16 datasets found
  1. Global Stock Market Data | Equity Market Data | 80K stocks | 150 pricing...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cbonds, Global Stock Market Data | Equity Market Data | 80K stocks | 150 pricing sources | Intraday Data [Dataset]. https://datarade.ai/data-products/stocks-market-data-api-global-coverage-150-pricing-sources-cbonds
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset authored and provided by
    Cbondshttps://cbonds.com/
    Area covered
    Cambodia, Hong Kong, Iceland, Bulgaria, Monaco, France, Latvia, Bangladesh, Slovenia, Croatia
    Description

    Global Stock Market Data. More than 150 pricing sources, including biggest world stock exchanges. Pay only for the stock exchanges, parameters or regions you need. Flexible in customizing our product to the customer's needs. Free test access as long as you need for integration. Reliable sources: stock exchanges and market participants. The cost depends on the amount of required parameters and re-distribution right.

  2. NASDAQ Company Details and Listings

    • kaggle.com
    Updated Aug 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ganesh Bhabad (2024). NASDAQ Company Details and Listings [Dataset]. https://www.kaggle.com/datasets/ganeshbhabad/nasdaq-company-details-and-listings
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 11, 2024
    Dataset provided by
    Kaggle
    Authors
    Ganesh Bhabad
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    NASDAQ Listed Companies Dataset

    Description:

    This dataset provides comprehensive information on companies listed on the NASDAQ stock exchange. It includes essential details about each company, making it a valuable resource for financial analysis, stock market research, and investment strategies.

    Features:

    • symbol: The unique ticker symbol used to identify the company's stock on the NASDAQ exchange.
    • name: The full name of the company.
    • currency: The currency in which the company's stock is traded.
    • exchange: The stock exchange where the company is listed (in this case, NASDAQ).
    • mic_code: The Market Identifier Code (MIC) for the NASDAQ exchange.
    • country: The country where the company is headquartered.
    • type: The type of company, such as common stock or preferred stock.
    • Usage: This dataset can be used for various purposes including:

    Stock Market Analysis:

    Analyze stock symbols, company names, and market data.

    Financial Modeling:

    Incorporate company details into financial models and investment strategies.

    Market Research:

    Understand the distribution of companies by country and currency.

    Data Visualization:

    Create visualizations of the NASDAQ market landscape.

    Data Source:

    The data is sourced from the Twelve Data API, which provides up-to-date financial and stock market information.

    Notes: The dataset includes only NASDAQ-listed companies and does not cover other exchanges. Ensure to comply with any data usage policies or licensing agreements associated with the data source. Feel free to adapt the description based on the specific details and attributes of your dataset.

  3. d

    Historical volatility time series and Live prices on Equity Options

    • datarade.ai
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canari (2023). Historical volatility time series and Live prices on Equity Options [Dataset]. https://datarade.ai/data-products/historical-volatility-time-series-and-live-prices-on-equity-o-canari
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset authored and provided by
    Canari
    Area covered
    Netherlands, Italy, France, United Kingdom, Belgium, Norway, Germany, Spain, Sweden, Switzerland
    Description

    This dataset offers both live (delayed) prices and End Of Day time series on equity options

    1/ Live (delayed) prices for options on European stocks and indices including: Reference spot price, bid/ask screen price, fair value price (based on surface calibration), implicit volatility, forward Greeks : delta, vega Canari.dev computes AI-generated forecast signals indicating which option is over/underpriced, based on the holders strategy (buy and hold until maturity, 1 hour to 2 days holding horizon...). From these signals is derived a "Canari price" which is also available in this live tables.
    Visit our website (canari.dev ) for more details about our forecast signals.

    The delay ranges from 15 to 40 minutes depending on underlyings.

    2/ Historical time series: Implied vol Realized vol Smile Forward
    See a full API presentation here : https://youtu.be/qitPO-SFmY4 .

    These data are also readily accessible in Excel thanks the provided Add-in available on Github: https://github.com/canari-dev/Excel-macro-to-consume-Canari-API

    If you need help, contact us at: contact@canari.dev

    User Guide: You can get a preview of the API by typing "data.canari.dev" in your web browser. This will show you a free version of this API with limited data.

    Here are examples of possible syntaxes:

    For live options prices: data.canari.dev/OPT/DAI data.canari.dev/OPT/OESX/0923 The "csv" suffix to get a csv rather than html formating, for example: data.canari.dev/OPT/DB1/1223/csv For historical parameters: Implied vol : data.canari.dev/IV/BMW

    data.canari.dev/IV/ALV/1224

    data.canari.dev/IV/DTE/1224/csv

    Realized vol (intraday, maturity expressed as EWM, span in business days): data.canari.dev/RV/IFX ... Implied dividend flow: data.canari.dev/DIV/IBE ... Smile (vol spread between ATM strike and 90% strike, normalized to 1Y with factor 1/√T): data.canari.dev/SMI/DTE ... Forward: data.canari.dev/FWD/BNP ...

