12 datasets found
  1. Flowlines

    • oregonwaterdata.org
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Flowlines [Dataset]. https://www.oregonwaterdata.org/datasets/esri::national-hydrography-dataset-plus-high-resolution-1?layer=0
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  2. Area Features

    • hub.arcgis.com
    • oregonwaterdata.org
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Area Features [Dataset]. https://hub.arcgis.com/datasets/esri::national-hydrography-dataset-plus-high-resolution-1?layer=1&uiVersion=content-views
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  3. Forest by the Numbers Map

    • usfs.hub.arcgis.com
    Updated May 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2023). Forest by the Numbers Map [Dataset]. https://usfs.hub.arcgis.com/maps/b8723efed87044c1ad84dd64bbbc0032
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    Area covered
    Description

    General Description: This dashboard displays a general total acres of lands managed by the National Forest System (NFS) across administrative and political boundaries. The data is refreshed annually, run between October and November. It is intended to act as a reference for USDA Forest System administrators and increase awareness for new employees about the units the NFS manages. The Land Areas of the National Forest System Report (LAR)is the authoritative data source for official NFS acreage and should be used in all public-facing applications.Please note the blue reset button in the bottom right of the dashboard. This button will remove all dashboard filters, which can help when getting stuck navigating the dashboard.For USDA Employees and Internal Partners: For the most recent land exchanges on your unit, further validation is required to report NFS acreage on any external publications, briefing papers or hearing testimony. If you need more current data please refer to the ALP Land Status and Encumbrance map viewer. Advanced analysis of current data can be performed using the ALP Enterprise Data Warehouse feature classes listed below.Total land area is derived from a union of the following Enterprise Data Warehouse (EDW) datasets:S_USA.AdministrativeRegion, S_USA.RangerDistrict, S_USA.ALPGeoPoliticalUnit, S_USA NFSLandUnit, S_USA.SurfaceOwnership, and S_USA.WildernessStatusMap layers consist of Forest Service Regional Boundaries, Forest Administrative Boundaries, Ranger District Boundaries,National Wilderness Areas,US Congressional Districts of the 118th Congress, andUS Counties and Equivalent Governmental Units.Accessibility Statement: This dashboard is compatible with screen readers and generally operable using only a keyboard. Use shift-tab to back out of a selection and alt-left arrow to return to the dashboard after clicking an external link. Reach out to SM.FS.Dashboards@usda.gov any feedback or questions regarding accessibility. Contact Us: Reach out to sm.fs.lsrs_support@usda.gov with any questions.

  4. d

    FEMA - Harvey Flood Depths Grid

    • search.dataone.org
    • hydroshare.org
    Updated Apr 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Emergency Management Administration (FEMA) (2022). FEMA - Harvey Flood Depths Grid [Dataset]. http://doi.org/10.4211/hs.165e2c3e335d40949dbf501c97827837
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Federal Emergency Management Administration (FEMA)
    Description

    This resource describes a dataset of gridded depth at horizontal resolution of 3 meters, published November 15, 2017, downloaded from FEMA [1] and hosted in this archive at the University of Texas Advanced Computing Center (TACC) [2].. The raster dataset is contained within an Esri ArcGIS geodatabase. This product utilized Triangulated Irregular Network (TIN) interpolation, four quality assurance measures (identifying dips, spikes, duplication, and inaccurate/unrealistic measurements). High Water Marks were obtained from the Harris County Flood Control District (HCFCD), US Geological Survey (USGS), and other inspection data. Elevation data comprised a mosaic of 3 meter resampled elevations from 1M & 3M LiDAR, and IFSAR data. One section of the IfSAR data was found to be erroneous, and replaced with a blended 10 meter section. [This description was in correspondence January 22, 2018, from Mark English, GeoSpatial Risk Analyst, FEMA Region VIII, Mitigation Division.]

    A preliminary version of these depths dated September 10, 2017 can be viewed in a FEMA web map [3]. This web map shows a forecasted depth grid, based on National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasted water levels.

