Facebook
TwitterAs of 2043, Nairobi was the most populated city in Kenya, with more than 2.7 million people living in the capital. The city is also the only one in the country with a population exceeding one million. For instance, Mombasa, the second most populated, has nearly 800 thousand inhabitants. As of 2020, Kenya's population was estimated at over 53.7 million people.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset of population level and growth rate for the Nairobi, Kenya metro area from 1950 to 2025.
Facebook
TwitterThis statistic shows the total population of Kenya from 2013 to 2023 by gender. In 2023, Kenya's female population amounted to approximately 27.82 million, while the male population amounted to approximately 27.52 million inhabitants.
Facebook
TwitterPersons and households Nairobi oversample. Weighted by district and age.
UNITS IDENTIFIED: - Dwellings: no - Vacant Units: - Households: yes - Individuals: yes - Group quarters: no
UNIT DESCRIPTIONS: - Dwellings: no - Households: Yes - Group quarters:
All persons who were in Kenya at midnight on Census Night.
Population and Housing Census [hh/popcen]
MICRODATA SOURCE: Statistics Division Ministry of Finance and Planning
SAMPLE SIZE (person records): 659310.
SAMPLE DESIGN: Unknown sample design includes oversample of Nairobi. Data are weighted by age and district of residence.
Face-to-face [f2f]
Single enumeration form that requested information on individuals.
Facebook
TwitterMajor Towns by PopulationTowns in Kenya: Kenya’s capital city is Nairobi. It is the largest city in East Africa and the region’s Financial, Communication and Diplomatic Capital. In Kenya there are only three incorporated cities but there are numerous municipalities and towns with significant urban populations. Two of the cities, Nairobi and Mombasa are cities whose county borders run the same as their city limits, so in a way they could be thought of as City-CountiesNairobi is the only city in the world with a game park. Nairobi National Park is a preserved ecosystem where you can view wildlife in its natural habitat. Hotels, airlines and numerous tour firms and agencies offer tour packages for both domestic and foreign tourists visiting Nairobi and the park. The tourism industry provides direct employment to thousands of Nairobi residents.
Facebook
TwitterThe African Cities Population Database (ACPD) has been produced by the Birkbeck College of the University of London in 1990 at the request of the United Nations Environment Programme (UNEP) in Nairobi, Kenya. The database contains head counts for 479 cities in Africa which either have a population of over 20,000 or are capitals of their nation state. Listed are the geographical location of the cities and their population sizes. The material is primarily derived from a 1988 report of the Economic Commission for Africa (ECA) and several issues of the United Nations Demographic Yearbook (1973-81). Severe problems were found with several countries such as Togo, Ghana and South Africa. For South Africa, the data were derived from the United Nations Demographic Yearbook 1987.
WCPD is an Arc/Info point coverage. It has no projection, as the cities are located on the basis of their latitude and longitude. Coordinates were assigned on the basis of gazetteers or African maps. Each record in the data base contains details of the city name, country name, latitude and longitude of the city, and its population at a defined time. The Arc/Info attribute table contains the following fields:
AREA Arc/Info item PERIMETER Arc/Info item ACPD# Arc/Info item ACPD-ID Arc/Info item ID-NUM Unique number for each city CITY City name COUNTRY Country name CITY-POP Population of city proper YEAR Latest available year of collection
ACPD comes as an Arc/Info EXPORT file originally called "ACPD.E00" and contains 67 Kb of data. The file has a record length of 80 and a block size of 8000 (blocking factor = 100). The file can be read from tape using Arc/Info's TAPEREAD command or any other generic copy utility. If distributed on a diskette it can be read using the ordinary DOS 'COPY' command. The file has to be converted to Arc/Info internal format using its IMPORT command.
References to the WCPD data set can be found in:
The source of the WCPD data set as held by GRID is Birkbeck College, University of London, Department of Geography, London, UK.
Facebook
TwitterThe places we live affect our health status and the choices and opportunities we have (or do not have) to lead fulfilling lives. Over the past ten years, the African Population & Health Research Centre (APHRC) has led pioneering work in highlighting some of the major health and livelihood challenges associated with rapid urbanization in sub-Saharan Africa (SSA). In 2002, the Centre established the first longitudinal platform in urban Africa in the city of Nairobi in Kenya. The platform known as the Nairobi Urban Health and Demographic Surveillance System collects data on two informal settlements - Korogocho and Viwandani - in Nairobi City every four months on issues ranging from household dynamics to fertility and mortality, migration and livelihood as well as on causes of death, using a verbal autopsy technique. The dataset provided here contains key demographic and health indicators extracted from the longitudinal database. Researchers interested in accessing the micro-data can look at our data access policy and contact us.
The Demographic Surveillance Area (combining Viwandani and Korogocho slum settlements) covers a land area of about 0.97 km2, with the two informal settlements located about 7 km from each other. Korogocho is located 12 km from the Nairobi city center; in Kasarani division (now Kasarani district), while Viwandani is about 7 km from Nairobi city center in Makadara division (now Madaraka district). The DSA covers about seven villages each in Korogocho and Viwandani.
Individual
Between 1st January and 31st December,2015 the Nairobi HDSS covered 86,304 individualis living in 30,219 households distributed across two informal settlements(Korogocho and Viwandani) were observed. All persons who sleep in the household prior to the day of the survey are included in the survey, while non-resident household members are excluded from the survey.
The present universe started out through an initial census carried out on 1st August,2002 of the population living in the two Informal settlements (Korogocho and Viwandani). Regular visits have since then been made (3 times a year) to update information on births, deaths and migration that have occurred in the households observed at the initial census. New members join the population through a birth to a registered member, or an in-migration, while existing members leave through a death or out-migration. The DSS adopts the concept of an open cohort that allows new members to join and regular members to leave and return to the system.