    List of available underlyings: Code Name OESX Eurostoxx50 ODAX DAX OSMI SMI (Swiss index) OESB Eurostoxx Banks OVS2 VSTOXX ITK AB Inbev ABBN ABB ASM ASML ADS Adidas AIR Air Liquide EAD Airbus ALV Allianz AXA Axa BAS BASF BBVD BBVA BMW BMW BNP BNP BAY Bayer DBK Deutsche Bank DB1 Deutsche Boerse DPW Deutsche Post DTE Deutsche Telekom EOA E.ON ENL5 Enel INN ING IBE Iberdrola IFX Infineon IES5 Intesa Sanpaolo PPX Kering LOR L Oreal MOH LVMH LIN Linde DAI Mercedes-Benz MUV2 Munich Re NESN Nestle NOVN Novartis PHI1 Philips REP Repsol ROG Roche SAP SAP SNW Sanofi BSD2 Santander SND Schneider SIE Siemens SGE Société Générale SREN Swiss Re TNE5 Telefonica TOTB TotalEnergies UBSN UBS CRI5 Unicredito SQU Vinci VO3 Volkswagen ANN Vonovia ZURN Zurich Insurance Group

  4. Beat US Stock market (2019 edition)

    • kaggle.com
    Updated Jan 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Carbone (2020). Beat US Stock market (2019 edition) [Dataset]. https://www.kaggle.com/datasets/cnic92/beat-us-stock-market-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 13, 2020
    Dataset provided by
    Kaggle
    Authors
    Nicolas Carbone
    Description

    Context

    The algorithmic trading space is buzzing with new strategies. Companies have spent billions in infrastructures and R&D to be able to jump ahead of the competition and beat the market. Still, it is well acknowledged that the buy & hold strategy is able to outperform many of the algorithmic strategies, especially in the long-run. However, finding value in stocks is an art that very few mastered, can a computer do that?

    Content

    This Data repo contains two datasets:

    1. Example_2019_price_var.csv. I built this dataset thanks to Financial Modeling Prep API and to pandas_datareader. Each row is a stock from the technology sector of the US stock market (that is available from the aforementioned API, which is free and highly recommended). The column contains the percent price variation of each stock for the year 2019. In other words, it collects the percent price variation of each stock from the first trading day on Jan 2019 to the last trading day of Dec 2019. To compute this price variation I decided to consider the Adjusted Close Price.

    2. Example_DATASET.csv. I built this dataset thanks to Financial Modeling Prep API. Each row is a stock from the technology sector of the US stock market (that is available from the aforementioned API). Each column is a financial indicator that can be found in the 2018 10-K filings of each company. There are no Nans or empty cells. Furthermore, the last column is the CLASS of each stock, where:

      1. class = 1 if the price of the stock increases during 2019
      2. class = 0 if the price of the stock decreases during 2019

    In other words, the last column is used to classify each stock in buy-worthy or not, and this relationship is what should allow a machine learning model to learn to recognize stocks that will increase their value from those that won't.

    NOTE: the number of stocks does not match between the two datasets because the API did not have all the required financial indicators for some stocks. It is possible to remove from Example_2019_price_var.csv those rows that do not appear in Example_DATASET.csv.

    Inspiration

    I built this dataset during the 2019 winter holidays period, because I wanted to answer a simple question: is it possible to have a machine learning model learn the differences between stocks that perform well and those that don't, and then leverage this knowledge in order to predict which stock will be worth buying? Moreover, is it possible to achieve this simply by looking at financial indicators found in the 10-K filings?

  5. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 21, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  6. d

    Comprehensive Daily Data on 108K Public Companies Worldwide

    • datarade.ai
    Updated Jun 18, 1982
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Database (1982). Comprehensive Daily Data on 108K Public Companies Worldwide [Dataset]. https://datarade.ai/data-products/comprehensive-daily-data-on-108k-public-companies-worldwide-global-database
    Explore at:
    .json, .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jun 18, 1982
    Dataset authored and provided by
    Global Database
    Area covered
    Czech Republic, Samoa, Zimbabwe, Papua New Guinea, Fiji, Faroe Islands, Kiribati, Saint Vincent and the Grenadines, Djibouti, Cook Islands
    Description

    Our dynamic data offering is designed to provide a comprehensive view of over 108,000 publicly listed companies across the globe. This service is an essential tool for financial analysts, investors, corporate strategists, and market researchers, offering versatile data delivery options.

