11 datasets found
  1. o

    CMB-BRCA: DICOM converted Slide Microscopy images for the Cancer Moonshot...

    • explore.openaire.eu
    Updated Oct 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Clunie (2024). CMB-BRCA: DICOM converted Slide Microscopy images for the Cancer Moonshot Biobank initiative Invasive Breast Carcinoma collection [Dataset]. http://doi.org/10.5281/zenodo.13993761
    Explore at:
    Dataset updated
    Oct 25, 2024
    Authors
    David Clunie
    Description

    This dataset corresponds to a collection of images and/or image-derived data available from National Cancer Institute Imaging Data Commons (IDC) [1]. This dataset was converted into DICOM representation and ingested by the IDC team. You can explore and visualize the corresponding images using IDC Portal here. You can use the manifests included in this Zenodo record to download the content of the collection following the Download instructions below. Collection description The Cancer Moonshot Biobank (CMB) is a National Cancer Institute initiative to support current and future investigations into drug resistance and sensitivity and other NCI-sponsored cancer research initiatives, with an aim of improving researchers' understanding of cancer and how to intervene in cancer initiation and progression. During the course of this study, biospecimens (blood and tissue removed during medical procedures) and associated data will be collected longitudinally from at least 1000 patients across at least 10 cancer types, who represent the demographic diversity of the U.S. and receiving standard of care cancer treatment at multiple NCI Community Oncology Research Program (NCORP) sites. CMB program is organized into multiple cancer-specific collections. Digital pathology images for each of those collections were converted into DICOM representation by the IDC team and are shared via IDC. This entry corresponds to the CMB-BRCA collection (Invasive Breast Carcinoma). Digital pathology images, augmented with the metadata describing their content, were converted into DICOM Whole Slide Microscopy (SM) representation [2,3] using custom open source scripts and tools as described in [4]. Files included A manifest file's name indicates the IDC data release in which a version of collection data was first introduced. For example, collection_id-idc_v8-aws.s5cmd corresponds to the contents of the collection_id collection introduced in IDC data release v8. If there is a subsequent version of this Zenodo page, it will indicate when a subsequent version of the corresponding collection was introduced. For each of the collections, the following manifest files are provided: -idc_v20-aws.s5cmd: manifest of files available for download from public IDC Amazon Web Services buckets -idc_v20-gcs.s5cmd: manifest of files available for download from public IDC Google Cloud Storage buckets -idc_v20-dcf.dcf: Gen3 manifest (for details see https://learn.canceridc.dev/data/organization-of-data/guids-and-uuids) Note that manifest files that end in -aws.s5cmd reference files stored in Amazon Web Services (AWS) buckets, while -gcs.s5cmd reference files in Google Cloud Storage. The actual files are identical and are mirrored between AWS and GCP. Download instructions Each of the manifests include instructions in the header on how to download the included files. To download the files using .s5cmd manifests: install idc-index package: pip install --upgrade idc-index download the files referenced by manifests included in this dataset by passing the .s5cmd manifest file: idc download manifest.s5cmd To download the files using .dcf manifest, see manifest header. Acknowledgments Imaging Data Commons team has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Task Order No. HHSN26110071 under Contract No. HHSN261201500003l. References [1] Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W. L., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National cancer institute imaging data commons: Toward transparency, reproducibility, and scalability in imaging artificial intelligence. Radiographics 43, (2023). [2] National Electrical Manufacturers Association (NEMA). DICOM PS3.3 - Information Object Definitions: A.32.8 VL Whole Slide Microscopy Image IOD. at [3] Herrmann, M. D., Clunie, D. A., Fedorov, A., Doyle, S. W., Pieper, S., Klepeis, V., Le, L. P., Mutter, G. L., Milstone, D. S., Schultz, T. J., Kikinis, R., Kotecha, G. K., Hwang, D. H., Andriole, K. P., John Lafrate, A., Brink, J. A., Boland, G. W., Dreyer, K. J., Michalski, M., Golden, J. A., Louis, D. N. & Lennerz, J. K. Implementing the DICOM standard for digital pathology. J. Pathol. Inform. 9, 37 (2018). [4] Clunie, D., Fedorov, A. & Herrmann, M. D. ImagingDataCommons/idc-wsi-conversion: Initial release. (Zenodo, 2023). doi:10.5281/ZENODO.8240154

  2. DICOM converted Slide Microscopy images for the TCGA-PAAD collection

    • zenodo.org
    bin
    Updated Aug 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim (2024). DICOM converted Slide Microscopy images for the TCGA-PAAD collection [Dataset]. http://doi.org/10.5281/zenodo.12689973
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    This dataset corresponds to a collection of images and/or image-derived data available from National Cancer Institute Imaging Data Commons (IDC) [1]. This dataset was converted into DICOM representation and ingested by the IDC team. You can explore and visualize the corresponding images using IDC Portal here: TCGA-PAAD. You can use the manifests included in this Zenodo record to download the content of the collection following the Download instructions below.

