This service delivers all 4 bands of the NAIP 2020 60cm aerial imagery and may be slower than other related NAIP 2020 services because of the amount and/or format of data being served. Band1=R, Band2=G, Band3=B, Band4=NearIR.This service is offered by the California Department of Fish and Wildlife (CDFW). For more information about CDFW map services, please visit: https://wildlife.ca.gov/Data/GIS/Map-Services
This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively an...
This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively an...
The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. This "leaf-on" imagery andtypically ranges from 60 centimeters to 100 centimeters in resolution and is available from the naip-analytic Amazon S3 bucket as 4-band (RGB + NIR) imagery in MRF format, on naip-source Amazon S3 bucket as 4-band (RGB + NIR) in uncompressed Raw GeoTiff format and naip-visualization as 3-band (RGB) Cloud Optimized GeoTiff format. NAIP data is delivered at the state level; every year, a number of states receive updates, with an overall update cycle of two or three years. More details on NAIP
https://github.com/awslabs/open-data-docs/tree/main/docs/naip
NAIP data is delivered at the state level and every year number of states receive updates with an overall update cycle of three years. NAIP 2020 data is available.
Public Domain with Attribution
This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively an...
What is NAIP?The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the contiguous U.S. A primary goal of the NAIP program is to make digital ortho photography available to governmental agencies and the public within a year of acquisition.NAIP is administered by the USDA's Farm Production and Conservation Business Center through the Aerial Photography Field Office in Salt Lake City. The APFO as of August 16, 2020 has transitioned to the USDA FPAC-BC's Geospatial Enterprise Operations Branch (GEO). This "leaf-on" imagery is used as a base layer for GIS programs in FSA's County Service Centers, and is used to maintain the Common Land Unit (CLU) boundaries.How can I Access NAIP?On the web GEO (APFO) public image services can be accessed through the REST endpoint here. Compressed County Mosaics (CCMs) are available to the general public through the USDA Geospatial Data Gateway. All years of available imagery may be downloaded as 1/2, 1, or 2 meter CCMs depending on the original spatial resolution. CCMs with a file size larger than 8 GB are not able to be downloaded from the Gateway. Full resolution 4 band quarter quads (DOQQs) are available for purchase from FPAC GEO. Contact the GEO Customer Service Section for information on pricing for DOQQs and how to obtain CCMs larger than 8 GB. A NAIP image service is also available on ArcGIS Online through an organizational subscription.How can NAIP be used?NAIP is used by many non-FSA public and private sector customers for a wide variety of projects. A detailed study is available in the Qualitative and Quantitative Synopsis on NAIP Usage from 2004 -2008: Click here for a list of NAIP Information and Distribution Nodes.When is NAIP acquired?NAIP projects are contracted each year based upon available funding and the FSA imagery acquisition cycle. Beginning in 2003, NAIP was acquired on a 5-year cycle. 2008 was a transition year, a three-year cycle began in 2009, NAIP was on a two-year cycle until 2016, currently NAIP is on a 3 year refresh cycle. Click here >> for an interactive PDF status map of NAIP acquisitions from 2002 - 2018. 2021 acquisition status dashboard is available here.What are NAIP Specifications?NAIP imagery is currently acquired at 60cm ground sample distance (GSD) with a horizontal accuracy that matches within four meters of photo-identifiable ground control points.The default spectral resolution beginning in 2010 is four bands: Red, Green, Blue and Near Infrared.Contractually, every attempt will be made to comply with the specification of no more than 10% cloud cover per quarter quad tile, weather conditions permitting.All imagery is inspected for horizontal accuracy and tonal quality. Make Comments/Observations about current NAIP imagery.If you use NAIP imagery and have comments or find a problem with the imagery please use the NAIP Imagery Feedback Map to let us know what you find or how you are using NAIP imagery. Click here to access the map.**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**Title: National Agriculture Imagery Program (NAIP) History 2002-2021Item Type: Web Mapping Application URL Summary: Story map depicting the highlights and changes throughout the National Agriculture Imagery Program (NAIP) from 2002-2021.Notes: Prepared by: Uploaded by EMcRae_NMCDCSource: URL referencing this original map product: https://nmcdc.maps.arcgis.com/home/item.html?id=445e3dfd16c4401f95f78ad5905a4cceFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=8eb6c5e7adc54ec889dd6fc9cc2c14c4UID: 26Data Requested: Ag CensusMethod of Acquisition: Living AtlasDate Acquired: May 2022Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 8Tags: PENDING
