The U.S. Geological Survey (USGS), in association with the Multi-Resolution Land Characteristics (MRLC) Consortium, produces the National Land Cover Database (NLCD) for the United States. The MRLC, a consortium of federal agencies who coordinate and generate consistent and relevant land cover information at the national scale for a wide variety of environmental, land management, and modeling applications, have been providing the scientific community with detailed land cover products for more than 30 years. Over that time, NLCD has been one of the most widely used geospatial datasets in the U.S., serving as a basis for understanding the Nation’s landscapes in thousands of studies and applications, trusted by scientists, land managers, students, city planners, and many more as a definitive source of U.S. land cover. NLCD land cover suite is created through the classification of Landsat imagery and uses partner data from the MRLC Consortium to help refine many of the land cover classes. The classification system used by NLCD is modified from the Anderson Land Cover Classification System. The NLCD Class Legend and Description is maintained at https://www.mrlc.gov/data/legends/national-land-cover-database-class-legend-and-description. The land cover theme includes two separate products. The first is a standard land cover product suite that provides 16 land cover classes for the conterminous United States and Alaska only land cover types and is available at https://www.mrlc.gov/data. The second product suite, NLCD Land Cover Science Products, provides additional discrimination and land cover classes differentiating grass and shrub and regenerating forest regime from grass and shrub and rangeland setting and is available at https://www.mrlc.gov/nlcd-2021-science-research-products. The latest release of NLCD land cover spans the timeframe from 2001 to 2021 in 2 to 3-year intervals. These new products use a streamlined compositing process for assembling and preprocessing Landsat imagery and geospatial ancillary datasets; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a theme-based post-classification protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and a scripted operational system. Unmasked Impervious - To produce the unmasked impervious layer a multilayered perceptron neural network (MLP) was deployed across CONUS. The MLP was trained to perform the regression task of predicting the 1-100 impervious fractional cover. To sample data to train the network, we broke CONUS into a grid comprised of 256x256 pixel regions of interest (ROIs) and sampled from that grid all ROIs with at least 40% impervious cover according to NLCD 2019 impervious fractional cover, which gave us samples from large impervious areas. From those ROIs, we then sampled 66 million training and 16 million validation data points with an even distribution across each impervious intensity (1-100). Those training points were then randomly split into 4 subsets, each corresponding to one of the following respective years: 2011, 2013, 2016, 2019. We used those points to query surface reflectance values from leaf-on composite and leaf-off synthetic imagery (see metadata for NLCD 2021 land cover), elevation data, and spatial urban intensity probabilities. The spatial urban intensity probabilities were generated by an ensemble of U-net models that were trained to predict the 4 urban intensity classes as defined by the NLCD product legend (open space, low intensity, medium intensity, high intensity). Two U-net models were trained using all ROIs in the CONUS 256x256 pixel grid. Inputs to these models included leaf-on composite and leaf-off synthetic imagery, and elevation data. To create the final training and validation datasets we randomly split the CONUS grid into to 2 equal sets: A and B. Using the ROIs from set A we queried the input features from the years 2011 and 2016 and from the ROIs in set B we queried input features from the years 2013 and 2019. These U-net models do not act as the final impervious predictors but instead as spatial feature generators. The spatial features learned by these convolutional neural networks were then fed into the pixel-based MLP, as spatial probabilities of urban intensity, to boost its predicting power. The U-nets were trained using categorical focal Jaccard loss and monitored with the Jaccard Index metric (IOU). The impervious fractional cover regression model (MLP) was trained using mean squared error as a loss function and monitored with mean absolute error as the metric. Initial impervious footprint - To generate an initial impervious footprint, three U-net models were trained on the multiclass-classification task of predicting “urban” and “roads”. The model was trained with 120,000 training and 40,000 validation 256X256 pixel Landsat image chips covering the entire extent of CONUS. The model inputs are consistent with what was used to generate the urban intensity U-net models; the only difference was the target mask the models were trained to predict. These models mapped all NLCD impervious footprint pixels to two classes (“urban” and “roads”); this was used to generate the impervious extent. Impervious Change Pixels - The initial 2021 impervious change pixels were created by comparing the 2021 urban footprint with the 2019 published urban descriptor and extracting the difference. These change pixels were manually edited for omission and commission errors. Ancillary data were then added to the change pixels to create the final 2021 impervious change pixels. These ancillary data consisted of solar installations, wind turbines, and roads. The solar installations dataset is an edited version of the Solar Photovoltaic Generating Units dataset produced by Kruitwagen et al (2021) (https://doi.org/10.5281/zenodo.5005867). The U.S. Wind Turbine Database from Hoen et al (2021) (https://doi.org/10.5066/F7TX3DN0) was used without edits. NavStreets road datasets were used in previous versions of NLCD but an updated version was not available to the USGS. New subdivision roads from the 2021 urban footprint and a small number of manually drawn roads were added to the 2021 impervious change pixels. 2021 impervious extent - The final impervious change pixels were added to that 2019 impervious descriptor file to create the new 2021 impervious descriptor file. This file maps the extent of all impervious for the 2021 NLCD. 2021 impervious product - The percent imperviousness values (1-100%) for the impervious change pixels were extracted from the unmasked impervious layer. Values for previously published urban remained the same except for areas that were 40% or more greater in value, in the unmasked impervious layer. 2021 impervious descriptor - The final impervious change pixels were mapped to the class legend for the NLCD 2019 published impervious descriptor. These pixels were then added to the NLCD 2019 impervious descriptor file to create the new 2021 impervious descriptor file.
