NASA Open Data Public Data List. This machine readable file contains meta-records for NASA open data sets.
The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar and space plasma physics, and planetary and lunar science. As permanent archive, NSSDC teams with NASA's discipline-specific space science 'active archives' which provide access to data to researchers and, in some cases, to the general public. Search by event, spacecraft, experiment, map, or publication query. NSSDC is part of the Solar System Exploration Data Services Office (SSEDSO) in the Solar System Exploration Division at NASA's Goddard Space Flight Center in Greenbelt, MD.
The Public Use Microdata Samples (PUMS) are computer-accessible files containing records for a sample of housing Units, with information on the characteristics of each housing Unit and the people in it for 1940-1990. Within the limits of sample size and geographical detail, these files allow users to prepare virtually any tabulations they require. Each datafile is documented in a codebook containing a data dictionary and supporting appendix information. Electronic versions for the codebooks are only available for the 1980 and 1990 datafiles. Identifying information has been removed to protect the confidentiality of the respondents. PUMS is produced by the United States Census Bureau (USCB) and is distributed by USCB, Inter-university Consortium for Political and Social Research (ICPSR), and Columbia University Center for International Earth Science Information Network (CIESIN).
This file contains the public MISR Level 3 FIRSTLOOK Global Cloud public Product in netCDF format covering a day
Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated: Radar Image Radar Image with Color as Height Radar Image with Color Wrapped Fringes -Shaded Relief Perspective View with B/W Radar Image Overlaid
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The MoonDB is a database of past and present spacecraft in cislunar space, compiled through publicly available sources. It was designed to better understand the rationale behind missions, focusing on their final results, current status, funding agencies and nations. Particular attention has also been given to the surface of the Moon, where landing sites have been identified. The database is mainly based on data collected by NASA in the Master Catalogue of the NASA Space Science Data Coordinated Archive (NSSDCA) [1]. Other sources are also considered, such as the Satellite Catalog (SATCAT) from the Space-Track project [2], created by the US Combined Force Space Component Command (CFSCC). The work by McDowell (2020) [3] has also been considered an inspiration for this work, although the primary source of information has remained the NASA catalogue.
Some structural and logical changes have been introduced to follow the needs of this research project. Following a list provided by the NSSDCA, a certain number of tentative USSR missions were added to the statistics [4]. Most spacecraft were destroyed due to a launch failure and were not disclosed to the public: the available information results from an investigation.
This data set consists of 6691 images spanning 24 classes that were collected by the Mars Science Laboratory (MSL, Curosity) rover by three instruments (Mastcam Right eye, Mastcam Left eye, and MAHLI). These images are the "browse" version of each original data product, not full resolution. They are roughly 256x256 pixels each. We divided the MSL images into train, validation, and test data sets according to their sol (Martian day) of acquisition. This strategy was chosen to model how the system will be used operationally with an image archive that grows over time. The images were collected from sols 3 to 1060 (August 2012 to July 2015). The exact train/validation/test splits are given in individual files. Full-size images can be obtained from the PDS at https://pds-imaging.jpl.nasa.gov/search/ .
Since 2002, NASA’s GRACE Satellite mission has allowed scientists of various disciplines to analyze and map the changes in Earth’s total water storage on a global scale. Although the raw data is available to the public, the process of viewing, manipulating, and analyzing the GRACE data can be tedious and difficult for those without strong technological backgrounds in programming or other related fields. The GRACE web app helps bridge the technical gap for decision makers by providing a user interface to visualize (in both map and time series format), not only the data collected from the GRACE mission, but the individual components of water storage as well. Using the GLDAS Land Surface model, the application allows the user to isolate and identify the changes in surface water and groundwater storage that makeup the total water storage quantities measured by the raw GRACE data. The application also includes the capability to upload a custom shapefile in order to perform a regional analysis of these changes allowing decision makers to aggregate and analyze the change in groundwater, surface water, and total water storage within their own personal regions of interest.
Our mission is to enable and advance adoption of satellite Earth observations by public and private organizations to benefit food security, agriculture, and human and environmental resiliency in the US and worldwide. We accomplish this through a multidisciplinary and multisectoral consortium of more than 50 leading scientists and agricultural stakeholders, led and implemented by the University of Maryland. Harvest Portal allows users to search for datasets published by NASA Harvest Partners as well as other datasets relevant to agricultural monitoring and food security. The data can be downloaded, visualized, and analyzed from one convenient location.
This interface joins the Kepler Target Catalog (KTC) with other tables to allow users to access the Kepler data archive. Observed Kepler targets are included with their associated data set names. Since most of the Kepler light curve data is still proprietary, public data can be found by searching for release dates earlier than todays date.
The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants. The following websites are tracking the day-by-day increase in new discoveries and are providing information on the characteristics of the planets as well as those of the stars they orbit: The Extrasolar Planets Encyclopedia, NASA Exoplanet Archive, New Worlds Atlas, and Current Planet Count Widget. The challenge now is to find terrestrial planets (i.e., those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist. The Kepler Mission, NASA Discovery mission #10, is specifically designed to survey a portion of our region of the Milky Way galaxy to discover dozens of Earth-size planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy.
LISTOS_AircraftRemoteSensing_NASAAircraft_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) remote sensing data collected onboard the NASA aircraft during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
This product provides HAQES 3-hourly ensemble mean surface PM2.5 Organic Carbon concentration at the census level over the continental United States (CONUS).