Event history data
Three rounds in a year
This dataset is related to the whole demographic surveillance area population. The number of respondents has varied over the last 13 years (2002-2015), with variations being observed at both household level and at Individual level. As at 31st December 2015, 66,848 were being observed under the Nairobi HDSS living in 25,812 households distributed across two informal settlements(Korogocho and Viwandani). The variable IndividualId uniquely identifies every respondent observed while the variable LocationId uniquely identifies the room in which the individual was living at any point in time. To identify individuals who were living together at any one point in time (a household) the data can be split on location and observation dates.
None
Proxy Respondent [proxy]
Questionnaires are printed and administered in Swahili, the country's national language.
The questionnaires for the Nairobi HDSS were structured questionnaires based on the INDEPTH Model Questionnaire and were translated into Swahili with some modifications and additions.After an initial review the questionnaires were translated back into English by an independent translator with no prior knowledge of the survey. The back translation from the Swahili version was independently reviewed and compared to the English original. Differences in translation were reviewed and resolved in collaboration with the original translators. The English and Swahili questionnaires were both piloted as part of the survey pretest.
At baseline, a household questionnaire was administered in each household, which collected various information on household members including sex, age, relationship, and orphanhood status. In later rounds questionnaires to track the migration of the population observed at baseline, and additonal questionnaires to capture demographic and health events happening to the population have been introduced.
Data editing took place at a number of stages throughout the processing, including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of STATA data files
Where changes were made by the program, a cold deck imputation is preferred; where incorrect values were imputed using existing data from another dataset. If cold deck imputation was found to be insufficient, hot deck imputation was used, In this case, a missing value was imputed from a randomly selected similar record in the same dataset.
Some corrections are made automatically by the program(80%) and the rest by visual control of the questionnaires (20%).
Over the years the response rate at household level has varied between 95% and 97% with response rate at Individual Level varying between 92% and 95%. Challenges to acheiving a 100% response rate have included: - high population mobility within the study area - high population attrition - respondent fatigue - security in some areas
Not applicable for surveillance data
CentreId MetricTable QMetric Illegal Legal Total Metric RunDate
KE031 MicroDataCleaned Starts 219285 2017-05-16 18:25
KE031 MicroDataCleaned Transitions 825036 825036 0 2017-05-16 18:25
KE031 MicroDataCleaned Ends 219285 2017-05-16 18:25
KE031 MicroDataCleaned SexValues 825036 2017-05-16 18:25
KE031 MicroDataCleaned DoBValues 42 824994 825036 0 2017-05-16 18:25
Facebook
TwitterCairo, in Egypt, ranked as the most populated city in Africa as of 2025, with an estimated population of over 23 million inhabitants living in Greater Cairo. Kinshasa, in Congo, and Lagos, in Nigeria, followed with some 17.8 million and 17.2 million, respectively. Among the 15 largest cities in the continent, another one, Kano, was located in Nigeria, the most populous country in Africa. Population density trends in Africa As of 2023, Africa exhibited a population density of 50.1 individuals per square kilometer. Since 2000, the population density across the continent has been experiencing a consistent annual increment. Projections indicated that the average population residing within each square kilometer would rise to approximately 58.5 by the year 2030. Moreover, Mauritius stood out as the African nation with the most elevated population density, exceeding 627 individuals per square kilometre. Mauritius possesses one of the most compact territories on the continent, a factor that significantly influences its high population density. Urbanization dynamics in Africa The urbanization rate in Africa was anticipated to reach close to 45.5 percent in 2024. Urbanization across the continent has consistently risen since 2000, with urban areas accommodating only around a third of the total population then. This trajectory is projected to continue its rise in the years ahead. Nevertheless, the distribution between rural and urban populations shows remarkable diversity throughout the continent. In 2024, Gabon and Libya stood out as Africa’s most urbanized nations, each surpassing 80 percent urbanization. As of the same year, Africa's population was estimated to expand by 2.27 percent compared to the preceding year. Since 2000, the population growth rate across the continent has consistently exceeded 2.3 percent, reaching its pinnacle at 2.63 percent in 2013. Although the growth rate has experienced a deceleration, Africa's population will persistently grow significantly in the forthcoming years.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Total population in Nairobi Kenya, 2021
Facebook
TwitterKenya had over ** million households according to the last census done in 2019. The majority, some *** million, lived in urban areas, while *** million dwelled in rural zones. Nairobi City was the county with more households, approximately *** million.
Facebook
TwitterIn 2016, UNHCR became aware of a group of stateless persons living in or near Nairobi, Kenya. Most of them were Shona, descendants of missionaries who arrived from Zimbabwe and Zambia in the 1960s and remained in Kenya. The total number of Shona living in Kenya is estimated to be between 3,000 and 3,500 people.
On their first arrival, the Shona were issued certificates of registration, but a change in the Registration of Persons Act of 1978 did not make provision for people of non-Kenyan descent, consequently denying the Shona citizenship. Zimbabwe and Zambia did not consider them nationals either, rendering them stateless. Besides the Shona, there are other groups of stateless persons of different origins and ethnicities, with the total number of stateless persons in Kenya estimated at 18,500.