    Collection description

    Pancreatic ductal adenocarcinoma is the most common form of pancreatic cancer, making up more than 80% of cases. The disease begins in the cells of the pancreas's ducts, which transport juices containing digestive enzymes into the small intestine.

    Pancreatic cancer is the fourth most common cause of global cancer-related deaths and is almost always fatal. In 2012, it was estimated that around 44,000 new cases of pancreatic cancer were diagnosed and more than 37,000 deaths from this disease occurred in the United States alone, affecting both men and women.

    Please see the TCGA-PAAD information page to learn more about the images and to obtain any supporting metadata for this collection.

    Citation guidelines can be found on the Citing TCGA in Publications and Presentations information page.

    Files included

    A manifest file's name indicates the IDC data release in which a version of collection data was first introduced. For example, collection_id-idc_v8-aws.s5cmd corresponds to the contents of the collection_id collection introduced in IDC data release v8. If there is a subsequent version of this Zenodo page, it will indicate when a subsequent version of the corresponding collection was introduced.

    1. tcga_paad-idc_v8-aws.s5cmd: manifest of files available for download from public IDC Amazon Web Services buckets
    2. tcga_paad-idc_v8-gcs.s5cmd: manifest of files available for download from public IDC Google Cloud Storage buckets
    3. tcga_paad-idc_v8-dcf.dcf: Gen3 manifest (for details see https://learn.canceridc.dev/data/organization-of-data/guids-and-uuids)

    Note that manifest files that end in -aws.s5cmd reference files stored in Amazon Web Services (AWS) buckets, while -gcs.s5cmd reference files in Google Cloud Storage. The actual files are identical and are mirrored between AWS and GCP.

    Download instructions

    Each of the manifests include instructions in the header on how to download the included files.

    To download the files using .s5cmd manifests:

    1. install idc-index package: pip install --upgrade idc-index
    2. download the files referenced by manifests included in this dataset by passing the .s5cmd manifest file: idc download manifest.s5cmd.

    To download the files using .dcf manifest, see manifest header.

    Acknowledgments

    Imaging Data Commons team has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Task Order No. HHSN26110071 under Contract No. HHSN261201500003l.

    References

    [1] Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence. RadioGraphics (2023). https://doi.org/10.1148/rg.230180

  3. c

    Data from The Lung Image Database Consortium (LIDC) and Image Database...

    • cancerimagingarchive.net
    dicom, n/a, xls, xlsx +1
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive, Data from The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans [Dataset]. http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
    Explore at:
    xlsx, xls, n/a, xml and zip, dicomAvailable download formats
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    Sep 21, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    The Lung Image Database Consortium image collection (LIDC-IDRI) consists of diagnostic and lung cancer screening thoracic computed tomography (CT) scans with marked-up annotated lesions. It is a web-accessible international resource for development, training, and evaluation of computer-assisted diagnostic (CAD) methods for lung cancer detection and diagnosis. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process.

    Seven academic centers and eight medical imaging companies collaborated to create this data set which contains 1018 cases. Each subject includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ("nodule > or =3 mm," "nodule <3 mm," and "non-nodule > or =3 mm"). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus.

    Note : The TCIA team strongly encourages users to review pylidc and the Standardized representation of the TCIA LIDC-IDRI annotations using DICOM (DICOM-LIDC-IDRI-Nodules) of the annotations/segmentations included in this dataset before developing custom tools to analyze the XML version.

  4. c

    Data from: Pelvic-Reference-Data

    • cancerimagingarchive.net
    dicom, n/a, xlsx
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive, Pelvic-Reference-Data [Dataset]. http://doi.org/10.7937/TCIA.2019.WOSKQ5OO
    Explore at:
    dicom, xlsx, n/aAvailable download formats
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    Sep 13, 2019
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    Purpose: Expert selected landmark points on clinical image pairs provide a basis for rigid registration validation. Using combinatorial rigid registration optimization (CORRO) we provide a statistically characterized reference data set for image registration of the pelvis by estimating the optimal ground truth.

