Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Kenya data available from WorldPop here.
While the East African region, including Kenya, is one of first regions believed to have modern humans inhabit it, population growth in the region remained slow to non-existent throughout the 19th century; in the past hundred years, however, Kenya’s population has seen an exponential increase in size, going from 2.65 million in 1920, to an estimated 53.77 million in 2020.
Along with this population growth, Kenya has seen rapid urbanization and industrialization, particularly in recent decades. The metropolitan area of Kenya’s capital, Nairobi, with an estimated population of 9.35 million in 2020, now contains on its own over three and a half times the population of the entire country just a century earlier.
This statistic shows the total population of Kenya from 2013 to 2023 by gender. In 2023, Kenya's female population amounted to approximately 27.82 million, while the male population amounted to approximately 27.52 million inhabitants.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of Kenya population from 1950 to 2025. United Nations projections are also included through the year 2100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya KE: Population: Female: Ages 30-34: % of Female Population data was reported at 7.536 % in 2017. This records an increase from the previous number of 7.507 % for 2016. Kenya KE: Population: Female: Ages 30-34: % of Female Population data is updated yearly, averaging 5.866 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 7.536 % in 2017 and a record low of 4.488 % in 1975. Kenya KE: Population: Female: Ages 30-34: % of Female Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank.WDI: Population and Urbanization Statistics. Female population between the ages 30 to 34 as a percentage of the total female population.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; ;
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Household
UNITS IDENTIFIED: - Dwellings: No - Households: Yes
All persons who were in Kenya at midnight on Census Night.
Census/enumeration data [cen]
MICRODATA SOURCE: Constructed by census agency.
SAMPLE DESIGN: Unknown sample design includes oversample of Nairobi. Data are weighted by age and district of residence.
SAMPLE FRACTION: 6%
SAMPLE UNIVERSE: Unknown.
SAMPLE SIZE (person records): 659,310
Face-to-face [f2f]
Single enumeration form that requested information on individuals.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya KE: Population: Male: Ages 70-74: % of Male Population data was reported at 0.626 % in 2017. This records an increase from the previous number of 0.606 % for 2016. Kenya KE: Population: Male: Ages 70-74: % of Male Population data is updated yearly, averaging 0.759 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 0.961 % in 1960 and a record low of 0.584 % in 2014. Kenya KE: Population: Male: Ages 70-74: % of Male Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank: Population and Urbanization Statistics. Male population between the ages 70 to 74 as a percentage of the total male population.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Kenya population
As of 2043, Nairobi was the most populated city in Kenya, with more than 2.7 million people living in the capital. The city is also the only one in the country with a population exceeding one million. For instance, Mombasa, the second most populated, has nearly 800 thousand inhabitants. As of 2020, Kenya's population was estimated at over 53.7 million people.
The Population and Housing Census 1969, has been done after years, the previous one done in 1962. it is a de jure analysis of Kenyan households covering all individuals present.
it covers the whoe country
Census/enumeration data [cen]
face to face
Kenya recorded 102.2 male births per 100 female births in 2021. The country's gender ratio kept stable since 2011, after increasing from 101.9 in 2000.
As of 2024, the median age in Kenya reached 19.9 years. The indicator has been increasing in the country, which indicates declining fertility rates and/or improvements in life expectancy. In 2015, the median age in Kenya stood by 17.9 years.
The annual population growth in Kenya increased by 0.1 percentage points (+5.24 percent) in 2023 in comparison to the previous year. In total, the population growth amounted to 1.97 percent in 2023. This increase was preceded by a declining population growth.Annual population growth refers to the change in the population over time, and is affected by factors such as fertility, mortality, and migration.Find more key insights for the annual population growth in countries like Ethiopia and Tanzania.