The Hazardous Air Quality Ensemble System (HAQES) is a real-time ensemble forecast of hazardous air quality events, such as wildfires, dust storms, and Volcanic eruptions. Both regional and global models from multiple agencies are used to create the ensemble, including the Goddard Earth Observing System (GEOS) from the National Aeronautics and Space Administration (NASA), the Navy Aerosol Analysis and Prediction System (NAAPS) from Naval Research Laboratory, the Global Ensemble Forecast System Aerosols (GEFS), High-Resolution Rapid Refresh (HRRR), and National Oceanic and Atmospheric Administration-U.S. Environmental Protection Agency (NOAA-EPA) Atmosphere-Chemistry Coupler-Community Multiscale Air Quality model (NACC-CMAQ) from NOAA. The prototypes of HAQES products were developed by the George Mason University Air Quality Laboratory as part of the NASA Health Air Quality Applied Science Team (HAQAST).
DISCOVERAQ_California_Ground_Porterville_Data contains data collected at the Porterville ground site during the California (San Joaquin Valley) deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the California deployment and data collection is complete.
Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.
DISCOVER-AQ employed two NASA aircraft, the P-3B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).
The following is a compilation of all publicly-announced gamma-ray pulsars detected using the Fermi LAT. Each of the detections has been vetted by the LAT team, typically requiring a pulsed-detection significance of at least 5 sigma before announcement. We attempt to ensure that the information presented here is correct, but we strongly encourage users to consult the cited literature as the definitive source of information. Note that this list does not include all pulsars found in radio searches of LAT sources or other radio pulsars associated with LAT sources unless gamma-ray pulsations have been detected. To prevent inadvertent disclosure of private information, Edot column is only populated for pulsars whose discoveries have already been published, not just announced at a conference. Another warning: Edots in this list are NOT corrected for the Shklovskii effect.
MI3DLSR_2 is the Multi-angle Imaging SpectroRadiometer (MISR) Level 3 Component Global Land Regional public Product covering a dayversion 2. It contains a daily statistical summary of directional hemispherical reflectance (DHR), photosynthetically active spectral region (DHR-PAR), DHR for near-infrared band (DHR-NIR), fractional absorbed photosynthetically active radiation (FPAR), DHR-based normalized difference vegetation index (NDVI) and land surface bidirectional reflectance factor (BRF) model parameters. It is classified into six vegetated and one non-vegetated types. This data product is a global summary of the Level 2 land/surface parameters of interest averaged over a day and reported on a geographic grid, with resolution of 0.5 degree by 0.5 degree. Data collection for this product is complete. The data are for distinct regions associated with associated field campaigns. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm.
LISTOS_MetNav_AircraftInSitu_NASAAircraft_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) in-situ meteorological and navigational data collected onboard the NASA aircraft during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Anomaly detection is a process of identifying items, events or observations, which do not conform to an expected pattern in a dataset or time series. Current and future missions and our research communities challenge us to rapidly identify features and anomalies in complex and voluminous observations to further science and improve decision support. Given this data intensive reality, we propose to develop an anomaly detection system, called OceanXtremes, powered by an intelligent, elastic Cloud-based analytic service backend that enables execution of domain-specific, multi-scale anomaly and feature detection algorithms across the entire archive of ocean science datasets. A parallel analytics engine will be developed as the key computational and data-mining core of OceanXtreams' backend processing. This analytic engine will demonstrate three new technology ideas to provide rapid turn around on climatology computation and anomaly detection: 1. An adaption of the Hadoop/MapReduce framework for parallel data mining of science datasets, typically large 3 or 4 dimensional arrays packaged in NetCDF and HDF. 2. An algorithm profiling service to efficiently and cost-effectively scale up hybrid Cloud computing resources based on the needs of scheduled jobs (CPU, memory, network, and bursting from a private Cloud computing cluster to public cloud provider like Amazon Cloud services). 3. An extension to industry-standard search solutions (OpenSearch and Faceted search) to provide support for shared discovery and exploration of ocean phenomena and anomalies, along with unexpected correlations between key measured variables. We will use a hybrid Cloud compute cluster (private Eucalyptus on-premise at JPL with bursting to Amazon Web Services) as the operational backend. The key idea is that the parallel data-mining operations will be run 'near' the ocean data archives (a local 'network' hop) so that we can efficiently access the thousands of (say, daily) files making up a three decade time-series, and then cache key variables and pre-computed climatologies in a high-performance parallel database. OceanXtremes will be equipped with both web portal and web service interfaces for users and applications/systems to register and retrieve oceanographic anomalies data. By leveraging technology such as Datacasting (Bingham, et.al, 2007), users can also subscribe to anomaly or 'event' types of their interest and have newly computed anomaly metrics and other information delivered to them by metadata feeds packaged in standard Rich Site Summary (RSS) format. Upon receiving new feed entries, users can examine the metrics and download relevant variables, by simply clicking on a link, to begin further analyzing the event. The OceanXtremes web portal will allow users to define their own anomaly or feature types where continuous backend processing will be scheduled to populate the new user-defined anomaly type by executing the chosen data mining algorithm (i.e. differences from climatology or gradients above a specified threshold). Metadata on the identified anomalies will be cataloged including temporal and geospatial profiles, key physical metrics, related observational artifacts and other relevant metadata to facilitate discovery, extraction, and visualization. Products created by the anomaly detection algorithm will be made explorable and subsettable using Webification (Huang, et.al, 2014) and OPeNDAP (http://opendap.org) technologies. Using this platform scientists can efficiently search for anomalies or ocean phenomena, compute data metrics for events or over time-series of ocean variables, and efficiently find and access all of the data relevant to their study (and then download only that data).
DISCOVERAQ_Colorado_Ground_TableMountain_Data contains data collected at the Table Mountain ground site during the Colorado (Denver) deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the Denver deployment and data collection is complete.Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.DISCOVER-AQ employed two NASA aircraft, the P-3B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.
NASA Open Data Public Data List. This machine readable file contains meta-records for NASA open data sets.