This hosted feature layer is provided by the USDA Aerial Photography Field Office (APFO) and shows image acquisition dates for 2020 National Agriculture Imagery Program (NAIP) imagery for Texas. This date index is state based and contains a polygon for each exposure used in the creation of the imagery. Click on a polygon to find out more information about any area on the image. Attribute information includes the following: IDATE - Image acquisition date SDATE - Polygon start date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)EDATE - Polygon end date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)BCON - Color type - possible values are NC (natural color), CIR (color infrared), and M4B (4-band)CAM_TYPE - Camera type (Digital or film)CAM_MAN - Camera ManufacturerCAM_MOD - Camera modelHARD_FIRM - Camera HW and FW version which provides top level information specific to the camera systemSENSNUM - Sensor or lens serial numberAC_TYPE - Aircraft type - ICAO designation (i.e. C441 for a Cessna 441 Conquest II), airborne platforms only blank attribute for space-based systemsACTAILNUM - Aircraft tail number - airborne platforms only a blank attribute for space-based systemsSHAPE_AREA - Polygon area (square meters)RED_RNGE - Red electromagnetic spectrum - spectrum range in nano meters (604-664)GREEN_RNGE - Green electromagnetic spectrum - spectrum range in nano meters (533-587)BLUE_RNGE - Blue electromagnetic spectrum - spectrum range in nano meters (420-492)NIR_RNGE - Near infrared electromagnetic spectrum - spectrum range in nano meters (683-920)
This hosted feature layer is provided by the USDA Aerial Photography Field Office (APFO) and shows image acquisition dates for 2020 National Agriculture Imagery Program (NAIP) imagery for California. This date index is state based and contains a polygon for each exposure used in the creation of the imagery. Click on a polygon to find out more information about any area on the image. Attribute information includes the following: IDATE - Image acquisition date SDATE - Polygon start date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)EDATE - Polygon end date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)BCON - Color type - possible values are NC (natural color), CIR (color infrared), and M4B (4-band)CAM_TYPE - Camera type (Digital or film)CAM_MAN - Camera ManufacturerCAM_MOD - Camera modelHARD_FIRM - Camera HW and FW version which provides top level information specific to the camera systemSENSNUM - Sensor or lens serial numberAC_TYPE - Aircraft type - ICAO designation (i.e. C441 for a Cessna 441 Conquest II), airborne platforms only blank attribute for space-based systemsACTAILNUM - Aircraft tail number - airborne platforms only a blank attribute for space-based systemsSHAPE_AREA - Polygon area (square meters)RED_RNGE - Red electromagnetic spectrum - spectrum range in nano meters (604-664)GREEN_RNGE - Green electromagnetic spectrum - spectrum range in nano meters (533-587)BLUE_RNGE - Blue electromagnetic spectrum - spectrum range in nano meters (420-492)NIR_RNGE - Near infrared electromagnetic spectrum - spectrum range in nano meters (683-920)
Digital aerial imagery for Washington state was collected by Hexagon as part of the 2020 NAIP Imaging Program. Imagery was collected between August 3, 2020 and September 6, 2020 using Leica ADS100 digital camera systems. The project was flown at heights ranging from 8,000 ft msl to 15,500 ft msl resulting in a nominal GSD of 20cm. Four band images were collected to support both 3-band natural color (RGB) and false color infrared (FCIR) orthoimage products. Aerotriangulation and orthorectification were done with the Leica Xpro software package, version 6.4 and ortho mosaics were created with Inpho Orthovista 8.0. 4-band RGBN 8-bit Ortho images were created in a DOQQ tiling scheme. Products are in the UTM map projection, NAD83 (2011) datum, in meters.
