Orientation as recommended by the International Astronomy Union (IAU) (Archinal et. al., 2008).

Search
Clear search
Close search
Google apps
Main menu