Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NASDAQ reported $30.54 in PE Price to Earnings for its fiscal quarter ending in September of 2025. Data for NASDAQ | NDAQ - PE Price to Earnings including historical, tables and charts were last updated by Trading Economics this last December in 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about India P/E ratio
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Don't forget to upvote in case the provided data was helpful.
45 financial metrics and ratios of every company included in the Nasdaq-100 stock market index (as of 09/2021) for the last five fiscal years. Some metrics or ratios might not be calculated, depending on the company's profitability [...].
The dataset offers a vast variety of possibilities for data exploration, data preparation and visualization, classification or clustering of the different companies, and the prediction of future developments of certain metrics and ratios.
Besides the stock symbol, the company name and the respective GICS sector and GICS subsector classification, the datasets comprises information about (1) Asset Turnover, (2) Buyback Yield, (3) CAPEX to Revenue, (4) Cash Ratio, (5) Cash to Debt, (6) COGS to Revenue, (7) Beneish M-Score, (8) Altman Z-Score, (9) Current Ratio, (10) Days Inventory, (11) Debt to Equity, (12) Debt to Assets, (13) Debt to EBITDA, (14) Debt to Revenue, (15) E10 (by Prof. Robert Shiller), (16) Effective Interest Rate, (17) Equity to Assets, (18) Enterprise Value to EBIT, (19) Enterprise Value to EBITDA, (20) Enterprise Value to Revenue, (21) Financial Distress, (22) Financial Strength, (23) Joel Greenblatt Earnings Yield (by Joel Greenblatt), (24) Free Float Percentage, (25) Piotroski F-Score, (26) Goodwill to Assets, (27) Gross Profit to Assets, (28) Interest Coverage, (29) Inventory Turnover, (30) Inventory to Revenue, (31) Liabilities to Assets, (32) Long-term Debt to Assets, (33) Price-to-Book-Ratio, (34) Price-to-Earnings-Ratio, (35) Price-to-Earnings-Ratio (Non-Recurring Items), (36) Price-Earnings-Growth-Ratio, (37) Price-to-Free-Cashflow, (38) Price-to-Operating-Cashflow, (39) Predictability, (40) Profitability, (41) Rate of Return, (42) Scaled Net Operating Assets, (43) Year-over-Year EBITDA Growth, (44) Year-over-Year EPS Growth, (45) Year-over-Year Revenue Growth
Note, that the dates defining a fiscal year may vary from company to company.
The contents are provided by wikipedia.de and gurufocus.com from where the data was scraped.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Turkey P/E ratio
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about China P/E ratio
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In this dataset you can find the Top 100 companies in the technology sector. You can also find 5 of the most important and used indices in the financial market as well as a list of all the companies in the S&P 500 index and in the technology sector.
The Global Industry Classification Standard also known as GICS is the primary financial industry standard for defining sector classifications. The Global Industry Classification Standard was developed by index providers MSCI and Standard and Poor’s. Its hierarchy begins with 11 sectors which can be further delineated to 24 industry groups, 69 industries, and 158 sub-industries.
You can read the definition of each sector here.
The 11 broad GICS sectors commonly used for sector breakdown reporting include the following: Energy, Materials, Industrials, Consumer Discretionary, Consumer Staples, Health Care, Financials, Information Technology, Telecommunication Services, Utilities and Real Estate.
In this case we will focuse in the Technology Sector. You can see all the sectors and industry groups here.
To determine which companies, correspond to the technology sector, we use Yahoo Finance, where we rank the companies according to their “Market Cap”. After having the list of the Top 100 best valued companies in the sector, we proceeded to download the historical data of each of the companies using the NASDAQ website.
Regarding to the indices, we searched various sources to find out which were the most used and determined that the 5 most frequently used indices are: Dow Jones Industrial Average (DJI), S&P 500 (SPX), NASDAQ Composite (IXIC), Wilshire 5000 Total Market Inde (W5000) and to specifically view the technology sector SPDR Select Sector Fund - Technology (XLK). Historical data for these indices was also obtained from the NASDQ website.