Major Towns by PopulationTowns in Kenya: Kenya’s capital city is Nairobi. It is the largest city in East Africa and the region’s Financial, Communication and Diplomatic Capital. In Kenya there are only three incorporated cities but there are numerous municipalities and towns with significant urban populations. Two of the cities, Nairobi and Mombasa are cities whose county borders run the same as their city limits, so in a way they could be thought of as City-CountiesNairobi is the only city in the world with a game park. Nairobi National Park is a preserved ecosystem where you can view wildlife in its natural habitat. Hotels, airlines and numerous tour firms and agencies offer tour packages for both domestic and foreign tourists visiting Nairobi and the park. The tourism industry provides direct employment to thousands of Nairobi residents.
In 2016, UNHCR became aware of a group of stateless persons living in or near Nairobi, Kenya. Most of them were Shona, descendants of missionaries who arrived from Zimbabwe and Zambia in the 1960s and remained in Kenya. The total number of Shona living in Kenya is estimated to be between 3,000 and 3,500 people. On their first arrival, the Shona were issued certificates of registration, but a change in the Registration of Persons Act of 1978 did not make provision for people of non-Kenyan descent, consequently denying the Shona citizenship. Zimbabwe and Zambia did not consider them nationals either, rendering them stateless. Besides the Shona, there are other groups of stateless persons of different origins and ethnicities, with the total number of stateless persons in Kenya estimated at 18,500. UNHCR and the Government of Kenya are taking steps to address statelessness in the country, among them is the registration of selected groups for nationalization. In April 2019, the Government of Kenya pledged to recognize qualifying members of the Shona community as Kenyan citizens. However, the lack of detailed information on the stateless population in Kenya hinders advocacy for the regularization of their nationality status. Together with the Kenyan Government through the Department of Immigration Services (DIS) and the Kenya National Bureau of Statistics (KNBS), UNHCR Kenya conducted registration and socioeconomic survey for the Shona community from May to July 2019. While the primary objective of the registration was to document migration, residence and family history with the aim of preparing their registration as citizens, this survey was conducted to provide a baseline on the socio-economic situation of the stateless Shona population for comparison with non-stateless populations of Kenya.
Githurai, Nairobi, Kiambaa and Kinoo
Household and individual
All Shona living in Nairobi and Kiambu counties, Kenya
Census/enumeration data [cen]
The objective of the socio-economic survey was to cover the entire Shona population living in areas of the Nairobi and Kiambu counties. This included Shona living in Githurai, Kiambaa, Kinoo and other urban areas in and around Nairobi. Data collection for the socioeconomic survey took place concurrently with a registration verification. The registration verification was to collect information on the Shona's migration history, residence in Kenya and legal documentation to prepare their registration as citizens. The registration activity including questions on basic demographics also covered some enumeration areas outside the ones of the socio-economic survey, such as institutional households in Hurlingham belonging to a religious order who maintain significantly different living conditions than the average population. The total number of households for which socio-economic data was collected for is 350 with 1,692 individuals living in them. A listing of Shona households using key informant lists and respondent-driven referral to identify further households was conducted by KNBS and UNHCR before the start of enumeration for the registration verification and socio-economic survey.
None
Computer Assisted Personal Interview [capi]
The following sections are included: household roster, education, employment, household characteristics, consumption and expenditure.
The dataset presented here has undergone light checking, cleaning and restructuring (data may still contain errors) as well as anonymization (includes removal of direct identifiers and sensitive variables, recoding and local suppression).
Overall reponse rate was 99 percent, mainly due to refusal to participate.
The 2022 Kenya Demographic and Health Survey (2022 KDHS) was implemented by the Kenya National Bureau of Statistics (KNBS) in collaboration with the Ministry of Health (MoH) and other stakeholders. The survey is the 7th KDHS implemented in the country.
The primary objective of the 2022 KDHS is to provide up-to-date estimates of basic sociodemographic, nutrition and health indicators. Specifically, the 2022 KDHS collected information on: • Fertility levels and contraceptive prevalence • Childhood mortality • Maternal and child health • Early Childhood Development Index (ECDI) • Anthropometric measures for children, women, and men • Children’s nutrition • Woman’s dietary diversity • Knowledge and behaviour related to the transmission of HIV and other sexually transmitted diseases • Noncommunicable diseases and other health issues • Extent and pattern of gender-based violence • Female genital mutilation.