Under contract to the Santa Cruz Mountains Stewardship Network with support from the Golden Gate National Parks Conservancy, and staffed by personnel from Tukman Geospatial, Aerial Information Systems (AIS), and Kass Green and Associates, Tukman Geospatial and Aerial Information Systems created a fine-scale vegetation map of portions of Santa Cruz and Santa Clara Counties. CDFW''s Vegetation Classification and Mapping Program (VegCAMP) provided in-kind service to allocate and score the AA. The mapping study area, consists of approximately 1,133,106.8 acres, of Santa Clara and Santa Cruz counties. Work was performed on the project between 2020 and 2023. The Santa Cruz and Santa Clara fine-scale vegetation map was designed for a broad audience for use at many floristic and spatial scales and is useful to managers interested in specific information about vegetation composition and forest health.CNPS under separate contract and in collaboration with CDFW VegCAMP developed the floristic vegetation classification used for the project. The floristic classification follows protocols compliant with the Federal Geographic Data Committee (FGDC) and National Vegetation Classification Standards (NVCS).The vegetation map was produced with countywide vegetation survey data and combined with surveys from CNPS. Trimble® Ecognition® followed by manual image interpretation that was used to map lifeforms. Fine-scale segmentation was conducted using Trimble Ecognition® and relies on summer 2020 4-band NAIP, the 2020 lidar-derived canopy height model, and a suite of spectral indices derived from the NAIP. They utilized a type of algorithmic data modeling known as machine learning to automate the classification of fine-scale segments into one of Santa Cruz and Santa Clara Counties 121 fine-scale map classes. The minimum mapping unit (MMU) is set by feature type. For agricultural classes, the MMU is 1/4 acre, for woody upland classes is 1/2 acre, woody riparian is 1/4 acre, upland herbaceo
This is an ArcGIS Server Image Service of the 4-band 2021 National Agricultural Imagery Program (NAIP) orthorectified digital aerial photos of Montana. Imagery defaults to natural color. To view the imagery as false-color infrared (CIR), select band 4 as the red image, band 1 as the green, and band 2 as the blue. This data set contains imagery from the National Agriculture Imagery Program (NAIP). These data are digital aerial photos, at 60 centimeter resolution, of most of the state of Montana, taken in 2019. Due to snow cover the imagery acquisition was not completed in 2019 and some areas were acquired in 2020. https://docs.msl.mt.gov/News/20191115_News_2019NAIPGaps.pdf The data are available from the State Library in two different formats. The most accessible format is a downloadable collection of compressed county mosaic (CCM) natural color MrSID images. These data are in UTM coordinates. The FTP folder containing these images is https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Imagery/2019_NAIP/UTM_County_Mosaics The data are available from the State Library as a collection 11,775 4-band (near infrared, red, green and blue) TIF images in UTM coordinates. Each image is about 400 megabytes. The tiling format of the TIFF imagery is based on 3.75 x 3.75 minute quarter-quadrangles with a 300 pixel buffer on all four sides. An ESRI shapefile index showing the extent and acquisition dates of the TIF images is available at https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Imagery/2019_NAIP/ NAIP_2019_MT_tileindex_CurrentlyAvailable.zip To order TIFF images from the State Library, select the quadrangles you want from the tiff index shapefile and send them to the Library, along with a storage device of sufficient size to hold them and return postage for the device.