Impervious surfaces are surfaces that do not allow water to pass through. Examples of these surfaces include highways, parking lots, rooftops, and airport runways. Instead of allowing rain to pass into the soil, impervious surfaces cause water to collect at the surface, then run off. An increase in impervious surface area causes an increase of water volume which needs to be managed by stormwater systems. With the flow come pollutants, which collect on impervious surfaces then discharge with the runoff into streams and the ocean. Runoff water does not enter the water table, and that can cause other management issues, such as interruptions in baseline stream flow.The NLCD imperviousness layer represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel in the United States. The layer is organized into a time series with years 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019 for the lower 48 conterminous US states. This information may be used in conjunction with the USA NLCD Land Cover layer. Time SeriesBy default, this service will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year, but the layer only changes appearance every few years, in 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019. To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Time Series DescriptorMRLC issued a set of companion rasters with this impervious surface layer showing the reason why each pixel is impervious. This companion layer, called the Developed Imperviousness Descriptor, is not currently available in this map service. The descriptor layer identifies types of roads, core urban areas, and energy production sites for each impervious pixel to allow deeper analysis of developed features. The descriptor layer may be downloaded directly from MRLC and added to ArcGIS Pro.Alaska, Hawaii, and Puerto RicoAt this time Alaska, Hawaii, and Puerto Rico are not included in this time series. Only three years for a portion of Alaska around Anchorage are available from MRLC at this time. Furthermore, these rasters are produced with a different methodology, and are not set up to be directly compared the way the CONUS time series is. To analyze change between the latest two data years for this portion of Alaska, be sure to use the NLCD 2011 to 2016 Developed Impervious Change raster. For Hawaii and Puerto Rico, only the year 2001 is available for download at the MRLC.North America Albers ProjectionAll NLCD layers in the Living Atlas are projected into the North America Albers Projection before serving in the Living Atlas. This allows the coterminous USA, Puerto Rico, Hawaii, and Alaska to be served from a common projection and analyzed together. In tests performed by esri, the NLCD land cover classes after projection to North America Albers had the exact same number of pixels in input as output, but pixels had been slightly rearranged after projection.Processing TemplatesThis layer comes with two color schemes, cool and warm. The default is a cool gray color scheme, designed to look good on light and dark gray web maps. To choose a warm color scheme which was the default until 2021, change the processing template to the Impervious Surface Warm Renderer in your map client.Dataset SummaryPhenomenon Mapped: The proportion of the landscape that is impervious to waterUnits: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: North America Albers Equal Area ConicExtent: Contiguous United StatesNoData Value: 127Source: Multi-Resolution Land Characteristics ConsortiumPublication Date: June 3, 2021ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Impervious surfaces are surfaces that do not allow water to pass through. Examples of these surfaces include highways, parking lots, rooftops, and airport runways. Instead of allowing rain to pass into the soil, impervious surfaces cause water to collect at the surface, then run off. An increase in impervious surface area causes an increase of water volume which needs to be managed by stormwater systems. With the flow come pollutants, which collect on impervious surfaces then discharge with the runoff into streams and the ocean. Runoff water does not enter the water table, and that can cause other management issues, such as interruptions in baseline stream flow.The NLCD imperviousness layer represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel in the United States. Phenomenon Mapped: The proportion of the landscape that is impervious to water.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the lower 48 conterminous US states. A small portion of Alaska around Anchorage displays a time series of 2001, 2011, and 2016. Hawaii, Puerto Rico, and the US Virgin Islands unfortunately only have data for 2001 so there is only one image in the series. This information may be used in conjunction with the USA NLCD Land Cover layer.Units: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: CONUS, Hawaii, A portion of Alaska around Anchorage, District of Columbia, Puerto RicoNoData Value: 127Source: Multi-Resolution Land Characteristics ConsortiumPublication Date: June 30, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year, but the layer only changes appearance every few years in the lower 48 states, in 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021. To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Time Series DescriptorMRLC issued a set of companion rasters with this impervious surface layer showing the reason why each pixel is impervious. This companion layer, called the Developed Imperviousness Descriptor, is not currently available in this map service. The descriptor layer identifies types of roads, core urban areas, and energy production sites for each impervious pixel to allow deeper analysis of developed features. The descriptor layer may be downloaded directly from MRLC and added to ArcGIS Pro.Alaska, Hawaii, and Puerto RicoAt this time Alaska, Hawaii, and Puerto Rico are produced with a different methodology, and are not set up to be directly compared the way the CONUS time series is. To analyze change between the latest two data years for this portion of Alaska, be sure to use the NLCD 2011 to 2016 Developed Impervious Change raster. For Hawaii and Puerto Rico, only the year 2001 is available for download at the MRLC.North America Albers ProjectionAll NLCD layers in the Living Atlas are projected into the North America Albers Projection before serving in the Living Atlas. This allows the coterminous USA, Puerto Rico, Hawaii, and Alaska to be served from a common projection and analyzed together. In tests performed by esri, the NLCD land cover classes after projection to North America Albers had the exact same number of pixels in input as output, but pixels had been slightly rearranged after projection. Processing TemplatesThis layer comes with two color schemes, cool and warm. The default is a cool gray color scheme, designed to look good on light and dark gray web maps. To choose a warm color scheme which was the default until 2021, change the processing template to the Impervious Surface Warm Renderer in your map client.Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
