Facebook
TwitterThe dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Here are the top companies on the NASDAQ 100 index in 2022. NASDAQ 100 is one of the most prominent large-cap growth indices in the world.
Many companies listed in the NASDAQ 100 operate in the tech sector. That is why many investors who are focused investing in tech stocks also invest in NASDAQ index to grow their funds
NASDAQ 100 is a stock market index composed of the 100 largest and most actively traded companies in the United States of America in the non- financial sector and are segmented under technology, retail, industrial, biotechnology, health care, telecom, transportation, media and services sectors.
Data collected from Yahoo Finance.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides daily stock data for some of the top companies in the USA stock market, including major players like Apple, Microsoft, Amazon, Tesla, and others. The data is collected from Yahoo Finance, covering each company’s historical data from its starting date until today. This comprehensive dataset enables in-depth analysis of key financial indicators and stock trends for each company, making it valuable for multiple applications.
The dataset contains the following columns, consistent across all companies:
Machine Learning & Deep Learning:
Data Science:
Data Analysis:
Financial Research:
This dataset is a powerful tool for analysts, researchers, and financial enthusiasts, offering versatility across multiple domains from stock analysis to algorithmic trading models.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Use our Stock Market dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterList of companies in the NASDAQ exchanges.
Data and documentation are available on NASDAQ's official webpage. Data is updated regularly on the FTP site.
The file used in this repository:
Notes:
...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Don't forget to upvote in case the provided data was helpful.
45 financial metrics and ratios of every company included in the Nasdaq-100 stock market index (as of 09/2021) for the last five fiscal years. Some metrics or ratios might not be calculated, depending on the company's profitability [...].
The dataset offers a vast variety of possibilities for data exploration, data preparation and visualization, classification or clustering of the different companies, and the prediction of future developments of certain metrics and ratios.
Besides the stock symbol, the company name and the respective GICS sector and GICS subsector classification, the datasets comprises information about (1) Asset Turnover, (2) Buyback Yield, (3) CAPEX to Revenue, (4) Cash Ratio, (5) Cash to Debt, (6) COGS to Revenue, (7) Beneish M-Score, (8) Altman Z-Score, (9) Current Ratio, (10) Days Inventory, (11) Debt to Equity, (12) Debt to Assets, (13) Debt to EBITDA, (14) Debt to Revenue, (15) E10 (by Prof. Robert Shiller), (16) Effective Interest Rate, (17) Equity to Assets, (18) Enterprise Value to EBIT, (19) Enterprise Value to EBITDA, (20) Enterprise Value to Revenue, (21) Financial Distress, (22) Financial Strength, (23) Joel Greenblatt Earnings Yield (by Joel Greenblatt), (24) Free Float Percentage, (25) Piotroski F-Score, (26) Goodwill to Assets, (27) Gross Profit to Assets, (28) Interest Coverage, (29) Inventory Turnover, (30) Inventory to Revenue, (31) Liabilities to Assets, (32) Long-term Debt to Assets, (33) Price-to-Book-Ratio, (34) Price-to-Earnings-Ratio, (35) Price-to-Earnings-Ratio (Non-Recurring Items), (36) Price-Earnings-Growth-Ratio, (37) Price-to-Free-Cashflow, (38) Price-to-Operating-Cashflow, (39) Predictability, (40) Profitability, (41) Rate of Return, (42) Scaled Net Operating Assets, (43) Year-over-Year EBITDA Growth, (44) Year-over-Year EPS Growth, (45) Year-over-Year Revenue Growth
Note, that the dates defining a fiscal year may vary from company to company.
The contents are provided by wikipedia.de and gurufocus.com from where the data was scraped.
Facebook
TwitterThis dataset contains a detailed information on companies listed in the NASDAQ exchanges. The dataset also includes the market category as well as the financial status of the listed companies.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides the latest Nasdaq stock ticker information for all companies listed on Nasdaq in 2025. It includes key financial and industry-specific attributes, making it a valuable resource for investors, analysts, and researchers.
The dataset contains 6,975 unique stock tickers, representing companies across various sectors, market capitalizations, and industries. The data is available in multiple formats to suit different needs, whether for stock screening, financial modeling, or market research.
Columns:
Name – Full name of the company Symbol – Stock ticker symbol Sector – General sector classification Industry – Specific industry category Market Cap – Market capitalization (in USD) Country – Country where the company is headquartered Date – The date the data was last updated
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The dataset consists of companies listed in the S&P500, stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United State. The S&P500 or SPX is the most commonly followed equity index.
Markets
s&p500,nyse,nasdaq,stock market,equities
505
$20.00
Facebook
Twitterthis group contains a list of listed companies in Amman stock exchange and their sector , .symbol, code , market and number of shares .