    Methods: Landmark points for each CT/CBCT image pair for 58 pelvic cases were identified. From the identified landmark pairs, combination subsets of k-number of landmark pairs were generated without repeat, to form a k-set for k=4, 8, &12. An affine registration between the image pairs was calculated for each k-combination set (2,000-8,000,000). The mean and the standard deviation of the registration were used as the final registration for each image pair. Joint entropy was employed to measure and compare the quality of CORRO to commercially available software.

    Results: An average of 154 (range: 91-212) landmark pairs were selected for each CT/CBCT image pair. The mean standard deviation of the registration output decreased as the k-size increased for all cases. In general the joint entropy evaluated was found to be lower than results from commercially available software. Of all 58 cases 58.3% of the k=4, 15% of k=8 and 18.3% of k=12 resulted in the better registration using CORRO as compared to 8.3% from a commercial registration software. The minimum joint entropy was determined for one case and found to exist at the estimated registration mean in agreement with the CORRO approach.

    Conclusion: The results demonstrate that CORRO works even in the extreme case of the pelvic anatomy where the CBCT suffers from reduced quality due to increased noise levels. The estimated ground truth using CORRO was found to be better than commercially available software for all k-sets tested. Additionally, the k-set of 4 resulted in overall best outcomes when compared to k=8 and 12, which is anticipated because k=8 and 12 are more likely to have combinations that affected the accuracy of the registration.

    Figure 1. Content of planning CT shifted to the machine isocenter. Top left to right - axial, coronal and sagittal planning CT image with machine isocenter in red and image isocenter in blue. Middle left to right - axial, coronal and sagittal planning CT at machine isocenter. Bottom left to right - axial, coronal and sagittal CBCT at machine isocenter.

  5. Data from: A ten-year (2009–2018) database of cancer mortality rates in...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arianna Di Paola; Roberto Cazzolla Gatti; Alfonso Monaco; Alena Velichevskaya; Nicola Amoroso; Roberto Bellotti (2022). A ten-year (2009–2018) database of cancer mortality rates in Italy [Dataset]. http://doi.org/10.5061/dryad.ns1rn8pvg
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Italian National Research Council
    University of Bologna
    University of Bari Aldo Moro
    Istituto Nazionale di Fisica Nucleare, Sezione di Bari
    National Research Tomsk State University
    Authors
    Arianna Di Paola; Roberto Cazzolla Gatti; Alfonso Monaco; Alena Velichevskaya; Nicola Amoroso; Roberto Bellotti
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Italy
    Description

    AbstractIn Italy, approximately 400.000 new cases of malignant tumors are recorded every year. The average of annual deaths caused by tumors, according to the Italian Cancer Registers, is about 3.5 deaths and about 2.5 per 1,000 men and women respectively, for a total of about 3 deaths every 1,000 people. Long-term (at least a decade) and spatially detailed data (up to the municipality scale) are neither easily accessible nor fully available for public consultation by the citizens, scientists, research groups, and associations. Therefore, here we present a ten-year (2009–2018) database on cancer mortality rates (in the form of Standardized Mortality Ratios, SMR) for 23 cancer macro-types in Italy on municipal, provincial, and regional scales. We aim to make easily accessible a comprehensive, ready-to-use, and openly accessible source of data on the most updated status of cancer mortality in Italy for local and national stakeholders, researchers, and policymakers and to provide researchers with ready-to-use data to perform specific studies. Methods For a given locality, year, and cause of death, the SMR is the ratio between the observed number of deaths (Om) and the number of expected deaths (Em): SMR = Om/Em (1) where Om should be an available observational data and Em is estimated as the weighted sum of age-specific population size for the given locality (ni) per age-specific death rates of the reference population (MRi): Em = sum(MRi x ni) (2) MRi could be provided by a public health organization or be estimated as the ratio between the age-specific number of deaths of reference population (Mi) to the age-specific reference population size (Ni): MRi = Mi/Ni (3) Thus, the value of Em is weighted by the age distribution of deaths and population size. SMR assumes value 1 when the number of observed and expected deaths are equal. Following eqns. (1-3), the SMR was computed for single years of the period 2009-2018 and for single cause of death as defined by the International ICD-10 classification system by using the following data: age-specific number of deaths by cause of reference population (i.e., Mi) from the Italian National Institute of Statistics (ISTAT, (http://www.istat.it/en/, last access: 26/01/2022)); age-specific census data on reference population (i.e., Ni) from ISTAT; the observed number of deaths by cause (i.e., Om) from ISTAT; the age-specific census data on population (ni); the SMR was estimated at three different level of aggregation: municipal, provincial (equivalent to the European classification NUTS 3) and regional (i.e., NUTS2). The SMR was also computed for the broad category of malignant tumors (i.e. C00-C979, hereinafter cancer macro-type C), and for the broad category of malignant tumor plus non-malignant tumors (i.e. C00-C979 plus D0-D489, hereinafter cancer macro-type CD). Lower 90% and 95% confidence intervals of 10-year average values were computed according to the Byar method.