IMPERVIOUS_SURFACE_CHANGE_2001_2006_USGS_IN is a raster layer (30-meter cell size) containing the percent difference of impervious-surface values in Indiana that changed between NLCD 2001 Percent Developed Imperviousness Version 2.0 and NLCD 2006 Percent Developed Imperviousness. This raster layer is a subset of the National Land Cover Database (NLCD 2006) suite of data products.The following is excerpted from metadata provided by the USGS for the NLCD 2006:"The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). Previously, NLCD consisted of three major data releases based on a 10-year cycle. These include a circa 1992 conterminous U.S. land cover dataset with one thematic layer (NLCD 1992), a circa 2001 50-state/Puerto Rico updated U.S. land cover database (NLCD 2001) with three layers including thematic land cover, percent imperviousness, and percent tree canopy, and a 1992/2001 Land Cover Change Retrofit Product. With these national data layers, there is often a 5-year time lag between the image capture date and product release. In some areas, the land cover can undergo significant change during production time, resulting in products that may be perpetually out of date. To address these issues, this circa 2006 NLCD land cover product (NLCD 2006) was conceived to meet user community needs for more frequent land cover monitoring (moving to a 5-year cycle) and to reduce the production time between image capture and product release. NLCD 2006 is designed to provide the user both updated land cover data and additional information that can be used to identify the pattern, nature, and magnitude of changes occurring between 2006 for the conterminous United States at medium spatial resolution.For NLCD 2006, there are 3 primary data products: 1) NLCD 2006 Land Cover map; 2) NLCD 2001/2006 Change Pixels labeled with the 2006 land cover class; and 3) NLCD 2006 Percent Developed Imperviousness. Four additional data products were developed to provide supporting documentation and to provide information for land cover change analysis tasks: 4) NLCD 2001/2006 Percent Developed Imperviousness Change; 5) NLCD 2001/2006 Maximum Potential Change derived from the raw spectral change analysis; 6) NLCD 2001/2006 From-To Change pixels; and 7) NLCD 2006 Path/Row Index vector file showing the footprint of Landsat scene pairs used to derive 2001/2006 spectral change with change pair acquisition dates and scene identification numbers included in the attribute table.In addition to the 2006 data products listed in the paragraph above, two of the original release NLCD 2001 data products have been revised and reissued. Generation of NLCD 2006 data products helped to identify some update issues in the NLCD 2001 land cover and percent developed imperviousness data products. These issues were evaluated and corrected, necessitating a reissue of NLCD 2001 data products (NLCD 2001 Version 2.0) as part of the NLCD 2006 release. A majority of NLCD 2001 updates occur in coastal mapping zones where NLCD 2001 was published prior to the National Oceanic and Atmospheric Administration (NOAA) Coastal Change Analysis Program (C-CAP) 2001 land cover products. NOAA C-CAP 2001 land cover has now been seamlessly integrated with NLCD 2001 land cover for all coastal zones. NLCD 2001 percent developed imperviousness was also updated as part of this process.As part of the NLCD 2011 project, NLCD 2006 data products have been revised and reissued (2011 Edition) to provide full compatibility with all other NLCD 2011 Edition products. The 2014 amended version corrects for the over-elimination of small areas of the four developed classes.Land cover maps, derivatives and all associated documents are considered "provisional" until a formal accuracy assessment can be conducted. The NLCD 2006 is created on a path/row basis and mosaicked to create a seamless national product. Questions about the NLCD 2006 land cover product can be directed to the NLCD 2006 land cover mapping team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov."
This indicator measures the average percent of non-impervious cover within each catchment. It originates from the 2019 National Land Cover Database percent developed impervious layer.
Reason for Selection
Impervious cover is easy to monitor and model, and is widely used and understood by diverse partners. It is also strongly linked to water quality, estuary condition, eutrophication, and freshwater inflow. The 90% permeable surface threshold (i.e., 10% impervious) is a well-documented signal of major, negative changes to aquatic ecosystems (Schueler et al. 2009). The 95% permeable surface threshold (i.e., 5% impervious) has been documented to impact Piedmont fish tricolor shiner (Cyprinella trichroistia), bronze darter (Percina palmaris), Etowah darter (Etheostoma etowahae) and estuarine species blue crab (Callinectes sapidus), white perch (Morone americana), striped bass (M. Saxatilis) and spot (Leiostomus xanthurus).
Input Data
National Hydrography Dataset Plus (NHDPlus) Version 2.1 medium resolution catchments (note: V2.1 is just the current sub-version of the dataset generally called NHDPlusV2 - view the user guide for more information)
NHDPlus V2.1 Medium Resolution Catchments
A catchment is the local drainage area of a specific stream segment based on the surrounding elevation. Catchments are defined based on surface water features, watershed boundaries, and elevation data. It can be difficult to conceptualize the size of a catchment because they vary significantly in size based on the length of a particular stream segment and its surrounding topography—as well as the level of detail used to map those characteristics.