The information collected in the 2022 KDHS will assist policymakers and programme managers in monitoring, evaluating, and designing programmes and strategies for improving the health of Kenya’s population. The 2022 KDHS also provides indicators relevant to monitoring the Sustainable Development Goals (SDGs) for Kenya, as well as indicators relevant for monitoring national and subnational development agendas such as the Kenya Vision 2030, Medium Term Plans (MTPs), and County Integrated Development Plans (CIDPs).
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men ageed 15-54, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sample for the 2022 KDHS was drawn from the Kenya Household Master Sample Frame (K-HMSF). This is the frame that KNBS currently uses to conduct household-based sample surveys in Kenya. The frame is based on the 2019 Kenya Population and Housing Census (KPHC) data, in which a total of 129,067 enumeration areas (EAs) were developed. Of these EAs, 10,000 were selected with probability proportional to size to create the K-HMSF. The 10,000 EAs were randomised into four equal subsamples. A survey can utilise a subsample or a combination of subsamples based on the sample size requirements. The 2022 KDHS sample was drawn from subsample one of the K-HMSF. The EAs were developed into clusters through a process of household listing and geo-referencing. The Constitution of Kenya 2010 established a devolved system of government in which Kenya is divided into 47 counties. To design the frame, each of the 47 counties in Kenya was stratified into rural and urban strata, which resulted in 92 strata since Nairobi City and Mombasa counties are purely urban.
The 2022 KDHS was designed to provide estimates at the national level, for rural and urban areas separately, and, for some indicators, at the county level. The sample size was computed at 42,300 households, with 25 households selected per cluster, which resulted in 1,692 clusters spread across the country, 1,026 clusters in rural areas, and 666 in urban areas. The sample was allocated to the different sampling strata using power allocation to enable comparability of county estimates.
The 2022 KDHS employed a two-stage stratified sample design where in the first stage, 1,692 clusters were selected from the K-HMSF using the Equal Probability Selection Method (EPSEM). The clusters were selected independently in each sampling stratum. Household listing was carried out in all the selected clusters, and the resulting list of households served as a sampling frame for the second stage of selection, where 25 households were selected from each cluster. However, after the household listing procedure, it was found that some clusters had fewer than 25 households; therefore, all households from these clusters were selected into the sample. This resulted in 42,022 households being sampled for the 2022 KDHS. Interviews were conducted only in the pre-selected households and clusters; no replacement of the preselected units was allowed during the survey data collection stages.
For further details on sample design, see APPENDIX A of the survey report.
Computer Assisted Personal Interview [capi]
Four questionnaires were used in the 2022 KDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Kenya. In addition, a self-administered Fieldworker Questionnaire was used to collect information about the survey’s fieldworkers.
CAPI was used during data collection. The devices used for CAPI were Android-based computer tablets programmed with a mobile version of CSPro. The CSPro software was developed jointly by the U.S. Census Bureau, Serpro S.A., and The DHS Program. Programming of questionnaires into the Android application was done by ICF, while configuration of tablets was completed by KNBS in collaboration with ICF. All fieldwork personnel were assigned usernames, and devices were password protected to ensure the integrity of the data.
Work was assigned by supervisors and shared via Bluetooth® to interviewers’ tablets. After completion, assigned work was shared with supervisors, who conducted initial data consistency checks and edits and then submitted data to the central servers hosted at KNBS via SyncCloud. Data were downloaded from the central servers and checked against the inventory of expected returns to account for all data collected in the field. SyncCloud was also used to generate field check tables to monitor progress and identify any errors, which were communicated back to the field teams for correction.
Secondary editing was done by members of the KNBS and ICF central office team, who resolved any errors that were not corrected by field teams during data collection. A CSPro batch editing tool was used for cleaning and tabulation during data analysis.