UNHCR and the Government of Kenya are taking steps to address statelessness in the country, among them is the registration of selected groups for nationalization. In April 2019, the Government of Kenya pledged to recognize qualifying members of the Shona community as Kenyan citizens. However, the lack of detailed information on the stateless population in Kenya hinders advocacy for the regularization of their nationality status. Together with the Kenyan Government through the Department of Immigration Services (DIS) and the Kenya National Bureau of Statistics (KNBS), UNHCR Kenya conducted registration and socioeconomic survey for the Shona community from May to July 2019. While the primary objective of the registration was to document migration, residence and family history with the aim of preparing their registration as citizens, this survey was conducted to provide a baseline on the socio-economic situation of the stateless Shona population for comparison with non-stateless populations of Kenya.
Githurai, Nairobi, Kiambaa and Kinoo
Household and individual
All Shona living in Nairobi and Kiambu counties, Kenya
Census/enumeration data [cen]
The objective of the socio-economic survey was to cover the entire Shona population living in areas of the Nairobi and Kiambu counties. This included Shona living in Githurai, Kiambaa, Kinoo and other urban areas in and around Nairobi. Data collection for the socioeconomic survey took place concurrently with a registration verification. The registration verification was to collect information on the Shona's migration history, residence in Kenya and legal documentation to prepare their registration as citizens. The registration activity including questions on basic demographics also covered some enumeration areas outside the ones of the socio-economic survey, such as institutional households in Hurlingham belonging to a religious order who maintain significantly different living conditions than the average population. The total number of households for which socio-economic data was collected for is 350 with 1,692 individuals living in them. A listing of Shona households using key informant lists and respondent-driven referral to identify further households was conducted by KNBS and UNHCR before the start of enumeration for the registration verification and socio-economic survey.
None
Computer Assisted Personal Interview [capi]
The following sections are included: household roster, education, employment, household characteristics, consumption and expenditure.
The dataset presented here has undergone light checking, cleaning and restructuring (data may still contain errors) as well as anonymization (includes removal of direct identifiers and sensitive variables, recoding and local suppression).
Overall reponse rate was 99 percent, mainly due to refusal to participate.
Facebook
TwitterThe 2022 Kenya Demographic and Health Survey (2022 KDHS) was implemented by the Kenya National Bureau of Statistics (KNBS) in collaboration with the Ministry of Health (MoH) and other stakeholders. The survey is the 7th KDHS implemented in the country.
The primary objective of the 2022 KDHS is to provide up-to-date estimates of basic sociodemographic, nutrition and health indicators. Specifically, the 2022 KDHS collected information on: • Fertility levels and contraceptive prevalence • Childhood mortality • Maternal and child health • Early Childhood Development Index (ECDI) • Anthropometric measures for children, women, and men • Children’s nutrition • Woman’s dietary diversity • Knowledge and behaviour related to the transmission of HIV and other sexually transmitted diseases • Noncommunicable diseases and other health issues • Extent and pattern of gender-based violence • Female genital mutilation.
The information collected in the 2022 KDHS will assist policymakers and programme managers in monitoring, evaluating, and designing programmes and strategies for improving the health of Kenya’s population. The 2022 KDHS also provides indicators relevant to monitoring the Sustainable Development Goals (SDGs) for Kenya, as well as indicators relevant for monitoring national and subnational development agendas such as the Kenya Vision 2030, Medium Term Plans (MTPs), and County Integrated Development Plans (CIDPs).
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men ageed 15-54, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sample for the 2022 KDHS was drawn from the Kenya Household Master Sample Frame (K-HMSF). This is the frame that KNBS currently uses to conduct household-based sample surveys in Kenya. The frame is based on the 2019 Kenya Population and Housing Census (KPHC) data, in which a total of 129,067 enumeration areas (EAs) were developed. Of these EAs, 10,000 were selected with probability proportional to size to create the K-HMSF. The 10,000 EAs were randomised into four equal subsamples. A survey can utilise a subsample or a combination of subsamples based on the sample size requirements. The 2022 KDHS sample was drawn from subsample one of the K-HMSF. The EAs were developed into clusters through a process of household listing and geo-referencing. The Constitution of Kenya 2010 established a devolved system of government in which Kenya is divided into 47 counties. To design the frame, each of the 47 counties in Kenya was stratified into rural and urban strata, which resulted in 92 strata since Nairobi City and Mombasa counties are purely urban.
The 2022 KDHS was designed to provide estimates at the national level, for rural and urban areas separately, and, for some indicators, at the county level. The sample size was computed at 42,300 households, with 25 households selected per cluster, which resulted in 1,692 clusters spread across the country, 1,026 clusters in rural areas, and 666 in urban areas. The sample was allocated to the different sampling strata using power allocation to enable comparability of county estimates.
The 2022 KDHS employed a two-stage stratified sample design where in the first stage, 1,692 clusters were selected from the K-HMSF using the Equal Probability Selection Method (EPSEM). The clusters were selected independently in each sampling stratum. Household listing was carried out in all the selected clusters, and the resulting list of households served as a sampling frame for the second stage of selection, where 25 households were selected from each cluster. However, after the household listing procedure, it was found that some clusters had fewer than 25 households; therefore, all households from these clusters were selected into the sample. This resulted in 42,022 households being sampled for the 2022 KDHS. Interviews were conducted only in the pre-selected households and clusters; no replacement of the preselected units was allowed during the survey data collection stages.
For further details on sample design, see APPENDIX A of the survey report.
Computer Assisted Personal Interview [capi]
Four questionnaires were used in the 2022 KDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Kenya. In addition, a self-administered Fieldworker Questionnaire was used to collect information about the survey’s fieldworkers.
CAPI was used during data collection. The devices used for CAPI were Android-based computer tablets programmed with a mobile version of CSPro. The CSPro software was developed jointly by the U.S. Census Bureau, Serpro S.A., and The DHS Program. Programming of questionnaires into the Android application was done by ICF, while configuration of tablets was completed by KNBS in collaboration with ICF. All fieldwork personnel were assigned usernames, and devices were password protected to ensure the integrity of the data.
