These ESRI shape files contain National Park Service tract and boundary data created by the Land Resources Division. The tract data is essentially all of the parcel boundaries associated within and adjoining the San Antonio Missions National Historical Park as legislated by congress. The boundary data is the current legislated park boundary. Tracts are created from deeds, plats and surveys of record then assigned a number by regional cartographic staff at the Land Resources Program Centers. This spatial data is used as the basis for NPS Land Status Maps.
The Digital Environmental Geologic-GIS Map for San Antonio Missions National Historical Park and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saan_environmental_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saan_environmental_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saan_environmental_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (saan_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saan_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saan_environmental_geology_metadata_faq.pdf). Please read the saan_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saan_environmental_geology_metadata.txt or saan_environmental_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). Purpose:
description: The Digital Environmental Geologic Map of San Antonio Missions National Historical Park and vicinity, Texas is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Not Published. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (saeg_metadata.txt; available at http://nrdata.nps.gov/saan/nrdata/geology/gis/saeg_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (saeg_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of San Antonio Missions National Historical Park.; abstract: The Digital Environmental Geologic Map of San Antonio Missions National Historical Park and vicinity, Texas is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Not Published. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (saeg_metadata.txt; available at http://nrdata.nps.gov/saan/nrdata/geology/gis/saeg_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (saeg_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of San Antonio Missions National Historical Park.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. To produce the digital map, a combination of 1:12,000-scale ortho imagery acquired in 2003, 2004, and 2005 and all of the GPS-referenced ground data were used to interpret the complex patterns of vegetation and land-use. All imagery was acquired from the U.S. Department of Agriculture - Farm Service Agency’s Aerial Photography Field Office and the National Agriculture Imagery Program. In the end, 32 map units (13 vegetated and 19 land-use) were developed and directly cross-walked or matched to corresponding plant associations and land-use classes. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcGIS© software. Draft maps were printed, field tested, reviewed, and revised. One hundred-twenty four accuracy assessment (AA) data points were collected in 2006 and used to determine the map’s accuracy. After final revisions, the accuracy assessment revealed an overall thematic accuracy of 89%. Project Size = 6,784 acres San Antonio Missions National Historical Park = 844 acres Map Classes = 32 13 Vegetated 19 Non-vegetated Minimum Mapping Unit = ½ hectare is the program standard but this was modified at SAAN to ¼ acre. Total Size = 1,122 Polygons Average Polygon Size = 6 acres Overall Thematic Accuracy = 89%
Visibility viewsheds incorporate influences of distance from observer, object size and limits of human visual acuity to define the degree of visibility as a probability between 1 - 0. Average visibility viewsheds represent the average visibility value across all visibility viewsheds, thus representing a middle scenario relative to maximum and minimum visibility viewsheds. Average Visibility viewsheds can be used as a potential resource conflict screening tools as it relates to the Great Plains Wind Energy Programmatic Environmental Impact Statement. Data includes binary and composite viewsheds, and average, maximum, minimum, and composite visibility viewsheds for the NPS unit. Viewsheds have been derived using a 30m National Elevation Dataset (NED) digital elevation model. Additonal viewshed parameters: Observer Height (offset A) was set at 2 meters. A vertical development object height (offset B) was set at 110 meters, representing an average wind tower and associated blade height. A binary viewshed (1 visible, 0 not visible) was created for the defined NPS Unit specific Key Observation Points (KOP). A composite viewshed is the visibility of multiple viewsheds combined into one. A visible value in a composite viewshed implies that across all the combined binary viewsheds (one per key observation pointacross the nps unit in this case), at a minimum at least one of the sample points is visible. On a cell by cell basis throughout the study area of interest the numbers of visible sample points are recorded in the composite viewshed. Composite viewsheds are a quick way to synthesize multiple viewsheds into one layer, thus giving an efficient and cursory overview of potential visual resource effects. To summarize visibility viewsheds across numerous viewsheds, (e.g. multiple viewsheds per high priority segment) three visibility scenario summary viewsheds have been derived: 1) A maximum visibility scenario is evaluated using a "Products" visibility viewshed, which represents the probability that all sample points are visible. Maximum visibility viewsheds are derived by multiplying probability values per visibility viewshed. 2) A minimum visibility scenario is assessed using a "Fuzzy sum" visibility viewshed. Minimum visibility viewsheds represent the probability that one sample point is visible, and is derived by calculating the fuzzy sum value across the probability values per visibility viewsheds. 3) Lastly an average visibility scenario is created from an "Average" visibility calculation. Average visibility viewsheds represent the average visibility value across all visibility viewsheds, thus representing a middle scenario relative to the aforementioned maximum and minimum visibility viewsheds. Equations for the maximum, average and minimum visibility viewsheds are defined below: Maximum Visibility: Products Visibility =(p1*p2*pn...), Average Visibility: Average Visibility =((p1*p2*pn)/n), and Minimum Visibility: Fuzzy Sum Visibility =(1-((1-p1 )*(1-p2 )*(1-pn )* ...). Moving beyond a simplistic binary viewshed approach, visibility viewsheds define the degree of visibility as a probability between 1 - 0. Visibility viewsheds incorporate the influences of distance from observer, object size (solar energy towers, troughs, panels, etc.) and limits of human visual acuity to derive a fuzzy membership value. A fuzzy membership value is a probability of visibility ranging between 1 - 0, where a value of one implies that the object would be easily visible under most conditions and for most viewers, while a lower value represents reduced visibility. Visibility viewshed calculation is performed using the modified fuzzy viewshed equations (Ogburn D.E. 2006). Visibility viewsheds have been defined using: a foreground distance (b1) of 1 km, a visual arc threshold value of 1 minute (limit of 20/20 vision) which is used in the object width multiplier calculation, and an object width value of 10 meters.
A Geographic database of San Antonio, Bexar County, San Antonio River Authority, Texas State, and National Parks in the San Antonio area.
© San Antonio River Authority - https://www.sara-tx.org/ Texas State Parks - http://tpwd.texas.gov/state-parks/ National Park Service - http://www.nps.gov/index.htm City of San Antonio GIS (1/14/2016) Bexar County GIS (2/19/2016) Last update check: February 2016 This layer is sourced from mapservices.bexar.org.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
These ESRI shape files contain National Park Service tract and boundary data created by the Land Resources Division. The tract data is essentially all of the parcel boundaries associated within and adjoining the San Antonio Missions National Historical Park as legislated by congress. The boundary data is the current legislated park boundary. Tracts are created from deeds, plats and surveys of record then assigned a number by regional cartographic staff at the Land Resources Program Centers. This spatial data is used as the basis for NPS Land Status Maps.