This hosted feature layer is provided by the USDA Aerial Photography Field Office (APFO) and shows image acquisition dates for 2020 National Agriculture Imagery Program (NAIP) imagery for Michigan. This date index is state based and contains a polygon for each exposure used in the creation of the imagery. Click on a polygon to find out more information about any area on the image. Attribute information includes the following: IDATE - Image acquisition date SDATE - Polygon start date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)EDATE - Polygon end date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)BCON - Color type - possible values are NC (natural color), CIR (color infrared), and M4B (4-band)CAM_TYPE - Camera type (Digital or film)CAM_MAN - Camera ManufacturerCAM_MOD - Camera modelHARD_FIRM - Camera HW and FW version which provides top level information specific to the camera systemSENSNUM - Sensor or lens serial numberAC_TYPE - Aircraft type - ICAO designation (i.e. C441 for a Cessna 441 Conquest II), airborne platforms only blank attribute for space-based systemsACTAILNUM - Aircraft tail number - airborne platforms only a blank attribute for space-based systemsSHAPE_AREA - Polygon area (square meters)RED_RNGE - Red electromagnetic spectrum - spectrum range in nano meters (604-664)GREEN_RNGE - Green electromagnetic spectrum - spectrum range in nano meters (533-587)BLUE_RNGE - Blue electromagnetic spectrum - spectrum range in nano meters (420-492)NIR_RNGE - Near infrared electromagnetic spectrum - spectrum range in nano meters (683-920)
2020 National Agriculture Imagery Program (NAIP) color infrared .6-meter pixel resolution. The imagery was collected statewide from June 23, 2020 through September 10, 2020. This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs. Ortho imagery provides an effective, intuitive means of communication about farm program administration between FSA and stakeholders. New technology and innovation is identified by fostering and maintaining a relationship with vendors and government partners, and by keeping pace with the broader geospatial community. As a result of these efforts the NAIP program provides three main products: DOQQ tiles, Compressed County Mosaics (CCM), and Seamline shape files The Contract specifications for NAIP imagery have changed over time reflecting agency requirements and improving technologies. These changes include image resolution, horizontal accuracy, coverage area, and number of bands. In general, flying seasons are established by FSA and are targeted for peak crop growing conditions. The NAIP acquisition cycle is based on a minimum 3 year refresh of base ortho imagery. The tiling format of the NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 pixel buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using the North American Datum of 1983. NAIP imagery may contain as much as 10% cloud cover per tile.Credits: USDA-FSA Aerial Photography Field Office, ND GIS Hub
The four adjacent Outer Cape communities of Eastham, Truro, Provincetown, and Wellfleet have built an intermunicipal partnership to pursue a regional approach to shoreline management. This partnership promotes short- and long-term science-based decisions that will maximize the effectiveness and efficiency of community responses to the increased threat of coastal hazards. This map set is a product of that partnership, the Intermunicipal Shoreline Management Project, a project first initiated in 2019 with funding from CZM's Coastal Resilience Grant Program.Contemporary salt marsh extents were delineated based on photointerpretation and image classification of salt marsh vegetation from 60 cm resolution, 4-band, digital georectified images acquired by the National Agriculture Imagery Program (NAIP) in August of 2018. Visual comparison of the classified raster and NAIP imagery, displayed as a color-infrared (CIR) image, was performed to extract vegetated classes over known salt marsh areas. Then parcels with the future potential to accommodate salt marsh under a sea level rise scenario of 1 meter were identified. Parcel selection and scoring was based on the following: 1. Parcel and suitable space contiguity 2. Ownership 3. Salt marsh adjacency 4. Total suitable area 5. Percentage of the parcel’s total area suitable for salt marsh migration In general parcels were scored relative to each other based on the percentage of the parcel’s total area suitable for salt marsh migration, a higher percentage resulted in a higher score. However, a few characteristics were considered to be highly desirable, resulting in the highest possible score regardless of relative percentage. All town, state, federal and conservation organization owned parcels were also removed, as this work primarily focuses on the identification of parcels for further review by municipal open space committees and local land trusts for future acquisitions planning. In total 229 parcels were identified: 93 in Eastham, 113 in Wellfleet, 23 in Truro and 0 in Provincetown. All suitable migration space in Provincetown was located within 3 parcels (federal and state owned), the majority in Cape Cod National Seashore. To locate possible parcels of interest a suitability base map was created to identify areas within the ISM planning area with the potential to accommodate salt marsh under a sea level rise scenario of 1 meter. The following criteria were considered: elevation, slope, connectivity and proximity to salt marsh and land cover.ElevationAreas with the future potential to accommodate salt marsh under a sea level rise scenario of 1 meter from current levels were identified and delineated based on an estimated suitable elevation range determined from the following generalized relationships between dominant salt marsh vegetation and tidal stage (Ayers, 1959; Redfield, 1972; Teal, 1986; Bertness, 1987; Bertness, 1991): Inland salt marsh boundary = MHHW + 2.5 ft Seaward salt marsh boundary = MHW – 2/3 MNThe current suitable elevation range for salt marsh within the ISM planning area was estimated to be -0.75 m (-2.46 ft) to 2.25 m (7.38 ft) NAVD88 (based on tidal profiles from Provincetown Harbor, Pamet Harbor, Wellfleet Harbor, Rock Harbor and Sesuit Harbor). To simulate 1 meter of sea level rise, both the upper and lower limits were adjusted