In total there are 107 files in csv format. They are composed as follows:
Every company and index file has the same structure with the same columns:
Date: It is the date on which the prices were recorded. High: Is the highest price at which a stock traded during the course of the trading day. Low: Is the lowest price at which a stock traded during the course of the trading day. Open: Is the price at which a stock started trading when the opening bell rang. Close: Is the last price at which a stock trades during a regular trading session. Volume: Is the number of shares that changed hands during a given day. Adj Close: The adjusted closing price factors in corporate actions, such as stock splits, dividends, and rights offerings.
The two other files have different columns names:
List of S&P 500 companies
Symbol: Ticker symbol of the company. Name: Name of the company. Sector: The sector to which the company belongs.
Technology Sector Companies List
Symbol: Ticker symbol of the company. Name: Name of the company. Price: Current price at which a stock can be purchased or sold. (11/24/20) Change: Net change is the difference between closing prices from one day to the next. % Change: Is the difference between closing prices from one day to the next in percentage. Volume: Is the number of shares that changed hands during a given day. Avg Vol: Is the daily average of the cumulative trading volume during the last three months. Market Cap (Billions): Is the total value of a company’s shares outstanding at a given moment in time. It is calculated by multiplying the number of shares outstanding by the price of a single share. PE Ratio: Is the ratio of a company's share (stock) price to the company's earnings per share. The ratio is used for valuing companies and to find out whether they are overvalued or undervalued.
SEC EDGAR | Company Filings NASDAQ | Historical Quotes Yahoo Finance | Technology Sector Wikipedia | List of S&P 500 companies S&P Dow Jones Indices | S&P 500 [S&P Dow Jones Indices | DJI](https://www.spglobal.com/spdji/en/i...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pakistan's main stock market index, the KSE 100, fell to 167838 points on December 2, 2025, losing 0.13% from the previous session. Over the past month, the index has climbed 3.09% and is up 60.52% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Pakistan. Pakistan Stock Market (KSE100) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Disclaimer!!! Data uploaded here are collected from the internet. The sole purposes of uploading these data are to provide this Kaggle community with a good source of data for analysis and research. I don't own these datasets and am also not responsible for them legally by any means. I am not charging anything (either monetary or any favor) for this dataset.
This dataset contains historical daily prices for indices currently trading on the Indian Stock Market. The historical data are retrieved from the NSE India website. Daily gold price from 1979 to 2022 in INR is uploaded here.
This data contains daily OHLC data for all indices in NSE from 1990 to 2022. Along with Indices OHLC data, there are PE(Price to Earning ratio), P/B (Price to book value), and Dividend Yield data also available for all indices. Lastly, Volatility Index (VIX) data is also available from 1990 to 2022.
For Example - - "Nifty 50 data" contains the below columns: 1. Date - Date of observation 2. Open - Open price of the index on a particular day 3. High - High price of the index on a particular day 4. Low - Low price of the index on a particular day 5. Close - Close price of the index on a particular day - "NIFTY 50 - HistoricalPE_PBDIV_Data" contains the below columns: 1. Date - Date of observation 2. P/E - Price to Earnings Ratio 3. P/B - Price-to-book value 4. Div Yield % - Dividend Yield = Cash Dividend per share / Market Price per share * 100
The list of indices is:
1. NIFTY 50
2. NIFTY 100
3. NIFTY BANK
4. NIFTY COMMODITIES
5. NIFTY ENERGY
6. NIFTY FMCG
7. NIFTY HOUSING
8. NIFTY INDIA MANUFACTURING
9. NIFTY INFRASTRUCTURE
10. NIFTY IT
11. NIFTY MEDIA
12. NIFTY METAL
13. NIFTY MIDCAP 100
14. NIFTY NEXT 50
15. NIFTY OIL & GAS
16. NIFTY PHARMA
17. NIFTY PRIVATE BANK
18. NIFTY PSU BANK
19. NIFTY AUTO
20. VIX History
For the gold price - https://gold.org For stock indices - https://www.niftyindices.com/reports/historical-data
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about India Sensitive 30 (Sensex)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Turkey BIST National 100
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Sri Lanka All Share
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Thailand SET
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NASDAQ reported $30.54 in PE Price to Earnings for its fiscal quarter ending in September of 2025. Data for NASDAQ | NDAQ - PE Price to Earnings including historical, tables and charts were last updated by Trading Economics this last December in 2025.