    Key Features:

    Rich Company Fundamentals: Access detailed profiles with financials, management information, operational metrics, and strategic insights. Historical Data Depth: Utilize our extensive historical data for trend analysis and benchmarking. Flexible Delivery Options: Bulk Data Access: Ideal for high-volume needs, get comprehensive data in bulk. Daily Updates: Stay current with daily data refreshes for timely and relevant insights. API Integration: Seamlessly integrate our data into your systems with our API, ensuring efficient data retrieval and analysis. Global News Integration: Get the latest news and updates, providing context and insights into market movements and company-specific events. Intuitive User Interface: Navigate our platform with ease for efficient data retrieval. Customizable Alerts and Reports: Stay informed with tailored alerts and custom reports. Expert Support: Rely on our dedicated support team for assistance and guidance. Benefits:

    Enhance investment strategies with diverse and up-to-date data. Conduct in-depth market research and competitive analysis. Facilitate strategic planning and risk assessment with varied data access methods. Support academic research with a reliable data source. Ideal for:

    Investment and Financial Firms Market Analysts and Economists Corporate Strategy and Business Development Teams Academic Researchers in Finance and Economics

  7. d

    Africa & Middle East | Insider Trading Data | 25+ Years Historic Data |...

    • datarade.ai
    Updated Nov 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smart Insider (2023). Africa & Middle East | Insider Trading Data | 25+ Years Historic Data | Stock Market Data | Public Equity Market Data for Investment Management [Dataset]. https://datarade.ai/data-products/africa-insider-trading-data-25-years-historic-data-sto-smart-insider
    Explore at:
    .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Nov 5, 2023
    Dataset authored and provided by
    Smart Insider
    Area covered
    Central African Republic, Benin, Senegal, Eritrea, Somalia, Mauritius, South Africa, Namibia, Congo (Democratic Republic of the), Ghana
    Description

    When there is a vast variety of metrics and tools available to gain market insight, Insider trading offers valuable clues to investors related to future share performance. We at Smart Insider provide global insider trading data and analysis on share transactions made by directors & senior staff in the shares of their own companies.

    Monitoring all the insider trading activity is a huge task, we identify 'Smart Insiders' through specialist desktop and quantitative feeds that enable our clients to generate alpha.

    Our experienced analyst team uses quantitative and qualitative methods to identify the stocks most likely to outperform based on deep analysis of insider trades, and the insiders themselves. Using our easy-to-read derived data we help our clients better understand insider transactions activity to make informed investment decisions.

    We provide full customization of reports delivered by desktop, through feeds, or alerts. Our quant clients can receive data in a variety of formats such as XML, XLSX or API via SFTP or Snowflake.

    Sample dataset for Desktop Service has been provided with some proprietary fields concealed. Upon request, we can provide a detailed Quant sample.

    Tags: Stock Market Data, Equity Market Data, Insider Transactions Data, Insider Trading Intelligence, Trading Data, Investment Management, Alternative Investment, Asset Management, Equity Research, Market Analysis, Africa

  8. API Group Soaring: (APG) Stock Forecast (Forecast)

    • kappasignal.com
    Updated Nov 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). API Group Soaring: (APG) Stock Forecast (Forecast) [Dataset]. https://www.kappasignal.com/2024/11/api-group-soaring-apg-stock-forecast.html
    Explore at:
    Dataset updated
    Nov 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    API Group Soaring: (APG) Stock Forecast

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. d

    Real-time Candlestick OHLC API

    • datarade.ai
    .json, .csv, .xls
    Updated Sep 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Finnworlds (2022). Real-time Candlestick OHLC API [Dataset]. https://datarade.ai/data-products/real-time-candlestick-ohlc-api-finnworlds
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Sep 27, 2022
    Dataset authored and provided by
    Finnworlds
    Area covered
    Tajikistan, Denmark, South Sudan, Gabon, Guinea-Bissau, Turkmenistan, Turkey, Croatia, Micronesia (Federated States of), Ireland
    Description

    The Real-time Candlestick OHLC API provides current candlestick data that covers all major stock exchanges including NYSE, NASDAQ, LSE, Euronext to NSE of India, TSE, and a few more. Users can choose from candlestick data with 1 min, 2 min, 5 min, 15 min, 30 min, 1 hour, 4 hour, 1 day, 1 week, 1 month and 1 year interval. By using the real-time candlestick OHLC data, they can visualize data on candlestick charts and build financial products.

