West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Information about sample sizes, response rates, household characteristics, and expenditure uncertainty metrics for the Living Costs and Food Survey.
As of September 2025, Mumbai had the highest cost of living among other cities in the country, with an index value of ****. Gurgaon, a satellite city of Delhi and part of the National Capital Region (NCR) followed it with an index value of ****. What is cost of living? The cost of living varies depending on geographical regions and factors that affect the cost of living in an area include housing, food, utilities, clothing, childcare, and fuel among others. The cost of living is calculated based on different measures such as the consumer price index (CPI), living cost indexes, and wage price index. CPI refers to the change in the value of consumer goods and services. The wage price index, on the other hand, measures the change in labor services prices due to market pressures. Lastly, the living cost indexes calculate the impact of changing costs on different households. The relationship between wages and costs determines affordability and shifts in the cost of living. Mumbai tops the list Mumbai usually tops the list of most expensive cities in India. As the financial and entertainment hub of the country, Mumbai offers wide opportunities and attracts talent from all over the country. It is the second-largest city in India and has one of the most expensive real estates in the world.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
People in Great Britain's experiences of and actions following increases in their costs of living, and how these differed by a range of personal characteristics.
Official statistics are produced impartially and free from political influence.
VITAL SIGNS INDICATOR
Poverty (EQ5)
FULL MEASURE NAME
The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED
January 2023
DESCRIPTION
Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE
U.S Census Bureau: Decennial Census - http://www.nhgis.org
1980-2000
U.S. Census Bureau: American Community Survey - https://data.census.gov/
2007-2021
Form C17002
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).
For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.
For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.
American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
Official statistics are produced impartially and free from political influence.
In the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding ******* U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under ******* U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded **** percent in 2023.
Of the most populous cities in the U.S., San Jose, California had the highest annual income requirement at ******* U.S. dollars annually for homeowners to have an affordable and comfortable life in 2024. This can be compared to Houston, Texas, where homeowners needed an annual income of ****** U.S. dollars in 2024.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Experimental statistics from the Student Cost of Living Insights Study (SCoLIS) in England. Includes information on the behaviours, plans, opinions and well-being of higher education students in the context of the increases in cost of living.
Background:
A household food consumption and expenditure survey has been conducted each year in Great Britain (excluding Northern Ireland) since 1940. At that time the National Food Survey (NFS) covered a sample drawn solely from urban working-class households, but this was extended to a fully demographically representative sample in 1950. From 1957 onwards the Family Expenditure Survey (FES) provided information on all household expenditure patterns including food expenditure, with the NFS providing more detailed information on food consumption and expenditure. The NFS was extended to cover Northern Ireland from 1996 onwards. In April 2001 these surveys were combined to form the Expenditure and Food Survey (EFS), which completely replaced both series. From January 2008, the EFS became known as the Living Costs and Food (LCF) module of the Integrated Household Survey (IHS). As a consequence of this change, the questionnaire was altered to accommodate the insertion of a core set of questions, common to all of the separate modules which together comprised the IHS. Some of these core questions are simply questions which were previously asked in the same or a similar format on all of the IHS component surveys. For further information on the LCF questionnaire, see Volume A of the LCF 2008 User Guide, held with SN 6385. Further information about the LCF, including links to published reports based on the survey, may be found by searching for 'Living Costs and Food Survey' on the ONS website. Further information on the NFS and Living Costs and Food Module of the IHS can be found by searching for 'Family Food' on the GOV.UK website.
History:
The LCF (then EFS) was the result of more than two years' development work to bring together the FES and NFS; both survey series were well-established and important sources of information for government and the wider community, and had charted changes and patterns in spending and food consumption since the 1950s. Whilst the NFS and FES series are now finished, users should note that previous data from both series are still available from the UK Data Archive, under GNs 33071 (NFS) and 33057 (FES).