  6. f

    Additional file 4 of Comprehensive analysis of lymph nodes metastasis...

    • springernature.figshare.com
    txt
    Updated Feb 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ping Yang; Youqin Ruan; Zhiling Yan; Yang Gao; Hongying Yang; Shaojia Wang (2024). Additional file 4 of Comprehensive analysis of lymph nodes metastasis associated genes in cervical cancer and its significance in treatment and prognosis [Dataset]. http://doi.org/10.6084/m9.figshare.17037288.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 15, 2024
    Dataset provided by
    figshare
    Authors
    Ping Yang; Youqin Ruan; Zhiling Yan; Yang Gao; Hongying Yang; Shaojia Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 4.

  7. c

    Standardization in Quantitative Imaging: A Multi-center Comparison of...

    • cancerimagingarchive.net
    n/a, nifti and zip +1
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive, Standardization in Quantitative Imaging: A Multi-center Comparison of Radiomic Feature Values [Dataset]. http://doi.org/10.7937/tcia.2020.9era-gg29
    Explore at:
    xlsx, n/a, nifti and zipAvailable download formats
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    Jun 9, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    This dataset was used by the NCI's Quantitative Imaging Network (QIN) PET-CT Subgroup for their project titled: Multi-center Comparison of Radiomic Features from Different Software Packages on Digital Reference Objects and Patient Datasets. The purpose of this project was to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included common image data sets and standardized feature definitions. The image datasets (and Volumes of Interest – VOIs) provided here are the same ones used in that project and reported in the publication listed below (ISSN 2379-1381 https://doi.org/10.18383/j.tom.2019.00031). In addition, we have provided detailed information about the software packages used (Table 1 in that publication) as well as the individual feature value results for each image dataset and each software package that was used to create the summary tables (Tables 2, 3 and 4) in that publication. For that project, nine common quantitative imaging features were selected for comparison including features that describe morphology, intensity, shape, and texture and that are described in detail in the International Biomarker Standardisation Initiative (IBSI, https://arxiv.org/abs/1612.07003 and publication (Zwanenburg A. Vallières M, et al, The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020 May;295(2):328-338. doi: https://doi.org/10.1148/radiol.2020191145). There are three datasets provided – two image datasets and one dataset consisting of four excel spreadsheets containing feature values.

    1. The first image dataset is a set of three Digital Reference Objects (DROs) used in the project, which are: (a) a sphere with uniform intensity, (b) a sphere with intensity variation (c) a nonspherical (but mathematically defined) object with uniform intensity. These DROs were created by the team at Stanford University and are described in (Jaggi A, Mattonen SA, McNitt-Gray M, Napel S. Stanford DRO Toolkit: digital reference objects for standardization of radiomic features. Tomography. 2019;6:–.) and are a subset of the DROs described in DRO Toolkit. Each DRO is represented in both DICOM and NIfTI format and the VOI was provided in each format as well (DICOM Segmentation Object (DSO) as well as NIfTI segmentation boundary).
    2. The second image dataset is the set of 10 patient CT scans, originating from the LIDC-IDRI dataset, that were used in the QIN multi-site collection of Lung CT data with Nodule Segmentations project ( https://doi.org/10.7937/K9/TCIA.2015.1BUVFJR7 ). In that QIN study, a single lesion from each case was identified for analysis and then nine VOIs were generated using three repeat runs of three segmentation algorithms (one from each of three academic institutions) on each lesion. To eliminate one source of variability in our project, only one of the VOIs previously created for each lesion was identified and all sites used that same VOI definition. The specific VOI chosen for each lesion was the first run of the first algorithm (algorithm 1, run 1). DICOM images were provided for each dataset and the VOI was provided in both DICOM Segmentation Object (DSO) and NIfTI segmentation formats.
    3. The third dataset is a collection of four excel spreadsheets, each of which contains detailed information corresponding to each of the four tables in the publication. For example, the raw feature values and the summary tables for Tables 2,3 and 4 reported in the publication cited (https://doi.org/10.18383/j.tom.2019.00031). These tables are:
    Software Package details : This table contains detailed information about the software packages used in the study (and listed in Table 1 in the publication) including version number and any parameters specified in the calculation of the features reported. DRO results : This contains the original feature values obtained for each software package for each DRO as well as the table summarizing results across software packages (Table 2 in the publication) . Patient Dataset results: This contains the original feature values for each software package for each patient dataset (1 lesion per case) as well as the table summarizing results across software packages and patient datasets (Table 3 in the publication). Harmonized GLCM Entropy Results : This contains the values for the “Harmonized” GLCM Entropy feature for each patient dataset and each software package as well as the summary across software packages (Table 4 in the publication).