A total of 42,022 households were selected for the survey, of which 38,731 (92%) were found to be occupied. Among the occupied households, 37,911 were successfully interviewed, yielding a response rate of 98%. The response rates for urban and rural households were 96% and 99%, respectively. In the interviewed households, 33,879 women age 15-49 were identified as eligible for individual interviews. Of these, 32,156 women were interviewed, yielding a response rate of 95%. The response rates among women selected for the full and short questionnaires were similar (95%). In the households selected for the men’s survey, 16,552 men age 15-54 were identified as eligible for individual interviews and 14,453 were successfully interviewed, yielding a response rate of 87%.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Kenya Demographic and Health Survey (2022 KDHS) to minimise this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 KDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 KDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2022 KDHS is a SAS program. This program used the Taylor linearisation method for variance estimation for survey estimates that are means, proportions or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wildlife Census data for Lake Nakuru National Park and Nairobi National Park.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Total population in Nairobi Kenya, 2021
The World Bank in collaboration with the Joint Data Center on Forced Displacement, Kenya National Bureau of Statistics (KNBS) and the United Nations High Commissioner for Refugees (UNHCR) conducted a cross-sectional survey on refugee and host populations living in Nairobi. The survey was based on the Kenya Continuous Household Survey (KCHS) and targets both host populations and refugees living in Nairobi. Through a participatory training format, enumerators learned how to collect quality data specific for refugees as well as nationals. Daily data quality monitoring dashboards were produced during the data collection periods to provide feedback to the field team and correct possible errors. The data was collected with CAPI technique through the World Bank developed Survey Solutions software; this ensured high standards of data storage, protection and pre-processing.
The sample is representative of refugees and other residents living in Nairobi. The refugee sample was drawn from UNHCR’s database of refugees and asylum seekers (proGres) using implicit stratification by sub-county and country of origin. The host community sampling frame was drawn using a two-stage cluster design. In the first stage, eligible enumeration areas (EAs) based on the 2019 Population and Housing Census were selected. In the second stage 12 households were sampled from each EA. The survey differentiates between two types of host communities: ‘core’ host communities were drawn from EAs located within the three areas with the largest number of refugee families: Kasarani, Eastleigh North and Kayole. At least 10 percent of the Nairobi refugee families reside in each of these areas. ‘Wider’ host communities cover the rest of the Nairobi population and were drawn from EAs which do not cover the three areas in which many refugees live.
For a subset of households, a women empowerment module was administered by a trained female enumerator to one randomly selected woman in each household aged 15 to 49.
The data set contains two files. hh.dta contains household level information. The ‘hhid’ variable uniquely identifies all households. hhm.dta contains data at the level of the individual for all household members. Each household member is uniquely identified by the variable ‘hhm_id’.
This cross-sectional survey was conducted between May 22 to July 27, 2021. It comprises a sample of 4,853 households in total, 2,420 of which are refugees and 2,433 are hosts.
Nairobi county, Kenya
Household, Individual
The survey has two primary samples contained in the ‘sample’ variable: the refugee sample and the host community sample. The refugee sample used the UNHCR database of refugees and asylum seekers in Kenya (proGres) as the sampling frame. ProGres holds information on all registered refugees and asylum seekers in Kenya including their contact information and data on nationality and approximate location of living. We considered only refugees living in Nairobi and implicitly stratified by nationality and location. In total, the sample comprises 2,420 refugee families.
The host community sample differentiates between two types of communities. We consider ‘core’ host communities as residents who live in Eastleigh North, Kayole or Kasarani – at least 10 percent of the Nairobi refugee families reside in each of these areas. Nationals living outside these areas are considered part of the ‘wider’ host community in Nairobi. The samples for both host communities were drawn using a 2-stage cluster design. In the first stage, eligible enumeration areas (EA) were drawn from the list of EAs covering Nairobi taken from the 2019 Population and Housing Census. In the second stage a listing of all host community households was established through a household census within all selected EAs, ensuring that refugee households were excluded to prevent overlap with the refugee sampling frame. 12 households and 6 replacements were drawn per EA. Our total sample consists of 2,433 host community households, 1,221 core hosts and 1,212 wider hosts.
The three sub-samples – refugees, core hosts, and wider hosts – are reflected in the ‘strata’ variable. The EAs which form the primary sampling units for the two host samples are anonymized and included in the ‘psu’ variable. Please note that the ‘psu’ variable clusters refugees under one numeric code (888).