More specifically, the NHDPlus V2.1 medium resolution catchment dataset used in this indicator incorporates snapshots of a) surface water features from the medium-resolution (1:100K scale) National Hydrography Dataset b) watershed boundaries from the Watershed Boundary Dataset, and c) the National Elevation Dataset 30 m digital elevation model.
To learn more about catchments and how they’re defined, check out these resources:
Mapping Steps
Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint 2022 Data Download under BlueprintInputs > BaseBlueprint2022 > 6_Code.
Final Indicator Values
Indicator values are assigned as follows:
Known Issues
Disclaimer: Comparing with Older Indicator Versions
There are numerous problems with using Southeast Blueprint indicators for change analysis. Please consult Blueprint staff if you would like to do this (email hilary_morris@fws.gov).
Literature Cited
Schueler, T., Fraley-McNeal, L., and Cappiella, K. 2009. ”Is Impervious Cover Still Important? Review of Recent Research.” J. Hydrol. Eng. 14, SPECIAL ISSUE: Impervious Surfaces in Hydrologic Modeling and Monitoring, 309–315.
Uphoff Jr. JH, McGinty M, Lukacovic R, Mowrer J, Pyle B. 2011. Impervious surface, summer dissolved oxygen, and fish distribution in Chesapeake Bay subestuaries: linking watershed development, habitat conditions, and fisheries management. North American Journal of Fisheries Management 31:554-566.
U.S. Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS). 2012. National Hydrography Dataset Plus 2. http://www.horizon-systems.com/nhdplus/].
U.S. Geological Survey (USGS). Published June 2021. National Land Cover Database (NLCD) 2019 Land Cover Conterminous United States. Sioux Falls, SD. [https://doi.org/10.5066/P9KZCM54].
Wenger, S. J., J. T. Peterson, M. C. Freeman, B. J. Freeman, D. D. Homans. 2008. Stream fish occurrence in response to impervious cover, historic land use and hydrogeomorphic factors Canadian Journal of Fisheries and Aquatic Sciences 65, 1250-1264.
Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Grannemann, B., Rigge, M. and G. Xian. 2018. A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies, ISPRS Journal of Photogrammetry and Remote Sensing, 146, pp.108-123. [https://doi.org/10.1016/j.isprsjprs.2018.09.006].
The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). Previously, NLCD consisted of three major data releases based on a 10-year cycle. These include a circa 1992 conterminous U.S. land cover dataset with one thematic layer (NLCD 1992), a circa 2001 50-statePuerto Rico updated U.S. land cover database (NLCD 2001) with three layers including thematic land cover, percent imperviousness, and percent tree canopy, and a 19922001 Land Cover Change Retrofit Product. With these national data layers, there is often a 5-year time lag between the image capture date and product release. In some areas, the land cover can undergo significant change during production time, resulting in products that may be perpetually out of date. To address these issues, this circa 2006 NLCD land cover product (NLCD 2006) was conceived to meet user community needs for more frequent land cover monitoring (moving to a 5-year cycle) and to reduce the production time between image capture and product release. NLCD 2006 is designed to provide the user both updated land cover data and additional information that can be used to identify the pattern, nature, and magnitude of changes occurring between 2001 and 2006 for the conterminous United States at medium spatial resolution.
For NLCD 2006, there are 3 primary data products: 1) NLCD 2006 Land Cover map; 2) NLCD 20012006 Change Pixels labeled with the 2006 land cover class; and 3) NLCD 2006 Percent Developed Imperviousness. Four additional data products were developed to provide supporting documentation and to provide information for land cover change analysis tasks: 4) NLCD 20012006 Percent Developed Imperviousness Change; 5) NLCD 20012006 Maximum Potential Change derived from the raw spectral change analysis; 6) NLCD 20012006 From-To Change pixels; and 7) NLCD 2006 PathRow Index vector file showing the footprint of Landsat scene pairs used to derive 20012006 spectral change with change pair acquisition dates and scene identification numbers included in the attribute table.
In addition to the 2006 data products listed in the paragraph above, two of the original release NLCD 2001 data products have been revised and reissued. Generation of NLCD 2006 data products helped to identify some update issues in the NLCD 2001 land cover and percent developed imperviousness data products. These issues were evaluated and corrected, necessitating a reissue of NLCD 2001 data products (NLCD 2001 Version 2.0) as part of the NLCD 2006 release. A majority of NLCD 2001 updates occur in coastal mapping zones where NLCD 2001 was published prior to the National Oceanic and Atmospheric Administration (NOAA) Coastal Change Analysis Program (C-CAP) 2001 land cover products. NOAA C-CAP 2001 land cover has now been seamlessly integrated with NLCD 2001 land cover for all coastal zones. NLCD 2001 percent developed imperviousness was also updated as part of this process.
Land cover maps, derivatives and all associated documents are considered provisional until a formal accuracy assessment can be conducted. The NLCD 2006 is created on a pathrow basis and mosaicked to create a seamless national product. Questions about the NLCD 2006 land cover product can be directed to the NLCD 2006 land cover mapping team at the USGSEROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.
