Our mission is to help you picture climate change and environmental changes happening on our home planet. Here you can search for and retrieve satellite images of Earth. Download them; export them to GoogleEarth; perform basic analysis. Tracking regional and global changes around the world just got easier.
The Earth Observatory is part of the EOS Project Science Office located at NASA Goddard Space Flight Center.
The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines state-of-the-art supercomputing, Earth system modeling, workflow management, NASA remote sensing data feeds, and a knowledge sharing platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth Science communities.
The Earth Observing System Data and Information System (EOSDIS) is a major core capability within NASA''s Earth Science Data Systems Program. EOSDIS ingests, processes, archives and distributes data from a large number of Earth observing satellites. EOSDIS consists of a set of processing facilities and Earth Science Data Centers distributed across the United States and serves hundreds of thousands of users around the world, providing hundreds of millions of data files each year covering many Earth science disciplines. In order to serve the needs of a broad and diverse community of users, NASA''s Earth Science Data Systems Program is comprised of both Core and Community data system elements. Core data system elements reflect NASA''s responsibility for managing Earth science satellite mission data characterized by the continuity of research, access, and usability. The core comprises all the hardware, software, physical infrastructure, and intellectual capital NASA recognizes as necessary for performing its tasks in Earth science data system management. Community data system elements are those pieces or capabilities developed and deployed largely outside of NASA core elements and are characterized by their evolvability and innovation. Successful applicable elements can be infused into the core, thereby creating a vibrant and flexible, continuously evolving infrastructure. NASA''s Earth Science program was established to use the advanced technology of NASA to understand and protect our home planet by using our view from space to study the Earth system and improve prediction of Earth system change. To meet this challenge, NASA promotes the full and open sharing of all data with the research and applications communities, private industry, academia, and the general public. NASA was the first agency in the US, and the first space agency in the world, to couple policy and adequate system functionality to provide full and open access in a timely manner - that is, with no period of exclusive access to mission scientists - and at no cost. NASA made this decision after listening to the user community, and with the background of the then newly-formed US Global Change Research Program, and the International Earth Observing System partnerships. Other US agencies and international space agencies have since adopted similar open-access policies and practices. Since the adoption of the Earth Science Data Policy adoption in 1991, NASA''s Earth Science Division has developed policy implementation, practices, and nomenclature that mission science teams use to comply with policy tenets. Data System Standards NASA''s Earth Science Data Systems Groups anticipate that effective adoption of standards will play an increasingly vital role in the success of future science data systems. The Earth Science Data Systems Standards Process Group (SPG), a board composed of Earth Science Data Systems stakeholders, directs the process for both identification of appropriate standards and subsequent adoption for use by the Earth Science Data Systems stakeholders.
The NEX-GDDP-CMIP6 dataset is comprised of global downscaled climate scenarios derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 6 (CMIP6) and across two of the four "Tier 1" greenhouse gas emissions scenarios known as Shared Socioeconomic Pathways (SSPs). The CMIP6 GCM runs were developed in support of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). This dataset includes downscaled projections from ScenarioMIP model runs for which daily scenarios were produced and distributed through the Earth System Grid Federation. The purpose of this dataset is to provide a set of global, high resolution, bias-corrected climate change projections that can be used to evaluate climate change impacts on processes that are sensitive to finer-scale climate gradients and the effects of local topography on climate conditions.
The NASA NEX-DCP30 dataset is comprised of downscaled climate scenarios for the conterminous United States that are derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5, see Taylor et al. 2012) and across the four greenhouse gas emissions scenarios known as …
Earthdata Search is a web application developed by NASA EOSDIS to enable data discovery, search, comparison, visualization, and access across EOSDIS' Earth Science data holdings.
The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset is comprised of downscaled climate scenarios for the globe that are derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse gas emissions scenarios known as Representative Concentration Pathways (RCPs). The CMIP5 GCM runs were developed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). The NEX-GDDP dataset includes downscaled projections for RCP 4.5 and RCP 8.5 from the 21 models and scenarios for which daily scenarios were produced and distributed under CMIP5. Each of the climate projections includes daily maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2100. The spatial resolution of the dataset is 0.25 degrees (~25 km x 25 km). The NEX-GDDP dataset is provided to assist the science community in conducting studies of climate change impacts at local to regional scales, and to enhance public understanding of possible future global climate patterns at the spatial scale of individual towns, cities, and watersheds.
Each of the climate projections includes monthly averaged maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2005 (Retrospective Run) and from 2006 to 2099 (Prospective Run).
This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data.
EOSDIS integrates remote sensing and GIS technologies to deliver global
MODIS hotspot/fire locations to natural resource managers and other
stakeholders around the World.
Consumption Best Practices:
SMAP Level 1B Sigma Naught Low Res Data Quality Info Version 3
Remote sensing imagery from NASA Earth Observations (NEO).
NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The Applied Sciences Program, within the Earth Science Division of the NASA Science Mission Directorate, serves individuals and organizations around the globe by expanding and accelerating societal and economic benefits derived from Earth science, information, and technology research and development.
The Prediction Of Worldwide Energy Resources (POWER) Project, funded through the Applied Sciences Program at NASA Langley Research Center, gathers NASA Earth observation data and parameters related to the fields of surface solar irradiance and meteorology to serve the public in several free, easy-to-access and easy-to-use methods. POWER helps communities become resilient amid observed climate variability by improving data accessibility, aiding research in energy development, building energy efficiency, and supporting agriculture projects.
The POWER project contains over 380 satellite-derived meteorology and solar energy Analysis Ready Data (ARD) at four temporal levels: hourly, daily, monthly, and climatology. The POWER data archive provides data at the native resolution of the source products. The data is updated nightly to maintain near real time availability (2-3 days for meteorological parameters and 5-7 days for solar). The POWER services catalog consists of a series of RESTful Application Programming Interfaces, geospatial enabled image services, and web mapping Data Access Viewer. These three service offerings support data discovery, access, and distribution to the project’s user base as ARD and as direct application inputs to decision support tools.
The latest data version update includes hourly-based source ARD, in addition to enhanced daily, monthly, annual, and climatology data. The daily time series for meteorology is available from 1981, while solar-based parameters start in 1984. The hourly source data are from Clouds and the Earth's Radiant Energy System (CERES) and Global Modeling and Assimilation Office (GMAO), spanning from 1984 for meteorology and from 2001 for solar-based parameters. The hourly data equips users with the ARD needed to model building system energy performance, providing information directly amenable to decision support tools introducing the industry standard EnergyPlus Weather file format.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The NASA Near Earth Objects Information Dataset is a structured astronomy dataset containing detailed information about Near-Earth Objects (NEOs), including their orbits, size, absolute magnitude, and observation history.
2) Data Utilization (1) Characteristics of the NASA Near Earth Objects Information Dataset: • Key features include object ID, name, absolute magnitude, estimated diameter, orbit type, perihelion and aphelion distances, and the first and last observation dates. Most of the observed objects are asteroids and comets passing near Earth’s orbit. • Each object's orbit is calculated based on accumulated observations collected over years, including various orbital parameters such as perihelion, aphelion distances, and orbit classification.
(2) Applications of the NASA Near Earth Objects Information Dataset: • Training orbital classification models for NEOs: Machine learning models can be trained to classify the orbit type of a given celestial body using diverse orbital features. • Space hazard analysis and mission planning: The dataset can also be used to assess the potential impact risks of NEOs and to support asteroid exploration missions by analyzing physical properties and orbital characteristics.
GIBS Available Imagery Products, last modified by on The GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers
Satellite data, measured using MERRA2. MERRA2 stands for Modern-**E**ra Retrospective analysis for Research and Applications, Version 2.
Each data file contains the measurement data for entire Earth, for a specific month. The year and month is specified in the file name, with the pattern YYYYMM. The data is from Jan 2019 to April 2020.
The data is in nc4 format. You can learn how to read such format from here: How to read and plot NetCDF MERRA-2 data in Python.
The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and information, as well as data and information from other related disciplines.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The NASA - Nearest Earth Objects dataset is a compiled collection of asteroids classified as Near-Earth Objects (NEOs). It contains various astronomical features such as name, orbiting body, absolute magnitude, relative velocity, estimated minimum and maximum diameters, and miss distance from Earth. It also includes a binary target variable (hazardous) indicating whether each object is considered potentially dangerous.
2) Data Utilization (1) Characteristics of the NASA - Nearest Earth Objects Dataset: • The dataset includes numerical data based on various physical characteristics such as absolute magnitude, relative velocity, closest approach distance, and object size. • The target variable hazardous is binary, where 1 indicates a hazardous object and 0 indicates a non-hazardous object.
(2) Applications of the NASA - Nearest Earth Objects Dataset: • Development of Space Hazard Detection Models: The dataset can be used to train classification models that predict potentially dangerous objects based on velocity, distance, and size. • Astronomical Data Analysis Practice: Suitable for data exploration and visualization tasks in astronomy and space science fields using real-world observational data from NASA.
The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.The GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov.
This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data.
EOSDIS integrates remote sensing and GIS technologies to deliver global
MODIS hotspot/fire locations to natural resource managers and other
stakeholders around the World.
Consumption Best Practices:
Our mission is to help you picture climate change and environmental changes happening on our home planet. Here you can search for and retrieve satellite images of Earth. Download them; export them to GoogleEarth; perform basic analysis. Tracking regional and global changes around the world just got easier.