Purpose of the LCF
The Office for National Statistics (ONS) has overall project management and financial responsibility for the LCF, while the Department for Environment, Food and Rural Affairs (DEFRA) sponsors the food data element. As with the FES and NFS, the LCF continues to be primarily used to provide information for the Retail Prices Index, National Accounts estimates of household expenditure, analysis of the effect of taxes and benefits, and trends in nutrition. The results are multi-purpose, however, providing an invaluable supply of economic and social data. The merger of the two surveys also brings benefits for users, as a single survey on food expenditure removes the difficulties of reconciling data from two sources.
Design and methodology
The design of the LCF is based on the old FES, although the use of new processing software by the data creators has resulted in a dataset which differs from the previous structure. The most significant change in terms of reporting expenditure, however, is the introduction of the European Standard Classification of Individual Consumption by Purpose (COICOP), in place of the codes previously used. An additional level of hierarchy has been developed to improve the mapping to the previous codes. The LCF was conducted on a financial year basis from 2001, then moved to a calendar year basis from January 2006 (to complement the IHS) until 2015-16, when the financial year survey was reinstated at the request of users. Therefore, whilst SN 5688 covers April 2005 - March 2006, SN 5986 covers January-December 2006. Subsequent years cover January-December until 2014. SN 8210 returns to the financial year survey and currently covers April 2015 - March 2016.
Northern Ireland sample
Users should note that, due to funding constraints, from January 2010 the Northern Ireland (NI) sample used for the LCF was reduced to a sample proportionate to the NI population relative to the UK.
Family Food database:
'Family Food' is an annual publication which provides detailed statistical information on purchased quantities, expenditure and nutrient intakes derived from both household and eating out food and drink. Data is collected for a sample of households in the United Kingdom using self-reported diaries of all purchases, including food eaten out, over a two week period. Where possible quantities are recorded in the diaries but otherwise estimated. Energy and nutrient intakes are calculated using standard nutrient composition data for each of some 500 types of food. Current estimates are based on data collected in the Family Food Module of the LCFS. Further information about the LCF food databases can be found on the GOV.UK Family Food Statistics web pages.
Secure Access version
A Secure Access version of the LCF from 2006 onwards is available from the UK Data Archive under SN 7047, subject to stringent access conditions. The Secure Access version includes variables that are not included in the standard End User Licence (EUL) version, including geographical variables with detail below Government Office Region, to postcode level; urban/rural area indicators; other sensitive variables; raw diary information files (derived variables are available in the EUL) and the family expenditure codes files. Users are strongly advised to check whether the EUL version is sufficient for their needs before considering an application for the Secure Access version.
Occupation data for 2021 and 2022 data files
The ONS have identified an issue with the collection of some
occupational data in 2021 and 2022 data files in a number of their
surveys. While they estimate any impacts will be small overall, this
will affect the
accuracy of the breakdowns of some detailed (four-digit Standard
Occupational
Classification (SOC)) occupations, and data derived from them. None of
ONS' headline
statistics, other than those directly sourced from occupational data,
are affected and you
can continue to rely on their accuracy. For further information on this
issue, please see:
https://www.ons.gov.uk/news/statementsandletters/occupationaldatainonssurveys.
Latest edition information
For the fourth edition (July 2025), an updated version of the DEFRA Family Food database has been added to the study. Tables covering a065p (Age of HRP by range - anonymised), a069p (Type of household - Anonymised) and a094 (NS-SEC 12 Class of HRP) have been added, and the variable EqIncDOp (Equivalised income (OECD Scale) - anonymised) has been added to the EFShousehold table. A guide to the additional variables has been added to the documentation.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Analysis of the proportion of the British adult population experiencing some form of depression in autumn 2022, including experiences of changes in cost of living and household finances. Analysis based on the Opinions and Lifestyle Survey.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Quality of Life Index (higher is better) is an estimation of overall quality of life by using an empirical formula which takes into account purchasing power index (higher is better), pollution index (lower is better), house price to income ratio (lower is better), cost of living index (lower is better), safety index (higher is better), health care index (higher is better), traffic commute time index (lower is better) and climate index (higher is better).