In cooperation with the South Carolina Department of Transportation, the U.S. Geological Survey prepared a geospatial raster dataset describing impervious surface in the SC StreamStats study area derived from the 30m resolution National Land Cover Dataset (NLCD) 2019. This layer, which covers the SC StreamStats study area, has been resampled from the source resolution to a scale of 30ft pixels and reprojected to the common projection of the other project data layers (SC State Plane NAD 1983 International Feet WKID 2273). It will be served as part of the SC StreamStats application (https://streamstats.usgs.gov) to describe delineated watersheds. The StreamStats application provides access to spatial analytical tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based interface can be used to delineate watershed areas, get basin characteristics and estimates of flow statistics, and more.
This U.S. Geological Survey (USGS) metadata release consists of 17 different spatial layers in GeoTIFF format. They are: 1) average water capacity (AWC.zip), 2) percent sand (Sand.zip), 3) percent silt (Silt.zip), 4) percent clay (Clay.zip), 5) soil texture (TEXT_PRMS.zip), 6) land use/land cover (LULC.zip), 7) snow values (Snow.zip), 8) summer rain values (SRain.zip), 9) winter rain values (WRain.zip), 10) leaf presence values (keep.zip), 11) leaf loss values (loss.zip), 12) percent tree canopy (CNPY.zip), 13) percent impervious surface (Imperv.zip), 14) snow depletion curve numbers (Snow.zip), 15) rooting depth (RootDepth.zip), 16) permeability values (Lithology_exp_Konly_Project.zip), and 17) water bodies. All data cover the National Hydrologic Model's (NHM) version 1.1 domain. The NHM is a modeling infrastructure consisting of three main parts: 1) an underlying geospatial fabric of modeling units (hydrologic response units and stream segments) with an associated parameter database, 2) a model input data archive, and 3) a repository of the physical model simulation code bases (Regan and others, 2014). The NHM has been used for a variety of applications since its initial development.The 250-meter (m) raster data sets for soils are derived from the OpenGeoHub's LandGIS data (Hengl, 2018). The 30-meter raster of land use and land cover data are a simplified re-classification version of the North American Land-Change Monitoring System (NALCMS, Latifovic and others, 2012) data following the guidance in Viger and Leavesley (2007). This layer was used to derive rasters representing dominant vegetative cover type, snow, summer and winter rain interception values, leaf cover and loss, and rooting depth. The impervious data was compiled from the Global Man-made Impervious Surface (GMIS) Dataset from Landsat, v1 (NASA, 2010). The tree canopy data was compiled from MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006, (Carroll and others, 2017). The snow depletion data was compiled from data by Liston and others (2009) and further processed using methods by Sexstone and others (2020). All file formats are in GeoTIFF (Geograhpic Tagged Imaged Format).
IMPERVIOUS_SURFACE_2006_USGS_IN is a grid (30-meter cell size) showing estimated percentages of impervious surfaces in Indiana in 2006.This grid is a subset of the National Land Cover Database (NLCD 2006) suite of data products. The attributes are percentage values of estimated impervious-surface cover within each 30-meter grid cell, or pixel. The following is excerpted from metadata provided by the USGS for the NLCD 2006: "The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). Previously, NLCD consisted of three major data releases based on a 10-year cycle. These include a circa 1992 conterminous U.S. land cover dataset with one thematic layer (NLCD 1992), a circa 2001 50-state/Puerto Rico updated U.S. land cover database (NLCD 2001) with three layers including thematic land cover, percent imperviousness, and percent tree canopy, and a 1992/2001 Land Cover Change Retrofit Product. With these national data layers, there is often a 5-year time lag between the image capture date and product release. In some areas, the land cover can undergo significant change during production time, resulting in products that may be perpetually out of date. To address these issues, this circa 2006 NLCD land cover product (NLCD 2006) was conceived to meet user community needs for more frequent land cover monitoring (moving to a 5-year cycle) and to reduce the production time between image capture and product release. NLCD 2006 is designed to provide the user both updated land cover data and additional information that can be used to identify the pattern, nature, and magnitude of changes occurring between 2006 for the conterminous United States at medium spatial resolution. For NLCD 2006, there are 3 primary data products: 1) NLCD 2006 Land Cover map; 2) NLCD 2001/2006 Change Pixels labeled with the 2006 land cover class; and 3) NLCD 2006 Percent Developed Imperviousness. Four additional data products were developed to provide supporting documentation and to provide information for land cover change analysis tasks: 4) NLCD 2001/2006 Percent Developed Imperviousness Change; 5) NLCD 2001/2006 Maximum Potential Change derived from the raw spectral change analysis; 6) NLCD 2001/2006 From-To Change pixels; and 7) NLCD 2006 Path/Row Index vector file showing the footprint of Landsat scene pairs used to derive 2001/2006 spectral change with change pair acquisition dates and scene identification numbers included in the attribute table. In addition to the 2006 data products listed in the paragraph above, two of the original release NLCD 2001 data products have been revised and reissued. Generation of NLCD 2006 data products helped to identify some update issues in the NLCD 2001 land cover and percent developed imperviousness data products. These issues were evaluated and corrected, necessitating a reissue of NLCD 2001 data products (NLCD 2001 Version 2.0) as part of the NLCD 2006 release. A majority of NLCD 2001 updates occur in coastal mapping zones where NLCD 2001 was published prior to the National Oceanic and Atmospheric Administration (NOAA) Coastal Change Analysis Program (C-CAP) 2001 land cover products. NOAA C-CAP 2001 land cover has now been seamlessly integrated with NLCD 2001 land cover for all coastal zones. NLCD 2001 percent developed imperviousness was also updated as part of this process. As part of the NLCD 2011 project, NLCD 2006 data products have been revised and reissued (2011 Edition) to provide full compatibility with all other NLCD 2011 Edition products. The 2014 amended version corrects for the over-elimination of small areas of the four developed classes. Land cover maps, derivatives and all associated documents are considered "provisional" until a formal accuracy assessment can be conducted. The NLCD 2006 is created on a path/row basis and mosaicked to create a seamless national product. Questions about the NLCD 2006 land cover product can be directed to the NLCD 2006 land cover mapping team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov."