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
Facebook
Twitterhttps://www.aiceltech.com/termshttps://www.aiceltech.com/terms
Korean Companies’ Stock Market Data provides important information to analyze and predict trends in stock trading. This data includes trading volume, price fluctuations, and stock indices. Collected from stock exchanges and financial data sources, it helps investors predict stock market movements and develop investment strategies, which are crucial for assessing the value of publicly traded Korean companies.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Disclaimer: Educational Purposes Only
The financial and International Securities Identification Number (ISIN) data listed on this platform is provided solely for educational purposes. The information is intended to serve as general guidance and does not constitute financial advice, an endorsement, or a recommendation for the purchase or sale of any securities.
While we strive to ensure the accuracy and timeliness of the information presented, we make no representations or warranties, express or implied, regarding the completeness, accuracy, reliability, suitability, or availability of the provided data. Users are encouraged to independently verify any information obtained from this platform before making any investment decisions.
This platform and its operators are not responsible for any errors, omissions, or inaccuracies in the provided data, nor for any actions taken in reliance on such information. Users are strongly advised to conduct thorough research and seek the advice of qualified financial professionals before making any investment decisions.
The use of International Securities Identification Numbers (ISINs) and other financial data is subject to various regulations and licensing agreements. Users are responsible for complying with all applicable laws and respecting any terms and conditions associated with the use of such data.
By accessing and using this platform, users acknowledge and agree that they are doing so at their own risk and discretion. This educational content is not a substitute for professional financial advice, and users should consult with qualified professionals for specific guidance tailored to their individual circumstances.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Italy's main stock market index, the IT40, rose to 43652 points on December 2, 2025, gaining 0.91% from the previous session. Over the past month, the index has climbed 0.99% and is up 29.04% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Italy. Italy Stock Market Index (IT40) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains firm-level, daily observations of capital flow activity for approximately 2,000 publicly traded companies listed on the NASDAQ, Russell 3000, and S&P 500 indices between 2015 and 2025. Each record corresponds to one trading day per firm and reports the following variables: date – trading day in YYYY-MM-DD format buy_flow_usd – total value of buy-side transactions (USD) sell_flow_usd – total value of sell-side transactions (USD) net_flow_usd – difference between buy and sell flows (positive = inflow; negative = outflow) trades – number of executed trades during the trading day The data were constructed from aggregated trade-level information using intraday transaction records obtained from official exchange data feeds. All flows are expressed in nominal USD. This dataset can be used to study market liquidity, institutional trading behavior, investor sentiment, and capital movement patterns across major U.S. indices. It supports replication of research on daily capital flows, market microstructure, and cross-sectional determinants of liquidity.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Title: Stock Prices of 500 Biggest Companies by Market Cap (Last 5 Years)
Description: This dataset comprises historical stock market data extracted from Yahoo Finance, spanning a period of five years. It includes daily records of stock performance metrics for the top 500 companies based on market capitalization.
Attributes: 1. Date: The date corresponding to the recorded stock market data. 2. Open: The opening price of the stock on a given date. 3. High: The highest price of the stock reached during the trading day. 4. Low: The lowest price of the stock observed during the trading day. 5. Close: The closing price of the stock on a specific date. 6. Volume: The volume of shares traded on the given date. 7. Dividends: Any dividend payments made by the company on that date (if applicable). 8. Stock Splits: Information regarding any stock splits occurring on that date. 9. Company: Ticker symbol or identifier representing the respective company.
Usefulness: - Investors and analysts can leverage this dataset to conduct various analyses such as trend analysis, volatility assessment, and predictive modeling. - Researchers can explore correlations between stock prices of different companies, sector-wise performance, and market trends over the specified duration. - Machine learning enthusiasts can employ this dataset for developing predictive models for stock price forecasting or anomaly detection.
Note: Prior to using this dataset, it's recommended to perform data cleaning, handling missing values, and verifying the consistency of data across companies and time periods.
License: The dataset is sourced from Yahoo Finance and is provided for analytical purposes. Refer to Yahoo Finance's terms of use for further details on data usage and licensing.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Stock Market Analysis of Nasdaq 100 Stock from it's Founding / Listing Years which is 2001 to 2022
| Columns | Description |
|---|---|
| Date | Date of Listing (YYYY-MM-DD) |
| Open | Price when the market opens |
| High | Highest recorded price for the day |
| Low | Lowest recorded price for the day |
| Close | Price when the market closes |
| Adj Close | Modified closing price based on corporate actions |
| Volume | Amount of stocks sold in a day |
The Nasdaq-100 is a stock market index made up of 102 equity securities issued by 101 of the largest non-financial companies listed on the Nasdaq stock exchange. It is a modified capitalization-weighted index. The stocks' weights in the index are based on their market capitalizations, with certain rules capping the influence of the largest components. It is limited to companies from a single exchange, and it does not have any financial companies. The financial companies are in a separate index, the NASDAQ Financial-100.
More - Find More Exciting🙀 Datasets Here - An Upvote👍 A Dayᕙ(`▿´)ᕗ , Keeps Aman Hurray Hurray..... ٩(˘◡˘)۶Hehe
Facebook
TwitterThe dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.