Current formula (written in Java programming language):
index.main = Math.max(0, 100 + purchasingPowerInclRentIndex / 2.5 - (housePriceToIncomeRatio * 1.0) - costOfLivingIndex / 10 + safetyIndex / 2.0 + healthIndex / 2.5 - trafficTimeIndex / 2.0 - pollutionIndex * 2.0 / 3.0 + climateIndex / 3.0);
For details how purchasing power (including rent) index, pollution index, property price to income ratios, cost of living index, safety index, climate index, health index and traffic index are calculated please look up their respective pages.
Formulas used in the past
Formula used between June 2017 and Decembar 2017
We decided to decrease weight from costOfLivingIndex in this formula:
index.main = Math.max(0, 100 + purchasingPowerInclRentIndex / 2.5 - (housePriceToIncomeRatio * 1.0) - costOfLivingIndex / 5 + safetyIndex / 2.0 + healthIndex / 2.5 - trafficTimeIndex / 2.0 - pollutionIndex * 2.0 / 3.0 + climateIndex / 3.0);
The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.
The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for 2017 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.
Quality of life index, link: https://www.numbeo.com/quality-of-life/indices_explained.jsp
Happiness store, link: https://www.kaggle.com/unsdsn/world-happiness/home
In July 2025, 95 percent of households in Great Britain that reported a cost of living increase in the previous month advised that that their food bills had increased, with 57 percent reporting increased gas or electricity bills.
In July 2025, 59 percent of households in Great Britain reported that their cost of living had increased in the previous month, compared with 72 percent in April. Although the share of people reporting a cost of living increase has generally been falling since August 2022, when 91 percent of households reported an increase, the most recent figures indicate that the Cost of Living Crisis is still ongoing for many households in the UK. Crisis ligers even as inflation falls Although various factors have been driving the Cost of Living Crisis in Britain, high inflation has undoubtedly been one of the main factors. After several years of relatively low inflation, the CPI inflation rate shot up from 2021 onwards, hitting a high of 11.1 percent in October 2022. In the months since that peak, inflation has fallen to more usual levels, and was 2.5 percent in December 2024, slightly up from 1.7 percent in September. Since June 2023, wages have also started to grow at a faster rate than inflation, albeit after a long period where average wages were falling relative to overall price increases. Economy continues to be the main issue for voters Ahead of the last UK general election, the economy was consistently selected as the main issue for voters for several months. Although the Conservative Party was seen by voters as the best party for handling the economy before October 2022, this perception collapsed following the market's reaction to Liz Truss' mini-budget. Even after changing their leader from Truss to Rishi Sunak, the Conservatives continued to fall in the polls, and would go onto lose the election decisively. Since the election, the economy remains the most important issue in the UK, although it was only slightly ahead of immigration and health as of January 2025.
Official statistics are produced impartially and free from political influence.
The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.
Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.
Palestine West Bank Gaza Strip Jerusalem
The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.
The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.
Sample survey data [ssd]
A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).
Not apply
Computer Assisted Personal Interview [capi]
A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).
In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.
The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.
At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.
Not apply
The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.
Other technical procedures to improve data quality: Seasonal adjustment processes and estimations of non-available items' prices: Under each category, a number of common items are used in Palestine to calculate the price levels and to represent the commodity within the commodity group. Of course, it is
VITAL SIGNS INDICATOR
Poverty (EQ5)
FULL MEASURE NAME
The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED
January 2023
DESCRIPTION
Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE
U.S Census Bureau: Decennial Census - http://www.nhgis.org
1980-2000
U.S. Census Bureau: American Community Survey - https://data.census.gov/
2007-2021
Form C17002
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).
For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.
For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.
American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
Hokkaido Prefecture had the highest retail prices excluding rent compared to the national average in Japan in 2024. Retail prices in Hokkaido were three points above the national average in Japan.
The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.
Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.
Palestine West Bank Gaza Strip Jerusalem
The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.
The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.
Sample survey data [ssd]
A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).
Not apply
Computer Assisted Personal Interview [capi]
A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).
In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.
The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.
At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.
Not apply
The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.
Other technical procedures to improve data quality: Seasonal adjustment processes and estimations of non-available items' prices: Under each category, a number of common items are used in Palestine to calculate the price levels and to represent the commodity within the commodity group. Of course, it is
West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.