This EnviroAtlas dataset represents land cover across a state and in riparian areas for each state in the conterminous United States for use in the Compare my Area tool. These metrics include the percentage of land area that is classified as natural, forest, wetland, agricultural, natural, and developed land cover using the EnviroAtlas hybrid Cropland Data Layer (CDL) - 2011 National Land Cover Dataset (NLCD); the percentage of impervious surface based on the 2011 NLCD Percent Developed Impervious dataset; and the percentage of land area within 45 meters of streams, rivers, and other hydrologically connected waterbodies within each state that is classified as forest (excluding wetlands), forest including woody wetlands, and natural land cover, based on the 2011 CDL-NLCD. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
This tabular data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001, (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002;Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This National Land Cover Database (NLCD) product represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel of California, extracted from a nationwide layer. The definition of impervious means water does not seep into the ground, it runs off into storm sewers and then into local creeks. Examples of impervious surfaces include highways, streets and pavement, driveways, and house roofs. The relevance of impervious surfaces is the higher the proportion of impervious surfaces the more likely flooding can occur.
The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). Previously, NLCD consisted of three major data releases based on a 10-year cycle. These include a circa 1992 conterminous U.S. land cover dataset with one thematic layer (NLCD 1992), a circa 2001 50-state/Puerto Rico updated U.S. land cover database (NLCD 2001) with three layers including thematic land cover, percent imperviousness, and percent tree canopy, and a 1992/2001 Land Cover Change Retrofit Product. With these national data layers, there is often a 5-year time lag between the image capture date and product release. In some areas, the land cover can undergo significant change during production time, resulting in products that may be perpetually out of date. To address these issues, this circa 2006 NLCD land cover product (NLCD 2006) was conceived to meet user community needs for more frequent land cover monitoring (moving to a 5-year cycle) and to reduce the production time between image capture and product release. NLCD 2006 is designed to provide the user both updated land cover data and additional information that can be used to identify the pattern, nature, and magnitude of changes occurring between 2001 and 2006 for the conterminous United States at medium spatial resolution. For NLCD 2006, there are 3 primary data products: 1) NLCD 2006 Land Cover map; 2) NLCD 2001/2006 Change Pixels labeled with the 2006 land cover class; and 3) NLCD 2006 Percent Developed Imperviousness. Four additional data products were developed to provide supporting documentation and to provide information for land cover change analysis tasks: 4) NLCD 2001/2006 Percent Developed Imperviousness Change; 5) NLCD 2001/2006 Maximum Potential Change derived from the raw spectral change analysis; 6) NLCD 2001/2006 From-To Change pixels; and 7) NLCD 2006 Path/Row Index vector file showing the footprint of Landsat scene pairs used to derive 2001/2006 spectral change with change pair acquisition dates and scene identification numbers included in the attribute table. In addition to the 2006 data products listed in the paragraph above, two of the original release NLCD 2001 data products have been revised and reissued. Generation of NLCD 2006 data products helped to identify some update issues in the NLCD 2001 land cover and percent developed imperviousness data products. These issues were evaluated and corrected, necessitating a reissue of NLCD 2001 data products (NLCD 2001 Version 2.0) as part of the NLCD 2006 release. A majority of NLCD 2001 updates occur in coastal mapping zones where NLCD 2001 was published prior to the National Oceanic and Atmospheric Administration (NOAA) Coastal Change Analysis Program (C-CAP) 2001 land cover products. NOAA C-CAP 2001 land cover has now been seamlessly integrated with NLCD 2001 land cover for all coastal zones. NLCD 2001 percent developed imperviousness was also updated as part of this process. Land cover maps, derivatives and all associated documents are considered "provisional" until a formal accuracy assessment can be conducted. The NLCD 2006 is created on a path/row basis and mosaicked to create a seamless national product. Questions about the NLCD 2006 land cover product can be directed to the NLCD 2006 land cover mapping team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. The goal of this project is to provide the Nation with complete, current and consistent public domain information on its land use and land cover. This data was collected by Stone Environmental, Inc. for the New York State Department of State with funds provided under Title 11 of the Environmental Protection Fund. Mohawk River Watershed Processing: The original files were clipped to the Mohawk watershed. The data was re-projected to UTM 18N, NAD 83.View Dataset on the Gateway