Computer Assisted Personal Interview [capi]
The Questionnaire is provided as external resources in pdf format. Questionnaires were produced through the World Bank developed Survey Solutions software. The survey was implemented in English,Swahili and Somali.
The 1998 Kenya Demographic and Health Survey (KDHS) is a nationally representative survey of 7,881 women age 15-49 and 3,407 men age 15-54. The KDHS was implemented by the National Council for Population and Development (NCPD) and the Central Bureau of Statistics (CBS), with significant technical and logistical support provided by the Ministry of Health and various other governmental and nongovernmental organizations in Kenya. Macro International Inc. of Calverton, Maryland (U.S.A.) provided technical assistance throughout the course of the project in the context of the worldwide Demographic and Health Surveys (DHS) programme, while financial assistance was provided by the U.S. Agency for International Development (USAID/Nairobi) and the Department for International Development (DFID/U.K.). Data collection for the KDHS was conducted from February to July 1998.
Like the previous KDHS surveys conducted in 1989 and 1993, the 1998 KDHS was designed to provide information on levels and trends in fertility, family planning knowledge and use, infant and child mortality, and other maternal and child health indicators. However, the 1998 KDHS went further to collect more in-depth data on knowledge and behaviours related to AIDS and other sexually transmitted diseases (STDs), detailed “calendar” data that allows estimation of contraceptive discontinuation rates, and information related to the practice of female circumcision. Further, unlike earlier surveys, the 1998 KDHS provides a national estimate of the level of maternal mortality (i.e. related to pregnancy and childbearing). The KDHS data are intended for use by programme managers and policymakers to evaluate and improve health and family planning programmes in Kenya.
OBJECTIVES OF THE SURVEY
The principal aim of the 1998 KDHS project is to provide up-to-date information on fertility and childhood mortality levels, nuptiality, fertility preferences, awareness and use of family planning methods, use of maternal and child health services, and knowledge and behaviours related to HIV/AIDS and other sexually-transmitted diseases. It was designed as a follow-on to the 1989 KDHS and 1993 KDHS, national-level surveys of similar size and scope. Ultimately, the 1998 KDHS project seeks to:
The 1998 KDHS was specifically designed to: - Provide data on the family planning and fertility behaviour of the Kenyan population, and to thereby enable the NCPD to evaluate and enhance the national family planning programme; - Measure changes in fertility and contraceptive prevalence and at the same time study the factors which affect these changes, such as marriage patterns, desire for children, availability of contraception, breastfeeding habits, and important social and economic factors; - Examine the basic indicators of maternal and child health in Kenya, including nutritional status, use of antenatal and maternity services, treatment of recent episodes of childhood illness, and use of immunisation services; - Describe levels and patterns of knowledge and behaviour related to the prevention of AIDS and other sexually transmitted infection; - Measure adult and maternal mortality at the national level; and - Ascertain the extent and pattern of female circumcision in the country.
MAIN RESULTS
Fertility. The survey results demonstrate a continuation of the fertility transition in Kenya. Marriage. The age at which women and men first marry has risen slowly over the past 20 years. Fertility Preferences. Fifty-three percent of women and 46 percent of men in Kenya do not want to have any more children. Family Planning. Knowledge and use of family planning in Kenya has continued to rise over the last several years. Early Childhood Mortality. Results from the 1998 KDHS data make clear that childhood mortality conditions have worsened in the early-mid 1990s;Maternal Health. Utilisation of antenatal services is high in Kenya; in the three years before the survey, mothers received antenatal care for 92 percent of births (Note: These data do not speak to the quality of those antenatal services). Childhood Immunisation. The KDHS found that 65 percent of children age 12-23 months are fully vaccinated: this includes BCG and measles vaccine, and at least 3 doses of both DPT and polio vaccines. Infant Feeding. Almost all children (98 percent) are breastfed for some period of time; however, only 58 percent are breastfed within the first hour of life, and 86 percent within the first day after birth. Nutritional Status The results indicate that one-third of children in Kenya are stunted (i.e., too short for their age), a condition reflecting chronic malnutrition; and 1 in 16 children are wasted (i.e., very thin), a problem indicating acute or short-term food deficit.