Work was assigned by supervisors and shared via Bluetooth® to interviewers’ tablets. After completion, assigned work was shared with supervisors, who conducted initial data consistency checks and edits and then submitted data to the central servers hosted at KNBS via SyncCloud. Data were downloaded from the central servers and checked against the inventory of expected returns to account for all data collected in the field. SyncCloud was also used to generate field check tables to monitor progress and identify any errors, which were communicated back to the field teams for correction.
Secondary editing was done by members of the KNBS and ICF central office team, who resolved any errors that were not corrected by field teams during data collection. A CSPro batch editing tool was used for cleaning and tabulation during data analysis.
A total of 42,022 households were selected for the survey, of which 38,731 (92%) were found to be occupied. Among the occupied households, 37,911 were successfully interviewed, yielding a response rate of 98%. The response rates for urban and rural households were 96% and 99%, respectively. In the interviewed households, 33,879 women age 15-49 were identified as eligible for individual interviews. Of these, 32,156 women were interviewed, yielding a response rate of 95%. The response rates among women selected for the full and short questionnaires were similar (95%). In the households selected for the men’s survey, 16,552 men age 15-54 were identified as eligible for individual interviews and 14,453 were successfully interviewed, yielding a response rate of 87%.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Kenya Demographic and Health Survey (2022 KDHS) to minimise this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 KDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 KDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2022 KDHS is a SAS program. This program used the Taylor linearisation method for variance estimation for survey estimates that are means, proportions or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data
Facebook
TwitterThe total population of Kenya was estimated at approximately 52.44 million people in 2024. Following a continuous upward trend, the total population has risen by around 36.72 million people since 1980. Between 2024 and 2030, the total population will rise by around 5.54 million people, continuing its consistent upward trajectory.This indicator describes the total population in the country at hand. This total population of the country consists of all persons falling within the scope of the census.
Facebook
TwitterThe World Bank in collaboration with the Joint Data Center on Forced Displacement, Kenya National Bureau of Statistics (KNBS) and the United Nations High Commissioner for Refugees (UNHCR) conducted a cross-sectional survey on refugee and host populations living in Nairobi. The survey was based on the Kenya Continuous Household Survey (KCHS) and targets both host populations and refugees living in Nairobi. Through a participatory training format, enumerators learned how to collect quality data specific for refugees as well as nationals. Daily data quality monitoring dashboards were produced during the data collection periods to provide feedback to the field team and correct possible errors. The data was collected with CAPI technique through the World Bank developed Survey Solutions software; this ensured high standards of data storage, protection and pre-processing.
The sample is representative of refugees and other residents living in Nairobi. The refugee sample was drawn from UNHCR’s database of refugees and asylum seekers (proGres) using implicit stratification by sub-county and country of origin. The host community sampling frame was drawn using a two-stage cluster design. In the first stage, eligible enumeration areas (EAs) based on the 2019 Population and Housing Census were selected. In the second stage 12 households were sampled from each EA. The survey differentiates between two types of host communities: ‘core’ host communities were drawn from EAs located within the three areas with the largest number of refugee families: Kasarani, Eastleigh North and Kayole. At least 10 percent of the Nairobi refugee families reside in each of these areas. ‘Wider’ host communities cover the rest of the Nairobi population and were drawn from EAs which do not cover the three areas in which many refugees live.
For a subset of households, a women empowerment module was administered by a trained female enumerator to one randomly selected woman in each household aged 15 to 49.
The data set contains two files. hh.dta contains household level information. The ‘hhid’ variable uniquely identifies all households. hhm.dta contains data at the level of the individual for all household members. Each household member is uniquely identified by the variable ‘hhm_id’.
This cross-sectional survey was conducted between May 22 to July 27, 2021. It comprises a sample of 4,853 households in total, 2,420 of which are refugees and 2,433 are hosts.
Nairobi county, Kenya
Household, Individual
The survey has two primary samples contained in the ‘sample’ variable: the refugee sample and the host community sample. The refugee sample used the UNHCR database of refugees and asylum seekers in Kenya (proGres) as the sampling frame. ProGres holds information on all registered refugees and asylum seekers in Kenya including their contact information and data on nationality and approximate location of living. We considered only refugees living in Nairobi and implicitly stratified by nationality and location. In total, the sample comprises 2,420 refugee families.
The host community sample differentiates between two types of communities. We consider ‘core’ host communities as residents who live in Eastleigh North, Kayole or Kasarani – at least 10 percent of the Nairobi refugee families reside in each of these areas. Nationals living outside these areas are considered part of the ‘wider’ host community in Nairobi. The samples for both host communities were drawn using a 2-stage cluster design. In the first stage, eligible enumeration areas (EA) were drawn from the list of EAs covering Nairobi taken from the 2019 Population and Housing Census. In the second stage a listing of all host community households was established through a household census within all selected EAs, ensuring that refugee households were excluded to prevent overlap with the refugee sampling frame. 12 households and 6 replacements were drawn per EA. Our total sample consists of 2,433 host community households, 1,221 core hosts and 1,212 wider hosts.
The three sub-samples – refugees, core hosts, and wider hosts – are reflected in the ‘strata’ variable. The EAs which form the primary sampling units for the two host samples are anonymized and included in the ‘psu’ variable. Please note that the ‘psu’ variable clusters refugees under one numeric code (888).
Computer Assisted Personal Interview [capi]
The Questionnaire is provided as external resources in pdf format. Questionnaires were produced through the World Bank developed Survey Solutions software. The survey was implemented in English,Swahili and Somali.