  8. DICOM converted Slide Microscopy images for the TCGA-THYM collection

    • zenodo.org
    bin
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim (2024). DICOM converted Slide Microscopy images for the TCGA-THYM collection [Dataset]. http://doi.org/10.5281/zenodo.13346201
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    This dataset corresponds to a collection of images and/or image-derived data available from National Cancer Institute Imaging Data Commons (IDC) [1]. This dataset was converted into DICOM representation and ingested by the IDC team. You can explore and visualize the corresponding images using IDC Portal here: TCGA-THYM. You can use the manifests included in this Zenodo record to download the content of the collection following the Download instructions below.

    Collection description

    This cancer develops in the outer surface of the thymus, a gland behind the breastbone that produces T-cells, a type of white blood cells. Thymoma is rare, but it is the most common tumor in adults affecting the mediastinum, which is the cavity between the lungs containing the heart, esophagus, and trachea. A tumor of the thymus tends to grow slowly and rarely spreads to other parts of the body. However, of the estimated 400 Americans who develop this cancer each year, half are diagnosed with metastatic thymoma. When the cancer metastasizes, only 45% of patients survive five years after their diagnosis.

    Please see the TCGA-THYM information page to learn more about the images and to obtain any supporting metadata for this collection.

    Citation guidelines can be found on the Citing TCGA in Publications and Presentations information page.

    Files included

    A manifest file's name indicates the IDC data release in which a version of collection data was first introduced. For example, collection_id-idc_v8-aws.s5cmd corresponds to the contents of the collection_id collection introduced in IDC data release v8. If there is a subsequent version of this Zenodo page, it will indicate when a subsequent version of the corresponding collection was introduced.

    1. tcga_thym-idc_v10-aws.s5cmd: manifest of files available for download from public IDC Amazon Web Services buckets
    2. tcga_thym-idc_v10-gcs.s5cmd: manifest of files available for download from public IDC Google Cloud Storage buckets
    3. tcga_thym-idc_v10-dcf.dcf: Gen3 manifest (for details see https://learn.canceridc.dev/data/organization-of-data/guids-and-uuids)

    Note that manifest files that end in -aws.s5cmd reference files stored in Amazon Web Services (AWS) buckets, while -gcs.s5cmd reference files in Google Cloud Storage. The actual files are identical and are mirrored between AWS and GCP.

    Download instructions

    Each of the manifests include instructions in the header on how to download the included files.

    To download the files using .s5cmd manifests:

    1. install idc-index package: pip install --upgrade idc-index
    2. download the files referenced by manifests included in this dataset by passing the .s5cmd manifest file: idc download manifest.s5cmd.

    To download the files using .dcf manifest, see manifest header.

    Acknowledgments

    Imaging Data Commons team has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Task Order No. HHSN26110071 under Contract No. HHSN261201500003l.

    References

    [1] Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence. RadioGraphics (2023). https://doi.org/10.1148/rg.230180

  9. DICOM converted Slide Microscopy images for the TCGA-CHOL collection

    • zenodo.org
    bin
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim (2024). DICOM converted Slide Microscopy images for the TCGA-CHOL collection [Dataset]. http://doi.org/10.5281/zenodo.13346204
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    This dataset corresponds to a collection of images and/or image-derived data available from National Cancer Institute Imaging Data Commons (IDC) [1]. This dataset was converted into DICOM representation and ingested by the IDC team. You can explore and visualize the corresponding images using IDC Portal here: TCGA-CHOL. You can use the manifests included in this Zenodo record to download the content of the collection following the Download instructions below.

    Collection description

    Cholangiocarcinoma is a cancer that develops in the bile duct. The bile duct is a network of tubes that carry bile from the liver and gallbladder to the small intestine. Tumors that start in bile duct branches that lie inside the liver are called intrahepatic bile duct cancer, while those that form outside the liver are called extrahepatic bile duct cancer. About 10% of all cholangiocarcinoma are intrahepatic and 90% are extrahepatic. TCGA studied both subtypes of cholangiocarcinoma.