Knowledge, Attitudes and Behaviour regarding HIV/AIDS and Other Sexually Transmitted Infections. As a measure of the increasing toll taken by AIDS on Kenyan society, the percentage of respondents who reported “personally knowing someone who has AIDS or has died from AIDS” has risen from about 40 percent of men and women in the 1993 KDHS to nearly three-quarters of men and women in 1998. Female Circumcision. The results indicate that 38 percent of women age 15-49 in Kenya have been circumcised. The prevalence of FC has however declined significantly over the last 2 decades from about one-half of women in the oldest age cohorts to about one-quarter of women in the youngest cohorts (including daughters age 15+).
The 1998 KDHS sample is national in scope, with the exclusion of all three districts in North Eastern Province and four other northern districts (Samburu and Turkana in Rift Valley Province and Isiolo and 4 Marsabit in Eastern Province). Together the excluded areas account for less than 4 percent of Kenya's population
The population covered by the 1998 KDHS is defined as the universe of all women age 15-49 in Kenya and all husband age 20-54 living in the household.
Sample survey data
The 1998 Kenya Demographic and Health Survey (KDHS) covered the population residing in private households1 throughout the country, with the exception of sparsely-populated areas in the north of the country that together comprise about 4 percent of the national population. Like the 1993 KDHS, the 1998 KDHS was designed to produce reliable national estimates as well as urban and rural estimates of fertility and childhood mortality rates, contraceptive prevalence, and various other health and population indicators. The design also allows for estimates of selected variables for the rural parts of 15 oversampled districts. Because of the relative rarity of maternal death, the maternal mortality ratio is estimated only at the national level.
In addition to the KDHS principal sample of women, a sub-sample of men age 15-54 were also interviewed to allow for the study of HIV/AIDS, family planning, and other selected topics.
SAMPLING FRAME AND FIRST-STAGE SELECTION
The KDHS utilised a two-stage, stratified sampling approach. The first step involved selecting sample points or "clusters"; the second stage involved selecting households within sample points from a list compiled during a special KDHS household listing exercise.
The 1998 KDHS sample points were the same as those used in the 1993 KDHS, and were selected from a national master sample (i.e., sampling frame) maintained by the Central Bureau of Statistics. From this master sample, called NASSEP-3,3 were drawn 536 sample points: 444 rural and 92 urban.
Selected districts were oversampled in the 1998 KDHS in order to produce reliable estimates for certain variables at the district level. Fifteen districts were thus targeted in both the 1993 and 1998 KDHS: Bungoma, Kakamega, Kericho, Kilifi, Kisii, Machakos, Meru, Murang'a, Nakuru, Nandi, Nyeri, Siaya, South Nyanza, Taita-Taveta, and Uasin Gishu. In addition, Nairobi and Mombasa were targeted. Due to this oversampling, the 1998 KDHS is not self-weighting (i.e., sample weights are needed to produce national estimates). Within each of the 15 oversampled (rural) districts, about 400 households were selected. In all other rural areas combined, about 1,400 households were selected, and 2,000 households were selected in urban areas. The total number of households targeted for selection was thus approximately 9,400 households. Within each sampling stratum, implicit stratification was introduced by ordering the sample points geographically within the hierarchy of administrative units (i.e., sublocation, location, and district within province).
SELECTION OF HOUSEHOLDS AND INDIVIDUALS
The Central Bureau of Statistics began a complete listing of households in all sample points during November 1997 and finished the exercise in February 1998. In the end, listing in 6 of 536 sample points4 could not be completed (and were thus not included in the survey) due to problems of inaccesibility. From these 530 household lists, a systematic sample of households was drawn, with a "take" of 22 households in urban clusters and 17 households in the rural clusters for a total of 9,465 households. All women age 15-49 were targeted for interview in the selected households. Every second household was identified for inclusion in the male survey; in those households, all men age 15-54 were identified and considered
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Kenya data available from WorldPop here.