Facebook
TwitterThe Genomic and environmental risk factors for cardiometabolic disease in Africans (AWI-Gen) project was a collaborative study between the University of the Witwatersrand (Wits) and the INDEPTH Network funded under the Human Heredity and Health in Africa (H3Africa) initiative. The H3Africa was a ground-breaking initiative to build institutional and individual capacity to undertake genetic and genomic studies in the African region. This collaboration, involved five INDEPTH sites i.e. 1) Navrongo - Ghana; 2) Nanoro - Burkina Faso; 3&4) Agincourt and Digkale - South Africa; and 5) Nairobi - Kenya) plus the Soweto-based birth-to-twenty cohort. AWI-Gen phase I was a population based cross-sectional study with a research platform of over 12,045 participants aged 40-60 years from Burkina Faso, Ghana, Kenya and South Africa. It aimed to understand the interplay between genetic, epigenetic and environmental risk factors for obesity and related cardiometabolic diseases (CMD) in sub-Saharan Africa and it generated epi-demographic, environmental, health history, behavioral, anthropometric, physiological and genetic data across a range of rapidly transitioning African settings. This provided a unique resource to examine genetic associations and gene-environment interactions that will contribute to Afrocentric risk prediction models and African-appropriate Mendelian Randomization instruments, and exploit their potential to improve personal and population health - while strengthening regional research capacity. We plan to continue this work in AWIGEN-phase II among the same participants recruited in AWIGen-I offering an opportunity to examine data in a longitudinal manner. The AWI-Gen phase II project aims to establish the genomic contribution to CMD and risk at a time when multiple interacting transitions, in the presence of high background HIV or malaria prevalence, are driving a rapid escalation in CMD across the African continent. The project capitalizes on the unique strengths of existing longitudinal cohorts and well-established health and demographic surveillance systems(HDSS) run by the partner institutions. The six study sites represent geographic and social variability of African populations which are also at different stages of the demographic and epidemiological transitions. The work in Kenya will be undertaken in the Nairobi Urban Health and Demographic Surveillance System (NUHDSS) run by African Population and Health Research Center (APHRC) following participants who were recruited in AWIGEN-Phase I. AWI-Gen II consisted of five main aims: i) AIM-1 (Sub-study 1): Genetic associations studies to elucidate functional pathways involved in determining body composition and risk for CMD by detecting pivotal genomic and environmental contributors; ii) AIM 2 (Sub-study 2): Genomics and bioinformatics-impact of genomic diversity on disease risk and precision public health; iii) AIM 3 (Sub-study 3): Examine changes over the menopausal transition in body composition and CMD risk; iv) AIM 4 (Sub-study 4): Examine gut microbiome in older adults and its relationship to obesity, diabetes and glucose tolerance and ageing; and v) AIM 5 (Sub-study 5): Explore respiratory disease in context of multi-morbidity. In this application, we sought ethical approval for the Kenya study only. The other partners sought approval from their appropriate ethics review authorities in their countries. The study budget was $248,613 and was funded by National Institute of Health (NIH)-USA under H3Africa. Data collection was undertaken for approximately 12 months but sample processing, data analysis, manuscript writing, capacity building and policy engagement was continued up to three years after field work (up to 2022).
County coverage (Informal settlements of Korogocho and Viwandani in Nairobi)
Individual Household
The survey covered individual participants aged 45-65 years.
a) Study design: A prospective cohort study to examine genetic associations and gene-environment interactions with measures of change in CMD and risk derived over 5 years (AWI-Gen I survey was in 2014/2015, and survey for phenotypic characteristics (under AWI-Gen II) among the same individuals will was repeated in 2019/2020). This was an extend baseline (AWI-Gen I) to provide longitudinal data (AWI-Gen II). b) Study site (geographical) The study in Kenya was conducted in Nairobi, specifically in Korogocho and Viwandani urban informal settlements which are covered by the NUHDSS. c) Study populations Sub-study 1 & 5: Adult (40-60 years at baseline) residents of Korogocho and Viwandani informal settlements registered in the NUHDSS. Sample size A sample size of 2000 per site (12000 in total) was used in AWIGEN-I based on power calculations and effect sizes. The power calculations show that we have power to detect realistic effect sizes, based on studies in other populations. Figure 2 illustrates the relationship between power and effect size for two different phenotypes, illustrating that the detectable effect size is realistic. Power analysis for a sample size of 12000 individuals based on proposed candidate gene study for BMI (shown on the left) and for DXA (total body fat) (shown on the right). Given a sample size of 12000 in the AWI-Gen study, this graph shows effect size (x) which could be detected at a given power (y) for different minor allele frequencies (ranging from 0.05-045). For example, with a minor allele frequency of 0.25, we will have 80% power to detect an effect size (Beta) of 0.20 per allele change in BMI, and an effect size of 0.25 per allele change in body fat percentage. For AWIGEN 2, we will follow the same participants. We anticipate a retention of 70% from the 2000 participants recruited in phase 1. Thus, our sample size for AWIGEN-11 was approximately 1400 participants for the Kenyan site to for sub-studies 1 and 2. For Sub-studies 3 & 4 we will randomly sample 250 individuals for each sub-study which is a large sample by most microbiome project standards. For Sub-study 5 we will include all participants selected in Sub-study 1
N/A
Other [oth]
The questionnaire for AWIGen 2 was a structured questionnaire developed by the University of Witwatersrand. The questionnaire was translated from English to Swahili. The individual questionnaire was administered to an adult (40-60 years old), which collected various information of the individual including, age, gender, BMI, Visceral fat levels, T2 diabetes status, blood pressure, socio-economic status, lifestyle (diet, tobacco, alcohol, exercise etc.) and HIV infection status. In addition, for participants in microbiome study we will ask information on antibiotics use. We will repeat the anthropometric measurements including height, weight, waist and hip circumference and ultrasound measurements of visceral and subcutaneous fat, and cIMT.