  10. LON:API Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Nov 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). LON:API Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/lonapi-target-price-prediction.html
    Explore at:
    Dataset updated
    Nov 19, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    LON:API Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. (API) Abrdn Property Income: Renting Out the Future? (Forecast)

    • kappasignal.com
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). (API) Abrdn Property Income: Renting Out the Future? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/api-abrdn-property-income-renting-out.html
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    (API) Abrdn Property Income: Renting Out the Future?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. d

    PowerMap U.S. | Order flow Analytics data

    • datarade.ai
    .json, .csv, .xls
    Updated May 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TradePulse (2025). PowerMap U.S. | Order flow Analytics data [Dataset]. https://datarade.ai/data-products/powermap-u-s-order-flow-analytics-data-by-investor-types-tradepulse
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    May 9, 2025
    Dataset authored and provided by
    TradePulse
    Area covered
    United States of America
    Description

    PowerMap U.S. is an innovative trading solutions, specializing in order flow analytics on U.S. Stock market. With its AI-inferred proprietary algorithm trained on market data, TradePulse predicts stock flow on using trade volume and buy intensity providing an additional key metric for decision-making while providing catalogue of alternative dataset on its platform.

    Key Features: 💠 AI-driven order flow prediction based on trade volume and buy-side intensity 💠 Proprietary algorithms trained on historical and real-time U.S. equity data 💠 Real-time analytics across major U.S. exchanges (NYSE, NASDAQ, etc.) 💠 Integrated dashboard with visual flow indicators and trend detection 💠 Access to alternative datasets curated for quantitative and discretionary strategies 💠 Customizable signals aligned with trading styles (momentum, mean-reversion, etc.) 💠 Scalable infrastructure suitable for institutional-grade workflows

    Primary Use Cases: 🔹 U.S.-focused hedge funds leveraging inferred flow data for intraday alpha 🔹 Quantitative traders integrating buy-side pressure metrics into models 🔹 Execution teams identifying optimal entry/exit points through real-time flow signals 🔹 Asset managers enhancing conviction through AI-derived trade behavior insights 🔹 Research analysts and PMs utilizing alternative datasets for cross-validation of ideas

    Contact us for a real time order flow data in different markets. Stay ahead with TradePulse's order flow insights.

  13. How do you determine buy or sell? (LON:API Stock Forecast) (Forecast)

    • kappasignal.com
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you determine buy or sell? (LON:API Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-do-you-determine-buy-or-sell-lonapi.html
    Explore at:
    Dataset updated
    Oct 14, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you determine buy or sell? (LON:API Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. d

    Economic Calendar API - 350+ Indicators

    • datarade.ai
    .json
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Financial Modeling Prep, Economic Calendar API - 350+ Indicators [Dataset]. https://datarade.ai/data-products/economic-calendar-api-350-indicators-financial-modeling-prep
    Explore at:
    .jsonAvailable download formats
    Dataset authored and provided by
    Financial Modeling Prep
    Area covered
    Denmark, Ireland, Austria, Brazil, Italy, Spain, Norway, Canada, Greece, Belgium
    Description

    Introducing our comprehensive economic calendar, your ultimate resource for tracking major global economic events and their impact on currency and stock market prices. With a vast array of fields including event name, country, previous and current values, and more, our calendar provides you with essential data to make informed financial decisions. Stay ahead of the curve with our real-time updates, ensuring you have access to the latest information every 15 minutes. With this powerful tool at your fingertips, you can confidently navigate the dynamic world of economic events and seize opportunities for success. Don't miss out on this essential resource for staying informed and making calculated moves in the market.

  15. F

    CBOE Volatility Index: VIX

    • fred.stlouisfed.org
    json
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). CBOE Volatility Index: VIX [Dataset]. https://fred.stlouisfed.org/series/VIXCLS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for CBOE Volatility Index: VIX (VIXCLS) from 1990-01-02 to 2025-07-21 about VIX, volatility, stock market, and USA.

  16. LSE Market Data

    • lseg.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2024). LSE Market Data [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/pricing-and-market-data/equities-market-data/lse-market-data
    Explore at:
    csv,delimited,gzip,html,json,pcap,pdf,parquet,python,sql,string format,text,user interface,xml,zip archiveAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Description

    Access LSEG's London Stock Exchange (LSE) Market Data, and find benchmarks, indices, and real-time and historic market information.

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cbonds, Global Stock Market Data | Equity Market Data | 80K stocks | 150 pricing sources | Intraday Data [Dataset]. https://datarade.ai/data-products/stocks-market-data-api-global-coverage-150-pricing-sources-cbonds
Organization logo

Global Stock Market Data | Equity Market Data | 80K stocks | 150 pricing sources | Intraday Data

Explore at:
.json, .xml, .csv, .xlsAvailable download formats
Dataset authored and provided by
Cbondshttps://cbonds.com/
Area covered
Cambodia, Hong Kong, Iceland, Bulgaria, Monaco, France, Latvia, Bangladesh, Slovenia, Croatia
Description

Global Stock Market Data. More than 150 pricing sources, including biggest world stock exchanges. Pay only for the stock exchanges, parameters or regions you need. Flexible in customizing our product to the customer's needs. Free test access as long as you need for integration. Reliable sources: stock exchanges and market participants. The cost depends on the amount of required parameters and re-distribution right.

Search
Clear search
Close search
Google apps
Main menu