This data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every catchment of NHDPlus for the conterminous United States. The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Imperviousness for the Baltimore MSA from the NLCD 2001 impervious dataset. Impervious surfaces refers to impenetrable surfaces such as rooftops, roads or parking lots. Quantification of imperviousness can offer a relatively objective measure of urban density and provide a forum for its classification. For NLCD 2001, imperviousness was chosen as the surrogate for the urban intensity classification in an effort to improve the precision of urban characterization used in the original NLCD 1992. Modeling empirical relationships between imperviousness and Landsat data is accomplished using regression tree techniques. Several one-meter digital orthophoto quadrangles are used for each Landsat scene to derive reference impervious data needed for calibrating the relationships between percent imperviousness and Landsat spectral data, which are then modeled using a commercial regression tree algorithm called Cubist. The models are then applied to all pixels in a mapping zone to produce a per-pixel estimate of imperviousness in urban areas (Yang et al., 2002). This procedure quantifies the spatial distribution of impervious surfaces as a continuous variable for urban areas from 1 to 100%, and offers a consistent and repeatable method to characterize urban areas across the Nation. This data layer is then masked to ensure only urban pixels are included and thresholded (Table 1) into NLCD 2001 urban classes and inserted into the land cover. Imperviousness information will be available as an independent product of NLCD 2001. The National Land Cover Database 2001 for mapping zone 60 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA) Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer et al. (2003) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the U.S. into mapping zones. A total of 66 mapping zones were delineated within the conterminous U.S. based on ecoregion and geographical characteristics, edgematching features and the size requirement of Landsat mosaics. Mapping zone 60 encompasses whole or portions of several states in the mid-Atlantic region, including the states of New Jersey, Delaware, Maryland, Pennsylvania, Virginia, and the District of Columbia. Questions about the NLCD mapping zone 60 can be directed to the NLCD 2001 land cover mapping team at the USGS EROS Data Center (EDC), Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
The National Land Cover Database 2001 Version 2 (NLCD 2001 Version 2) is being compiled across all 50 states and Puerto Rico as a cooperative mapping effort of the MRLC 2001 Consortium. This land cover database contains standardized land cover components useful for a variety of applications. Updated version 2 can be used for direct comparison with NLCD 2006. Data Layers include Masked Impervious, Masked Canopy, Land Cover, Shadow Mask, Impervious Surface, Tree Canopy, Wetland Cover.
The Geospatial Fabric is a dataset of spatial modeling units for use within the National Hydrologic Model that covers Alaska, and most major river basins that flow in from Canada. This U.S. Geological Survey (USGS) data release consists of the geospatial fabric features and other related datasets created to expand the National Hydrologic Model to Alaska. This U.S. Geological Survey (USGS) child item consists of 17 different spatial layers in GeoTIFF format for Alaska. They are 1) average water capacity (awc.zip), 2) percent sand (sand.zip), 3) percent silt (silt.zip), 4) percent clay (clay.zip), 5) soil texture (TEXT_PRMS.zip), 6) land use/land cover (LULC.zip), 7) snow values (snow.zip), 8) summer rain values (SRain.zip), 9) winter rain values (WRain.zip), 10) leaf presence values (keep.zip), 11) leaf loss values (loss.zip), 12) percent tree canopy (CNPY.zip), 13) percent impervious surface (imperv.zip), 14) snow depletion curve numbers (CV_INT.zip), 15) rooting depth (RootDepth.zip), 16) permeability values (Lithology_exp_Konly_Project.zip), and 17) water bodies (wbg.zip). All data cover the National Hydrologic Model's (NHM) Alaskan domain. The 250-meter (m) raster datasets for soils (in sand.zip, silt.zip, clay.zip, TEXT_PRMS.zip) are derived from the Zonodo data (Hengl, 2018). The 30-meter raster of land use and land cover data are a simplified re-classification version of the North American Land-Change Monitoring System (NALCMS, Latifovic and others, 2012) data following the guidance and crosswalk table (crosswalk.csv) in Viger and Leavesley (2007). This layer was used to derive rasters representing dominant vegetative cover type, snow, summer and winter rain interception values, leaf cover and loss, and rooting depth. The impervious data were compiled from the Global Man-made Impervious Surface (GMIS) Dataset from Landsat, v1 (Brown de Colstoun, 2010). The tree canopy data were compiled from MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006, (Sexton and others, 2013). The snow depletion data was compiled from data by Liston (2009) and further processed using methods provided in a snow depletion table (SDC_table.csv) by Sexstone and others (2020). All file formats are in GeoTIFF (Geograhpic Tagged Imaged Format).
This layer is sourced from maps.coast.noaa.gov.
This map service presents spatial information contained in the How to Use Land Cover Data as a Water Quality Indicator story map in the Web Mercator projection. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).
© Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), Office for Coastal Management (OCM)
The 100-meter resolution impervious surface data were developed to portray the impervious surface of the United States at 1:1,000,000 scale. They are intended primarily for visual purposes. The original NLCD data should be used for conducting scientific analysis.
The 100-meter resolution impervious surface data were developed to portray impervious surfaces of the United States at 1:1,000,000 scale. They are intended primarily for visual purposes. The original NLCD data should be used for conducting scientific analysis.