Data was edited on REDCap during data entry and also secondary editing was performed once the files were submitted to the server.
59%
N/A
Facebook
TwitterThe 1993 Kenya Demographic and Health Survey (KDHS) was a nationally representative survey of 7,540 women age 15-49 and 2,336 men age 20-54. The KDHS was designed to provide information on levels and trends of fertility, infant and child mortality, family planning knowledge and use, maternal and child health, and knowledge of AIDS. In addition, the male survey obtained data on men's knowledge and attitudes towards family planning and awareness of AIDS. The data are intended for use by programme managers and policymakers to evaluate and improve family planning and matemal and child health programmes. Fieldwork for the KDHS took place from mid-February until mid-August 1993. All areas of Kenya were covered by the survey, except for seven northem districts which together contain less than four percent of the country's population.
The KDHS was conducted by the National Council for Population and Development (NCPD) and the Central Bureau of Statistics of the Government of Kenya. Macro International Inc. provided financial and technical assistance to the project through the intemational Demographic and Health Surveys (DHS) contract with the U.S. Agency for International Development.
OBJECTIVES
The KDHS is intended to serve as a source of population and health data for policymakers and the research community. It was designed as a follow-on to the 1989 KDHS, a national-level survey of similar size that was implemented by the same organisations. In general, the objectives of KDHS are to: - assess the overall demographic situation in Kenya, - assist in the evaluation of the population and health programmes in Kenya, - advance survey methodology, and - assist the NCPD to strengthen and improve its technical skills to conduct demographic and health surveys.
The KDHS was specifically designed to: - provide data on the family planning and fertility behaviour of the Kenyan population to enable the NCPD to evaluate and enhance the National Family Planning Programme, - measure changes in fertility and contraceptive prevalence and at the same time study the factors which affect these changes, such as marriage patterns, urban/rural residence, availability of contraception, breastfeeding habits and other socioeconomic factors, and - examine the basic indicators of maternal and child health in Kenya.
KEY FINDINGS
The 1993 KDHS reinforces evidence of a major decline in fertility which was first revealed by the findings of the 1989 KDHS. Fertility continues to decline and family planning use has increased. However, the disparity between knowledge and use of family planning remains quite wide. There are indications that infant and under five child mortality rates are increasing, which in part might be attributed to the increase in AIDS prevalence.
The 1993 KDHS sample is national in scope, with the exclusion of all three districts in North Eastern Province and four other northern districts (Samburu and Turkana in Rift Valley Province and Isiolo and 4 Marsabit in Eastern Province). Together the excluded areas account for less than 4 percent of Kenya's population.
The population covered by the 1993 KDHS is defined as the universe of all women age 15-49 in Kenya and all husband age 20-54 living in the household.
Sample survey data
The sample for the 1993 KDHS was national in scope, with the exclusion of all three districts in Northeastern Province and four other northern districts (Isiolo and Marsabit from Eastern Province and Samburu and Turkana from Rift Valley Province). Together the excluded areas account for less than four percent of Kenya's population. The KDHS sample points were selected from a national master sample maintained by the Central Bureau of Statistics, the third National Sample Survey and Evaluation Programme (NASSEP-3), which is an improved version of NASSEP2 used in the 1989 survey. This master sample follows a two-stage design, stratified by urban-rural residence, and within the rural stratum, by individual district. In the first stage, 1989 census enumeration areas (EAs) were selected with probability proportional to size. The selected EAs were segmented into the expected number of standard-sized clusters to form NASSEP clusters. The entire master sample consists of 1,048 rural and 325 urban ~ sample points ("clusters"). A total of 536 clusters---92 urban and 444 rural--were selected for coverage in the KDHS. Of these, 520 were successfully covered. Sixteen clusters were inaccessible for various reasons.
As in the 1989 KDHS, selected districts were oversampled in the 1993 survey in order to produce more reliable estimates for certain variables at the district level. Fifteen districts were thus targetted in the 1993 KDHS: Bungoma, Kakamega, Kericho, Kilifi, Kisii, Machakos, Meru, Murang'a, Nakuru, Nandi, Nyeri, Siaya, South Nyanza, Taita-Taveta, and Uasin Gishu; in addition, Nairobi and Mombasa were also targetted. Although six of these districts were subdivided shortly before the sample design was finalised) the previous boundaries of these districts were used for the KDHS in order to maintain comparability with the 1989 survey. About 400 rural households were selected in each of these 15 districts, just over 1000 rural households in other districts, and about 18130 households in urban areas, for a total of almost 9,000 households. Due to this oversampling, the KDHS sample is not self-weighting at the national level.
After the selection of the KDHS sample points, fieldstaff from the Central Bureau of Statistics conducted a household listing operation in January and early February 1993, immediately prior to the launching of the fieldwork. A systematic sample of households was then selected from these lists, with an average "take" of 20 households in the urban clusters and 16 households in rural clusters, for a total of 8,864 households selected. Every other household was identified as selected for the male survey, meaning that, in addition to interviewing all women age 15-49, interviewers were to also interview all men age 20-54. It was expected that the sample would yield interviews with approximately 8,000 women age 15-49 and 2,500 men age 20-54.
