9 datasets found
  1. T

    Lumber - Price Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Lumber - Price Data [Dataset]. https://tradingeconomics.com/commodity/lumber
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 24, 1978 - Jul 31, 2025
    Area covered
    World
    Description

    Lumber fell to 690.67 USD/1000 board feet on July 31, 2025, down 0.12% from the previous day. Over the past month, Lumber's price has risen 11.49%, and is up 37.84% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Lumber - values, historical data, forecasts and news - updated on August of 2025.

  2. BlueLinx (BXC) Stock Forecast: Navigating the Lumber Market Volatility...

    • kappasignal.com
    Updated Jul 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). BlueLinx (BXC) Stock Forecast: Navigating the Lumber Market Volatility (Forecast) [Dataset]. https://www.kappasignal.com/2024/07/bluelinx-bxc-stock-forecast-navigating.html
    Explore at:
    Dataset updated
    Jul 20, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    BlueLinx (BXC) Stock Forecast: Navigating the Lumber Market Volatility

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. Lumber Prices on the Stock Market

    • indexbox.io
    doc, docx, pdf, xls +1
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndexBox Inc. (2025). Lumber Prices on the Stock Market [Dataset]. https://www.indexbox.io/search/lumber-prices-on-the-stock-market/
    Explore at:
    docx, doc, pdf, xlsx, xlsAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    IndexBox
    Authors
    IndexBox Inc.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2012 - Jul 9, 2025
    Area covered
    World
    Variables measured
    Price CIF, Price FOB, Export Value, Import Price, Import Value, Export Prices, Export Volume, Import Volume
    Description

    Explore the factors driving lumber price volatility, including supply chain disruptions and economic patterns, and understand how these impact the stock market and future trading strategies.

  4. F

    Producer Price Index by Commodity: Lumber and Wood Products: Softwood Cut...

    • fred.stlouisfed.org
    json
    Updated Jun 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Producer Price Index by Commodity: Lumber and Wood Products: Softwood Cut Stock and Dimension [Dataset]. https://fred.stlouisfed.org/series/WPU08110503
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 12, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Producer Price Index by Commodity: Lumber and Wood Products: Softwood Cut Stock and Dimension (WPU08110503) from Jan 1987 to May 2025 about stocks, wood, commodities, PPI, inflation, price index, indexes, price, and USA.

  5. Lumber on the Stock Market

    • indexbox.io
    doc, docx, pdf, xls +1
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndexBox Inc. (2025). Lumber on the Stock Market [Dataset]. https://www.indexbox.io/search/lumber-on-the-stock-market/
    Explore at:
    docx, pdf, xlsx, doc, xlsAvailable download formats
    Dataset updated
    Jun 1, 2025
    Dataset provided by
    IndexBox
    Authors
    IndexBox Inc.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2012 - Jun 28, 2025
    Area covered
    World
    Variables measured
    Price CIF, Price FOB, Export Value, Import Price, Import Value, Export Prices, Export Volume, Import Volume
    Description

    Explore the dynamics of the lumber futures market, traded on CME, including factors affecting prices like supply-demand, economic conditions, and construction industry trends. Learn how investors can trade lumber through futures, company stocks, or ETFs, amidst recent market volatility influenced by events such as the COVID-19 pandemic.

  6. WFG Stock Forecast Data

    • kappasignal.com
    csv, json
    Updated May 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). WFG Stock Forecast Data [Dataset]. https://www.kappasignal.com/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    May 20, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    West Fraser Timber's strong performance in recent years is likely to continue, driven by favorable housing markets and a growing demand for wood products. However, the company faces risks related to economic downturns, fluctuations in lumber prices, and supply chain disruptions. These risks could impact the company's revenue and profitability, although the long-term outlook for the company remains positive.

  7. CME lumber futures (Forecast)

    • kappasignal.com
    Updated May 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). CME lumber futures (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/cme-lumber-futures.html
    Explore at:
    Dataset updated
    May 9, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    CME lumber futures

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. Boise Cascade Stock Forecast: Will (BCC) Lumber Prices Keep Climbing?...

    • kappasignal.com
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Boise Cascade Stock Forecast: Will (BCC) Lumber Prices Keep Climbing? (Forecast) [Dataset]. https://www.kappasignal.com/2024/07/boise-cascade-stock-forecast-will-bcc.html
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Boise Cascade Stock Forecast: Will (BCC) Lumber Prices Keep Climbing?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. Wood Group (WG) - Riding the Energy Transition Wave? (Forecast)

    • kappasignal.com
    Updated Aug 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Wood Group (WG) - Riding the Energy Transition Wave? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/wood-group-wg-riding-energy-transition.html
    Explore at:
    Dataset updated
    Aug 19, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Wood Group (WG) - Riding the Energy Transition Wave?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2017). Lumber - Price Data [Dataset]. https://tradingeconomics.com/commodity/lumber

Lumber - Price Data

Lumber - Historical Dataset (1978-07-24/2025-07-31)

Explore at:
47 scholarly articles cite this dataset (View in Google Scholar)
json, csv, xml, excelAvailable download formats
Dataset updated
May 27, 2017
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jul 24, 1978 - Jul 31, 2025
Area covered
World
Description

Lumber fell to 690.67 USD/1000 board feet on July 31, 2025, down 0.12% from the previous day. Over the past month, Lumber's price has risen 11.49%, and is up 37.84% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Lumber - values, historical data, forecasts and news - updated on August of 2025.

Search
Clear search
Close search
Google apps
Main menu