The U.S. Geological Survey (USGS), in association with the Multi-Resolution Land Characteristics (MRLC) Consortium, produces the National Land Cover Database (NLCD) for the United States. The MRLC, a consortium of federal agencies who coordinate and generate consistent and relevant land cover information at the national scale for a wide variety of environmental, land management, and modeling applications, have been providing the scientific community with detailed land cover products for more than 30 years. Over that time, NLCD has been one of the most widely used geospatial datasets in the U.S., serving as a basis for understanding the Nation’s landscapes in thousands of studies and applications, trusted by scientists, land managers, students, city planners, and many more as a definitive source of U.S. land cover. NLCD land cover suite is created through the classification of Landsat imagery and uses partner data from the MRLC Consortium to help refine many of the land cover classes. The classification system used by NLCD is modified from the Anderson Land Cover Classification System. The NLCD Class Legend and Description is maintained at https://www.mrlc.gov/data/legends/national-land-cover-database-class-legend-and-description. The land cover theme includes two separate products. The first is a standard land cover product suite that provides 16 land cover classes for the conterminous United States and Alaska only land cover types and is available at https://www.mrlc.gov/data. The second product suite, NLCD Land Cover Science Products, provides additional discrimination and land cover classes differentiating grass and shrub and regenerating forest regime from grass and shrub and rangeland setting and is available at https://www.mrlc.gov/nlcd-2021-science-research-products. The latest release of NLCD land cover spans the timeframe from 2001 to 2021 in 2 to 3-year intervals. These new products use a streamlined compositing process for assembling and preprocessing Landsat imagery and geospatial ancillary datasets; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a theme-based post-classification protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and a scripted operational system. Unmasked Impervious - To produce the unmasked impervious layer a multilayered perceptron neural network (MLP) was deployed across CONUS. The MLP was trained to perform the regression task of predicting the 1-100 impervious fractional cover. To sample data to train the network, we broke CONUS into a grid comprised of 256x256 pixel regions of interest (ROIs) and sampled from that grid all ROIs with at least 40% impervious cover according to NLCD 2019 impervious fractional cover, which gave us samples from large impervious areas. From those ROIs, we then sampled 66 million training and 16 million validation data points with an even distribution across each impervious intensity (1-100). Those training points were then randomly split into 4 subsets, each corresponding to one of the following respective years: 2011, 2013, 2016, 2019. We used those points to query surface reflectance values from leaf-on composite and leaf-off synthetic imagery (see metadata for NLCD 2021 land cover), elevation data, and spatial urban intensity probabilities. The spatial urban intensity probabilities were generated by an ensemble of U-net models that were trained to predict the 4 urban intensity classes as defined by the NLCD product legend (open space, low intensity, medium intensity, high intensity). Two U-net models were trained using all ROIs in the CONUS 256x256 pixel grid. Inputs to these models included leaf-on composite and leaf-off synthetic imagery, and elevation data. To create the final training and validation datasets we randomly split the CONUS grid into to 2 equal sets: A and B. Using the ROIs from set A we queried the input features from the years 2011 and 2016 and from the ROIs in set B we queried input features from the years 2013 and 2019. These U-net models do not act as the final impervious predictors but instead as spatial feature generators. The spatial features learned by these convolutional neural networks were then fed into the pixel-based MLP, as spatial probabilities of urban intensity, to boost its predicting power. The U-nets were trained using categorical focal Jaccard loss and monitored with the Jaccard Index metric (IOU). The impervious fractional cover regression model (MLP) was trained using mean squared error as a loss function and monitored with mean absolute error as the metric. Initial impervious footprint - To generate an initial impervious footprint, three U-net models were trained on the multiclass-classification task of predicting “urban” and “roads”. The model was trained with 120,000 training and 40,000 validation 256X256 pixel Landsat image chips covering the entire extent of CONUS. The model inputs are consistent with what was used to generate the urban intensity U-net models; the only difference was the target mask the models were trained to predict. These models mapped all NLCD impervious footprint pixels to two classes (“urban” and “roads”); this was used to generate the impervious extent. Impervious Change Pixels - The initial 2021 impervious change pixels were created by comparing the 2021 urban footprint with the 2019 published urban descriptor and extracting the difference. These change pixels were manually edited for omission and commission errors. Ancillary data were then added to the change pixels to create the final 2021 impervious change pixels. These ancillary data consisted of solar installations, wind turbines, and roads. The solar installations dataset is an edited version of the Solar Photovoltaic Generating Units dataset produced by Kruitwagen et al (2021) (https://doi.org/10.5281/zenodo.5005867). The U.S. Wind Turbine Database from Hoen et al (2021) (https://doi.org/10.5066/F7TX3DN0) was used without edits. NavStreets road datasets were used in previous versions of NLCD but an updated version was not available to the USGS. New subdivision roads from the 2021 urban footprint and a small number of manually drawn roads were added to the 2021 impervious change pixels. 2021 impervious extent - The final impervious change pixels were added to that 2019 impervious descriptor file to create the new 2021 impervious descriptor file. This file maps the extent of all impervious for the 2021 NLCD. 2021 impervious product - The percent imperviousness values (1-100%) for the impervious change pixels were extracted from the unmasked impervious layer. Values for previously published urban remained the same except for areas that were 40% or more greater in value, in the unmasked impervious layer. 2021 impervious descriptor - The final impervious change pixels were mapped to the class legend for the NLCD 2019 published impervious descriptor. These pixels were then added to the NLCD 2019 impervious descriptor file to create the new 2021 impervious descriptor file.