    Although cholangiocarcinoma is a rare cancer, the incidence and mortality rates for the disease have been increasing worldwide in the last three decades. Between 2,000 and 3,000 Americans are diagnosed with cholangiocarcinoma each year, the majority of them with tumors at advanced stages. This cancer is more prevalent in Asia and the Middle East, where parasitic infection of the bile duct increases the risk of cholangiocarcinoma. Other diseases of the bile duct or liver, such as bile duct stones and liver disease, obesity, diabetes, and smoking are also risk factors. When intrahepatic and extrahepatic cholangiocarcinoma spread to other parts of the body, only 2% of patients survive five years after diagnosis.

    Please see the TCGA-CHOL information page to learn more about the images and to obtain any supporting metadata for this collection.

    Citation guidelines can be found on the Citing TCGA in Publications and Presentations information page.

    Files included

    A manifest file's name indicates the IDC data release in which a version of collection data was first introduced. For example, collection_id-idc_v8-aws.s5cmd corresponds to the contents of the collection_id collection introduced in IDC data release v8. If there is a subsequent version of this Zenodo page, it will indicate when a subsequent version of the corresponding collection was introduced.

    1. tcga_chol-idc_v10-aws.s5cmd: manifest of files available for download from public IDC Amazon Web Services buckets
    2. tcga_chol-idc_v10-gcs.s5cmd: manifest of files available for download from public IDC Google Cloud Storage buckets
    3. tcga_chol-idc_v10-dcf.dcf: Gen3 manifest (for details see https://learn.canceridc.dev/data/organization-of-data/guids-and-uuids)

    Note that manifest files that end in -aws.s5cmd reference files stored in Amazon Web Services (AWS) buckets, while -gcs.s5cmd reference files in Google Cloud Storage. The actual files are identical and are mirrored between AWS and GCP.

    Download instructions

    Each of the manifests include instructions in the header on how to download the included files.

    To download the files using .s5cmd manifests:

    1. install idc-index package: pip install --upgrade idc-index
    2. download the files referenced by manifests included in this dataset by passing the .s5cmd manifest file: idc download manifest.s5cmd.

    To download the files using .dcf manifest, see manifest header.

    Acknowledgments

    Imaging Data Commons team has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Task Order No. HHSN26110071 under Contract No. HHSN261201500003l.

    References

    [1] Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence. RadioGraphics (2023). https://doi.org/10.1148/rg.230180

  10. f

    Data from: TTFA-Platin Conjugate: Deciphering the Therapeutic Roles of...

    • acs.figshare.com
    csv
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Megha Biswas; Kanishka Chaudhary; Swati Shree Padhi; Arka Banerjee; R. Selvi Bharathavikru; Sateesh Bandaru; Subhra Jyoti Panda; Chandra Shekhar Purohit; Nihar Ranjan Das; Rakesh Kumar Pathak (2024). TTFA-Platin Conjugate: Deciphering the Therapeutic Roles of Combo-Prodrug through Evaluating Stability–Activity Relationship [Dataset]. http://doi.org/10.1021/acs.jmedchem.4c01545.s002
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    ACS Publications
    Authors
    Megha Biswas; Kanishka Chaudhary; Swati Shree Padhi; Arka Banerjee; R. Selvi Bharathavikru; Sateesh Bandaru; Subhra Jyoti Panda; Chandra Shekhar Purohit; Nihar Ranjan Das; Rakesh Kumar Pathak
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This work introduces a novel Pt(II) based prodrug TTFA-Platin that integrates a β-diketonate ligand TTFA with a platinum scaffold to structurally resemble carboplatin and offers intermediate kinetic lability between cisplatin and carboplatin, striking a balance between therapeutic efficacy and safety. A comprehensive stability and speciation study was conducted in various biological media, mapping the therapeutic effects of TTFA-Platin. A control molecule, TMK-Platin, was synthesized to further validate the structural-stability relationship, which displayed poor activatable features in biological systems. In vitro studies against a panel of cancer cell lines revealed that TTFA-Platin exhibited significantly higher potency compared to TMK-Platin. In vivo studies revealed that TTFA-Platin exhibited significantly lower toxicity than the reference platinum compounds. Thus, leveraging ligands that fine-tune kinetic lability and offer therapeutic benefits can help develop more effective and safer cancer treatments, addressing the limitations of existing therapies.