by 1 meter. All areas with elevation values of 0.25 to 3.25 m were evaluated.SlopeSuitable slopes were determined based on Smith, 2020 and Kirwan et al., 2016, where the potential for marsh expansion generally decreases with increasing slope. Gentler slopes were most suitable (<1%), moderate slopes likely suitable (1-5%) and steeper slopes (>5%) less suitable. Severe slopes (>20%) were treated as unsuitable migration space. Connectivity and Proximity to Existing Salt MarshAreas were classified based on physical relationship and proximity to existing salt marsh and the presence of anthropogenic barriers (roads, parking lots, shoreline armoring, culverts) influencing salt marsh migration and then ranked accordingly. Areas with no hydrologic connection to existing salt marsh were treated as fragmented accommodation space and were designated as unsuitable.Land CoverWith no clear methodology for classifying land cover suitability for salt marsh migration (as demonstrated in Smith, 2020) general assumptions were made. The primary assumption reflects the concept that areas most suitable now (e.g., emergent wetlands) are more likely to be suitable in the future while the most uncertain transitions would be those dependent on forest retreat. Impervious area was classified as least suitable. Parcels The suitability base map was used to extract parcels intersecting the analysis area, and a series of operations were carried out to remove parcels selected due to noise in the data, parcels with minimal suitable space and parcels completely separated from other extracted parcels by topographic or anthropogenic barriers. Tax Parcel and assessor information was obtained from MassGIS Data: Property Tax Parcels (M086TaxPar last updated 4/2020, M242TaxPar last updated 6/2020, M300TaxPar last updated 11/2020, M318TaxPar last updated 2/2019). Please note a select number of parcels were designated as restoration parcels. These parcels currently contain large areas of mudflat and with increased deposition and/or human intervention could become more suitable in the future. Parcels designated as restoration parcels were not scored.
The Tamalpais Lands Collaborative (One Tam; https://www.onetam.org/), the network of organizations that manage lands on Mount Tamalpais in Marin County, initiated the countywide mapping project with their interest in creating a seamless, comprehensive map depicting vegetation communities across the landscape. With support from their non-profit partner the Golden Gate National Parks Conservancy (https://www.parksconservancy.org/) One Tam was able to build a consortium to fund and implement the countywide fine scale vegetation map.Development of the Marin fine-scale vegetation map was managed by the Golden Gate National Parks Conservancy and staffed by personnel from Tukman Geospatial (https://tukmangeospatial.com/) Aerial Information Systems (AIS; http://www.aisgis.com/), and Kass Green and Associates. The fine-scale vegetation map effort included field surveys by a team of trained botanists. Data from these surveys, combined with older surveys from previous efforts, were analyzed by the California Native Plant Society (CNPS) Vegetation Program (https://www.cnps.org/vegetation) with support from the California Department of Fish and Wildlife Vegetation Classification and Mapping Program (VegCAMP; https://wildlife.ca.gov/Data/VegCAMP) to develop a Marin County-specific vegetation classification.High density lidar data was obtained countywide in the early winter of 2019 to support the project. The lidar point cloud, and many of its derivatives, were used extensively during the process of developing the fine-scale vegetation and habitat map. The lidar data was used in conjunction with optical data. Optical data used throughout the project included 6-inch resolution airborne 4-band imagery collected in the summer of 2018, as well as 6-inch imagery from 2014 and various dates of National Agriculture Imagery Program (NAIP) imagery.In 2019, a 26-class lifeform map was produced which serves as the foundation for the much more floristically detailed fine-scale vegetation and habitat map. The lifeform map was developed using expert systems rulesets in Trimble Ecognition®, followed by manual editing.In 2019, Tukman Geospatial staff and partners conducted countywide reconnaissance fieldwork to support fine-scale mapping. Field-collected data were used to train automated machine learning algorithms, which produced a fully automated countywide fine-scale vegetation and habitat map. Throughout 2020, AIS manually edited the fine-scale maps, and Tukman Geospatial and AIS went to the field for validation trips to inform and improve the manual editing process. In the spring of 2021, draft maps were distributed and reviewed by Marin County's community of land managers and by the funders of the project. Input from these groups was used to further refine the map. The countywide fine-scale vegetation map and related data products were made public in June 2021. In total, 107 vegetation classes were mapped with a minimum mapping size of one fifth to one acre, varying by class.Accuracy assessment plot data were collected in 2019, 2020, and 2021. Accuracy assessment results were compiled and analyzed in the summer of 2021. Overall accuracy of the lifeformmap is 95%. Overall accuracy of the fine-scale vegetation map is 77%, with an overall 'fuzzy' accuracy of 81%.The Marin County fine-scale vegetation map was designed for a broad audience for use at many floristic and spatial scales. At its most floristically resolute scale, the fine-scale vegetation map depicts the landscape at the National Vegetation Classification alliance level - which characterizes stands of vegetation generally by the dominant species present. This product is useful to managers interested in specific information about vegetation composition. For those interested in general land use and land cover, the lifeform map may be more appropriate. Tomake the information contained in the map accessible to the most users, the vegetation map is published as a suite of GIS deliverables available in a number of formats. Map products are being made available wherever possible by the project stakeholders, including the regional data portal Pacific Veg Map (http://pacificvegmap.org/data-downloads).