Face-to-face
Four types of questionnaires were used for the KDHS: a Household Questionnaire, a Woman's Questionnaire, a Man's Questionnaire and a Services Availability Questionnaire. The contents of these questionnaires were based on the DHS Model B Questionnaire, which is designed for use in countries with low levels of contraceptive use. Additions and modifications to the model questionnaires were made during a series of meetings organised around specific topics or sections of the questionnaires (e.g., fertility, family planning). The NCPD invited staff from a variety of organisations to attend these meetings, including the Population Studies Research Institute and other departments of the University of Nairobi, the Woman's Bureau, and various units of the Ministry of Health. The questionnaires were developed in English and then translated into and printed in Kiswahili and eight of the most widely spoken local languages in Kenya (Kalenjin, Kamba, Kikuyu, Kisii, Luhya, Luo, Meru, and Mijikenda).
a) The Household Questionnaire was used to list all the usual members and visitors of selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.
b) The Woman's Questionnaire was used to collect information from women aged 15-49. These women were asked questions on the following topics: Background characteristics (age, education, religion, etc.), Reproductive history, Knowledge and use of family planning methods, Antenatal and delivery care, Breastfeeding and weaning practices, Vaccinations and health of children under age five, Marriage, Fertility preferences, Husband's background and respondent's work, Awareness of AIDS. In addition, interviewing teams measured the height and weight of children under age five (identified through the birth histories) and their mothers.
c) Information from a subsample of men aged 20-54 was collected using a Man's Questionnaire. Men were asked about their background characteristics, knowledge and use of family planning methods, marriage, fertility preferences, and awareness of AIDS.
d) The Services Availability Questionnaire was used to collect information on the health and family planning services obtained within the cluster areas. One service availability questionnaire was to be completed in each cluster.
All questionnaires for the KDHS were returned to the NCPD headquarters for data processing. The processing operation consisted of office editing, coding of open-ended questions, data entry, and editing errors found by the computer programs. One NCPD officer, one data processing supervisor, one questionnaire administrator, two office editors, and initially four data entry operators were responsible for the data processing operation. Due to attrition and the need to speed up data processing, another four data entry operators were later hired
Facebook
TwitterThis statistic shows the biggest cities in Kenya as of 2019. In 2019, approximately *** million people lived in Nairobi, making it the biggest city in Kenya.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background: There are racial, ethnic and geographical differences in complete blood count (CBC) reference intervals (RIs) and therefore it is necessary to establish RIs that are population specific. Several studies have been carried out in Africa to derive CBC RIs but many were not conducted with the rigor recommended for RI studies hence limiting the adoption and generalizability of the results. Method: By use of a Beckman Coulter ACT 5 DIFF CP analyser, we measured CBC parameters in samples collected from 528 healthy black African volunteers in a largely urban population. The latent abnormal values exclusion (LAVE) method was used for secondary exclusion of individuals who may have had sub-clinical diseases. The RIs were derived by both parametric and non-parametric methods with and without LAVE for comparative purposes. Results: Haemoglobin (Hb) levels were lower while platelet counts were higher in females across the 4 age stratifications. The lower limits for Hb and red blood cell parameters significantly increased after applying the LAVE method which eliminated individuals with latent anemia and inflammation. We adopted RIs by parametric method because 90% confidence intervals of the RI limits were invariably narrower than those by the non-parametric method. The male and female RIs for Hb after applying the LAVE method were 14.5−18.7 g/dL and 12.0−16.5 g/dL respectively while the platelet count RIs were 133−356 and 152−443 x103 per µL respectively. Conclusion: Consistent with other studies from Sub-Saharan Africa, Hb and neutrophil counts were lower than Caucasian values. Our finding of higher Hb and lower eosinophil counts compared to other studies conducted in rural Kenya most likely reflects the strict recruitment criteria and healthier reference population after secondary exclusion of individuals with possible sub-clinical diseases.
Facebook
TwitterKikuyu was the largest ethnic group in Kenya, accounting for ** percent of the country's population in 2019. Native to Central Kenya, the Kikuyu constitute a Bantu group with more than eight million people. The groups Luhya and Kalenjin followed, with respective shares of **** percent and **** percent of the population. Overall, Kenya has more than 40 ethnic groups.
Facebook
TwitterThe Bungoma County Multiple Indicator Cluster Survey (MICS5) was conducted in collaboration with the Population Studies and Research Institute (PSRI) of the University of Nairobi, the Kenya National Bureau of Statistics (KNBS) and the United Nations Children's Fund (UNICEF).The Kenya National Bureau of Statistics implemented (MICS5) in 2013-2014 in the three counties of Bungoma, Kakamega and Turkana as part of Global MICS round five.
The global MICS program was developed by UNICEF in the 1990s as an international household survey program to support countries in the collection of internationally comparable data on a wide range of indicators on the situation of children and women. MICS surveys measure key indicators that allow countries to generate data for use in policies and programs and to monitor progress towards the Millennium Development Goals (MDGs) and other internationally agreed upon commitments. Technical and financial support were provided by the United Nations Children's Fund.
The results of this survey provided requisite baseline information that can be used to facilitate evidence-based planning, budgeting and programming by policymakers and stakeholders at the county levels. The survey will go a long way in encouraging increased demand for use of statistics by policy makers at devolved levels and will ensure that resources at both county and national levels are used most effectively through well-planned projects/programs that will benefit especially the women and children of the three counties. The MICS5 results were critical in gauging milestones achieved in the field of education, nutrition, child development, health for women and children in the three counties and in evaluating the various health based policies that the government has formulated over the years towards achieving the national welfare objectives.