  11. DICOM converted Slide Microscopy images for the HTAN-VANDERBILT collection

    • zenodo.org
    bin
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim (2024). DICOM converted Slide Microscopy images for the HTAN-VANDERBILT collection [Dataset]. http://doi.org/10.5281/zenodo.12690007
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset corresponds to a collection of images and/or image-derived data available from National Cancer Institute Imaging Data Commons (IDC) [1]. This dataset was converted into DICOM representation and ingested by the IDC team. You can explore and visualize the corresponding images using IDC Portal here: HTAN-VANDERBILT. You can use the manifests included in this Zenodo record to download the content of the collection following the Download instructions below.

    Collection description

    The Human Tumor Atlas Network (HTAN) [2], part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types.

    Colorectal cancer (CRC) is among the top three most prevalent cancers in global incidence and mortality. Most of these cancers develop from pre-cancerous adenomas. There is an unmet need to develop new preventive strategies and risk stratification models to decrease incidence, improve early detection, and prevent deaths from CRC.

    We believe that the ability to provide the most effective precision diagnostics and preventive strategies can only be achieved with single-cell analysis. As such, we will map spatial relationships across the spectrum of normal colon, early polyps, and late adenomas, including their unique stromal and microbial microenvironments to identify unique molecular phenotypes.

    Our goal will be accomplished through prospective, standardized collection and analysis of colorectal tissue, associated biospecimens, and related clinical and epidemiological data from participants undergoing colonoscopy or surgical resection. The biospecimens from these participants will be used for single-cell RNA sequencing, whole exome sequencing, multiplex immunofluorescence, species-specific bacterial fluorescence in situ hybridization, and other approaches. Finally, the information from these approaches will be integrated to develop a single-cell pre-cancer atlas with defined molecular phenotypes for dissemination to the broader scientific community.

    Please see the HTAN-Vanderbilt information page to learn more about the images and to obtain any supporting metadata for this collection.

    Citation guidelines can be found on the HTAN Publication Policy information page.

    Files included

    A manifest file's name indicates the IDC data release in which a version of collection data was first introduced. For example, collection_id-idc_v8-aws.s5cmd corresponds to the contents of the collection_id collection introduced in IDC data release v8. If there is a subsequent version of this Zenodo page, it will indicate when a subsequent version of the corresponding collection was introduced.

    1. htan_vanderbilt-idc_v15-aws.s5cmd: manifest of files available for download from public IDC Amazon Web Services buckets
    2. htan_vanderbilt-idc_v15-gcs.s5cmd: manifest of files available for download from public IDC Google Cloud Storage buckets
    3. htan_vanderbilt-idc_v15-dcf.dcf: Gen3 manifest (for details see https://learn.canceridc.dev/data/organization-of-data/guids-and-uuids)

    Note that manifest files that end in -aws.s5cmd reference files stored in Amazon Web Services (AWS) buckets, while -gcs.s5cmd reference files in Google Cloud Storage. The actual files are identical and are mirrored between AWS and GCP.

    Download instructions

    Each of the manifests include instructions in the header on how to download the included files.

    To download the files using .s5cmd manifests:

    1. install idc-index package: pip install --upgrade idc-index
    2. download the files referenced by manifests included in this dataset by passing the .s5cmd manifest file: idc download manifest.s5cmd.

    To download the files using .dcf manifest, see manifest header.

    Acknowledgments

    Collection of the images that were converted by IDC was supported through the Human Tumor Atlas Network, grants 1U2CCA233291-01 "Integrative Single-Cell Atlas of Host and Microenvironment in Colorectal Neoplastic Transformation" and 1U24CA233243-01 "Human Tumor Atlas Network: Data Coordinating Center" from National Cancer Institute.

    Imaging Data Commons team has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Task Order No. HHSN26110071 under Contract No. HHSN261201500003l.

    References

    [1] Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence. RadioGraphics (2023). https://doi.org/10.1148/rg.230180

    [2] Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P., Nawy, T., Hupalowska, A., Rood, J. E., Ashenberg, O., Cerami, E., Coffey, R. J., Demir, E., Ding, L., Esplin, E. D., Ford, J. M., Goecks, J., Ghosh, S., Gray, J. W., Guinney, J., Hanlon, S. E., Hughes, S. K., Hwang, E. S., Iacobuzio-Donahue, C. A., Jané-Valbuena, J., Johnson, B. E., Lau, K. S., Lively, T., Mazzilli, S. A., Pe’er, D., Santagata, S., Shalek, A. K., Schapiro, D., Snyder, M. P., Sorger, P. K., Spira, A. E., Srivastava, S., Tan, K., West, R. B., Williams, E. H. & Human Tumor Atlas Network. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell 181, 236–249 (2020). http://dx.doi.org/10.1016/j.cell.2020.03.053