This hosted feature layer is provided by the USDA Aerial Photography Field Office (APFO) and shows image acquisition dates for 2020 National Agriculture Imagery Program (NAIP) imagery for Missouri. This date index is state based and contains a polygon for each exposure used in the creation of the imagery. Click on a polygon to find out more information about any area on the image. Attribute information includes the following: IDATE - Image acquisition date SDATE - Polygon start date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)EDATE - Polygon end date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)BCON - Color type - possible values are NC (natural color), CIR (color infrared), and M4B (4-band)CAM_TYPE - Camera type (Digital or film)CAM_MAN - Camera ManufacturerCAM_MOD - Camera modelHARD_FIRM - Camera HW and FW version which provides top level information specific to the camera systemSENSNUM - Sensor or lens serial numberAC_TYPE - Aircraft type - ICAO designation (i.e. C441 for a Cessna 441 Conquest II), airborne platforms only blank attribute for space-based systemsACTAILNUM - Aircraft tail number - airborne platforms only a blank attribute for space-based systemsSHAPE_AREA - Polygon area (square meters)RED_RNGE - Red electromagnetic spectrum - spectrum range in nano meters (604-664)GREEN_RNGE - Green electromagnetic spectrum - spectrum range in nano meters (533-587)BLUE_RNGE - Blue electromagnetic spectrum - spectrum range in nano meters (420-492)NIR_RNGE - Near infrared electromagnetic spectrum - spectrum range in nano meters (683-920)
This hosted feature layer is provided by the USDA Aerial Photography Field Office (APFO) and shows image acquisition dates for 2020 National Agriculture Imagery Program (NAIP) imagery for Nebraska. This date index is state based and contains a polygon for each exposure used in the creation of the imagery. Click on a polygon to find out more information about any area on the image. Attribute information includes the following: IDATE - Image acquisition date SDATE - Polygon start date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)EDATE - Polygon end date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)BCON - Color type - possible values are NC (natural color), CIR (color infrared), and M4B (4-band)CAM_TYPE - Camera type (Digital or film)CAM_MAN - Camera ManufacturerCAM_MOD - Camera modelHARD_FIRM - Camera HW and FW version which provides top level information specific to the camera systemSENSNUM - Sensor or lens serial numberAC_TYPE - Aircraft type - ICAO designation (i.e. C441 for a Cessna 441 Conquest II), airborne platforms only blank attribute for space-based systemsACTAILNUM - Aircraft tail number - airborne platforms only a blank attribute for space-based systemsSHAPE_AREA - Polygon area (square meters)RED_RNGE - Red electromagnetic spectrum - spectrum range in nano meters (604-664)GREEN_RNGE - Green electromagnetic spectrum - spectrum range in nano meters (533-587)BLUE_RNGE - Blue electromagnetic spectrum - spectrum range in nano meters (420-492)NIR_RNGE - Near infrared electromagnetic spectrum - spectrum range in nano meters (683-920)
2020 National Agriculture Imagery Program (NAIP) natural color .6-meter pixel resolution. The imagery was collected statewide from June 23, 2020 through September 10, 2020. This data set contains polygons delineating the seamline boundaries of imagery acquired as part of the National Agriculture Imagery Program (NAIP), and used in the creation of DOQQs hosted in FSA image services. These seam polygons can be used as a tool in determining the image source and date of each portion of the imagery. The NAIP acquires 4 band digital ortho imagery from airborne and/or space based platforms during the agricultural growing seasons in the U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within sixty days of acquisition. The NAIP provides 60 centimeter ground sampel distance ortho imagery rectified within +/- 4 meters to true ground at a 95% confidence level. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 (plus or minus 30) pixel buffer on all four sides. The NAIP quarter quads are formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83).