The 2013-14 MICS5 data was critical in informing the future planning for the three counties, especially in view of the new constitutional dispensation and Vision 2030. It was anticipated that MICS5 would supplement the data collected during the 2014 Kenya Demographic and Health Survey (KDHS). In addition the information collected would inform strategic communication for social and behavior change interventions by government and partners including UNICEF. Furthermore the data contributed to the improvement of data and monitoring systems in the three counties. The primary objectives of the Bungoma County survey are: 1. To provide up-to-date information for assessing the situation of children and women in Bungoma County. 2. To generate data for the critical assessment of the progress made in various areas, and to put additional efforts in those areas that require more attention. 3. To furnish data needed for monitoring progress toward goals established in the Millennium Declaration, and other internationally agreed upon goals, as a basis for future action. 4. To collect disaggregated data for the identification of disparities, to allow for evidence based policy-making aimed at social inclusion of the most vulnerable. 5. To contribute to the generation of baseline data for the post-2015 agenda. 6. To validate data from other sources and the results of focused interventions. 7. To contribute to the improvement of data and monitoring systems in Kenya and to strengthen technical expertise in the design, implementation, and analysis of such systems.
National
The survey covered all de jure household members (usual residents), all women aged between 15-49 years and all children under 5 living in the household.
Sample survey data [ssd]
The primary objective of the sample design for the Bungoma County MICS was to produce statistically reliable estimates of indicators, at county level. The urban and rural areas in Bungoma County were the sampling strata. A multi-stage, stratified cluster sampling approach was used for the selection of the survey sample. MICS5 utilized the recently created fifth National Sample Survey and Evaluation Program (NASSEP V) frame which is a household based master sampling frame developed and maintained by KNBS. The frame was implemented using a multi-tiered structure, in which a set of 4 sub-samples (C1, C2, C3, C4) were developed. It is based on the list of enumeration areas (EAs) from the 2009 Kenya Population and Housing Census. The frame is stratified according to County and further into rural and urban. Each of the sub-samples is representative at county level and at national (i.e. Urban/rural) level and contains 1,340 clusters.
The Primary Sampling Units (PSUs) for the survey were clusters drawn from the NASSEP V sampling frame, so the first component of the probabilities and weights are based on that master sample. Within each stratum the PSUs for the MICS were selected independently from one of the subsamples of the master sample using Equal Probability Selection Method (EPSEM). A total of 50 clusters were selected from the master sample in this way.
Out of the 50 sample clusters selected for Bungoma County, it was established that 30 had been listed more than six months prior to the start of the survey. These listing for these clusters was updated prior to selection of households. For this purpose, listing teams visited each cluster, and listed all occupied households. For the remaining 20 sample clusters a more recent listing was available, so it was used for selecting the sample households.
Face-to-face [f2f]
A set of three questionnaires was used in the survey: 1. A household questionnaire which was administered to the household head or any other responsible member of the household. 2. A questionnaire for individual women administered in each household to all women age 15-49 years. 3. An under-5 questionnaire administered to mothers (or caretakers) for all children under-5 years living in the household.
Data were entered into the computers using the Census and Surveys Processing System (CSPro) software package, Version 5.0. Data entry was done by a trained team of 14 data entry operators, one archivist/system administrator and one data entry supervisor. For quality assurance purposes, all questionnaires were double-entered and internal consistency checks performed.
Procedures and standard programs developed under the global MICS program and adapted to the Bungoma County MICS questionnaire were used throughout. Data processing began simultaneously with data collection in November 2013 and was completed in February 2014. Data were analyzed using the Statistical Package for Social Sciences (SPSS) software, Version 21. Model syntax and tabulation plans developed by UNICEF were customized and used for this purpose.
Information was collected from a total of 1,246 households representing 95 percent response rate. The composition of these households was 5,983 household members comprising 2,797 males and 3,186 females. The mean household size was 4.8 persons. About 48 percent of the sampled households' population is below 15 years, 48 percent are between age 15-64 years and four percent are age 65 years and above.
Due to data quality issues, data relating to mortality and anthropometric measures were not analyzed and reported. Anthropometric data suffered digit preference for both weight and height, while for mortality, deaths especially among children under-five years were under reported. KDHS 2014 had similar shortcomings.
The sample of respondents selected in the Bungoma County MICS is only one of the samples that could have been selected from the same population, using the same design and size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between the estimates from all possible samples. The extent of variability is not known exactly, but can be estimated statistically from the survey data. The following sampling error measures are presented in this appendix for each of the selected indicators: - Standard error (se): Standard error is the square root of the variance of the estimate. For survey indicators those are means, proportions or ratios, the Taylor series linearization method is used for the estimation of standard errors. For more complex statistics, such as fertility and mortality rates, the Jackknife repeated replication method is used for standard error estimation. - Coefficient of variation (se/r) is the ratio of the standard error to the value (r) of the indicator, and is a measure of the relative sampling error. - Design effect (deff) is the ratio of the actual variance of an indicator, under the sampling method used in the survey, to the variance calculated under the assumption of simple random sampling based on the same sample size. The square root of the design effect (deft) is used to show the efficiency of the sample design in relation to the precision. A deft value of 1.0 indicates that the sample design of the survey is as efficient as a simple random sample for a particular indicator, while a deft value above 1.0 indicates an increase in the standard error due to the use of a more complex sample design. - Confidence limits are calculated to show the interval within which the true value for the population can be reasonably assumed to fall, with a specified level of confidence. For any given statistic calculated from the survey, the value
Facebook
TwitterAs of 2043, Nairobi was the most populated city in Kenya, with more than 2.7 million people living in the capital. The city is also the only one in the country with a population exceeding one million. For instance, Mombasa, the second most populated, has nearly 800 thousand inhabitants. As of 2020, Kenya's population was estimated at over 53.7 million people.