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
David Clunie (2024). CMB-BRCA: DICOM converted Slide Microscopy images for the Cancer Moonshot Biobank initiative Invasive Breast Carcinoma collection [Dataset]. http://doi.org/10.5281/zenodo.13993761

CMB-BRCA: DICOM converted Slide Microscopy images for the Cancer Moonshot Biobank initiative Invasive Breast Carcinoma collection

Explore at:
28 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 25, 2024
Authors
David Clunie
Description

This dataset corresponds to a collection of images and/or image-derived data available from National Cancer Institute Imaging Data Commons (IDC) [1]. This dataset was converted into DICOM representation and ingested by the IDC team. You can explore and visualize the corresponding images using IDC Portal here. You can use the manifests included in this Zenodo record to download the content of the collection following the Download instructions below. Collection description The Cancer Moonshot Biobank (CMB) is a National Cancer Institute initiative to support current and future investigations into drug resistance and sensitivity and other NCI-sponsored cancer research initiatives, with an aim of improving researchers' understanding of cancer and how to intervene in cancer initiation and progression. During the course of this study, biospecimens (blood and tissue removed during medical procedures) and associated data will be collected longitudinally from at least 1000 patients across at least 10 cancer types, who represent the demographic diversity of the U.S. and receiving standard of care cancer treatment at multiple NCI Community Oncology Research Program (NCORP) sites. CMB program is organized into multiple cancer-specific collections. Digital pathology images for each of those collections were converted into DICOM representation by the IDC team and are shared via IDC. This entry corresponds to the CMB-BRCA collection (Invasive Breast Carcinoma). Digital pathology images, augmented with the metadata describing their content, were converted into DICOM Whole Slide Microscopy (SM) representation [2,3] using custom open source scripts and tools as described in [4]. Files included A manifest file's name indicates the IDC data release in which a version of collection data was first introduced. For example, collection_id-idc_v8-aws.s5cmd corresponds to the contents of the collection_id collection introduced in IDC data release v8. If there is a subsequent version of this Zenodo page, it will indicate when a subsequent version of the corresponding collection was introduced. For each of the collections, the following manifest files are provided: -idc_v20-aws.s5cmd: manifest of files available for download from public IDC Amazon Web Services buckets -idc_v20-gcs.s5cmd: manifest of files available for download from public IDC Google Cloud Storage buckets -idc_v20-dcf.dcf: Gen3 manifest (for details see https://learn.canceridc.dev/data/organization-of-data/guids-and-uuids) Note that manifest files that end in -aws.s5cmd reference files stored in Amazon Web Services (AWS) buckets, while -gcs.s5cmd reference files in Google Cloud Storage. The actual files are identical and are mirrored between AWS and GCP. Download instructions Each of the manifests include instructions in the header on how to download the included files. To download the files using .s5cmd manifests: install idc-index package: pip install --upgrade idc-index download the files referenced by manifests included in this dataset by passing the .s5cmd manifest file: idc download manifest.s5cmd To download the files using .dcf manifest, see manifest header. Acknowledgments Imaging Data Commons team has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Task Order No. HHSN26110071 under Contract No. HHSN261201500003l. References [1] Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W. L., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National cancer institute imaging data commons: Toward transparency, reproducibility, and scalability in imaging artificial intelligence. Radiographics 43, (2023). [2] National Electrical Manufacturers Association (NEMA). DICOM PS3.3 - Information Object Definitions: A.32.8 VL Whole Slide Microscopy Image IOD. at [3] Herrmann, M. D., Clunie, D. A., Fedorov, A., Doyle, S. W., Pieper, S., Klepeis, V., Le, L. P., Mutter, G. L., Milstone, D. S., Schultz, T. J., Kikinis, R., Kotecha, G. K., Hwang, D. H., Andriole, K. P., John Lafrate, A., Brink, J. A., Boland, G. W., Dreyer, K. J., Michalski, M., Golden, J. A., Louis, D. N. & Lennerz, J. K. Implementing the DICOM standard for digital pathology. J. Pathol. Inform. 9, 37 (2018). [4] Clunie, D., Fedorov, A. & Herrmann, M. D. ImagingDataCommons/idc-wsi-conversion: Initial release. (Zenodo, 2023). doi:10.5281/ZENODO.8240154

Search
Clear search
Close search
Google apps
Main menu