This hosted feature layer is provided by the USDA Aerial Photography Field Office (APFO) and shows image acquisition dates for 2020 National Agriculture Imagery Program (NAIP) imagery for West Virginia. This date index is state based and contains a polygon for each exposure used in the creation of the imagery. Click on a polygon to find out more information about any area on the image. Attribute information includes the following: IDATE - Image acquisition date SDATE - Polygon start date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)EDATE - Polygon end date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)BCON - Color type - possible values are NC (natural color), CIR (color infrared), and M4B (4-band)CAM_TYPE - Camera type (Digital or film)CAM_MAN - Camera ManufacturerCAM_MOD - Camera modelHARD_FIRM - Camera HW and FW version which provides top level information specific to the camera systemSENSNUM - Sensor or lens serial numberAC_TYPE - Aircraft type - ICAO designation (i.e. C441 for a Cessna 441 Conquest II), airborne platforms only blank attribute for space-based systemsACTAILNUM - Aircraft tail number - airborne platforms only a blank attribute for space-based systemsSHAPE_AREA - Polygon area (square meters)RED_RNGE - Red electromagnetic spectrum - spectrum range in nano meters (604-664)GREEN_RNGE - Green electromagnetic spectrum - spectrum range in nano meters (533-587)BLUE_RNGE - Blue electromagnetic spectrum - spectrum range in nano meters (420-492)NIR_RNGE - Near infrared electromagnetic spectrum - spectrum range in nano meters (683-920)
This hosted feature layer is provided by the USDA Aerial Photography Field Office (APFO) and shows image acquisition dates for 2020 National Agriculture Imagery Program (NAIP) imagery for Kentucky. This date index is state based and contains a polygon for each exposure used in the creation of the imagery. Click on a polygon to find out more information about any area on the image. Attribute information includes the following: IDATE - Image acquisition date SDATE - Polygon start date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)EDATE - Polygon end date/time - local 24 hour clock. The start/end time will be for the collection of the individual polygon (will be the same for frame based systems)BCON - Color type - possible values are NC (natural color), CIR (color infrared), and M4B (4-band)CAM_TYPE - Camera type (Digital or film)CAM_MAN - Camera ManufacturerCAM_MOD - Camera modelHARD_FIRM - Camera HW and FW version which provides top level information specific to the camera systemSENSNUM - Sensor or lens serial numberAC_TYPE - Aircraft type - ICAO designation (i.e. C441 for a Cessna 441 Conquest II), airborne platforms only blank attribute for space-based systemsACTAILNUM - Aircraft tail number - airborne platforms only a blank attribute for space-based systemsSHAPE_AREA - Polygon area (square meters)RED_RNGE - Red electromagnetic spectrum - spectrum range in nano meters (604-664)GREEN_RNGE - Green electromagnetic spectrum - spectrum range in nano meters (533-587)BLUE_RNGE - Blue electromagnetic spectrum - spectrum range in nano meters (420-492)NIR_RNGE - Near infrared electromagnetic spectrum - spectrum range in nano meters (683-920)
This service delivers all 4 bands of the NAIP 2020 60cm aerial imagery and may be slower than other related NAIP 2020 services because of the amount and/or format of data being served. Band1=R, Band2=G, Band3=B, Band4=NearIR.This service is offered by the California Department of Fish and Wildlife (CDFW). For more information about CDFW map services, please visit: https://wildlife.ca.gov/Data/GIS/Map-Services