    See FEMA's Natural Hazard Risk Assessment Program (NHRAP) ftp site [4] for additional HWM-based depth grids and inundation polygons: - Harris County AOIs and Inundation Boundaries [5] - Harris County Depth Grids [6] - Aransas, Nueces, and San Patricio Coastal Depth Grids and Boundaries [7] FEMA notes on these Modeled Preliminary Observations: o Based on observed Water Levels at stream gauges interpolated along rivers, downsampled to 5m resolution DEM o Depth grids updated with new observed peak crest as they become available o Will include High Water Mark information as it becomes available o Extents validated with remote sensing o Use for determining damage levels on specific structures

    See also FEMA's journal of mitigation planning and actions related to Harvey [8].

    References and related links: [1] FEMA_Depths_3m_v3.zip (39 gb ftp download) [https://data.femadata.com/Region8/Mitigation/Data_Share/] [2] TACC 39gb wget or ftp download [https://web.corral.tacc.utexas.edu/nfiedata/Harvey/flood_data/FEMA_Harvey_Depths_3m.gdb.zip] [3] FEMA map viewer for Hurricane Harvey resources (flood depths is bottom selection in layers list) [https://fema.maps.arcgis.com/apps/webappviewer/index.html?id=50f21538c7bf4e08b9faab430bc237c9] [4] FEMA NHRAP ftp [https://data.femadata.com/FIMA/NHRAP/Harvey/] [5] [https://data.femadata.com/FIMA/NHRAP/Harvey/Harris_AOIandBoundaries.zip] [6] [https://data.femadata.com/FIMA/NHRAP/Harvey/Harris_Mosaic_dgft.zip] [7] [https://data.femadata.com/FIMA/NHRAP/Harvey/Rockport_DG_unclipped.zip] [8] Hurricane Harvey Mitigation Portfolio - FEMA map journal [https://fema.maps.arcgis.com/apps/MapJournal/index.html?appid=70204cf2762d45409553fd9642700b7f]

  5. a

    Flood Inundation Mapping - Susquehanna River

    • hub.arcgis.com
    • data-dauphinco.opendata.arcgis.com
    Updated Sep 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dauphin County, PA (2018). Flood Inundation Mapping - Susquehanna River [Dataset]. https://hub.arcgis.com/documents/b8124302675e4a54aa0f3af6f7ec56ff
    Explore at:
    Dataset updated
    Sep 26, 2018
    Dataset authored and provided by
    Dauphin County, PA
    Area covered
    Susquehanna River
    Description

    This layer was created as part of a Flood Inundation Map Library developed for display within the NOAA National Weather Service's Advanced Hydrologic Prediction Services (AHPS), the SRBC Susquehanna Inundation Map Viewer (SIMV), and the USGS Flood Inundation Mapper (FIM). This data represents the potential flood extent for a stage of 11-ft to 37-ft as recorded at the Harrisburg (Susquehanna River at Harrisburg, PA; USGS ID 01570500) river gage. This data is part of a series of inundation layers meant to correlate observations and forecasts from the river gage with a visual representation of the areas impacted by high water. The data set of flood inundation areas was created from flood scenarios generated by HEC-RAS runs provided by USACE-Baltimore and LiDAR data from PASDA processed to extract bare earth points. A shapefile of inundation area for each stage was created and subsequently merged to form continuous datasets for the main-stem Susquehanna River and backwater areas on its tributaries.This data was developed to assist the public and emergency officials with planning and response to high water episodes at or near a defined National Weather Service river forecast point.

  6. d

    EAARL Topography-Vicksburg National Millitary Park 2007: First Surface

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Topography-Vicksburg National Millitary Park 2007: First Surface [Dataset]. https://catalog.data.gov/dataset/eaarl-topography-vicksburg-national-millitary-park-2007-first-surface
    Explore at:
    Dataset updated
    Oct 2, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Vicksburg
    Description

    A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  7. d

    Data from: EAARL Coastal Topography-Fire Island National Seashore 2007

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Coastal Topography-Fire Island National Seashore 2007 [Dataset]. https://catalog.data.gov/dataset/eaarl-coastal-topography-fire-island-national-seashore-2007
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Fire Island
    Description

    A bare earth/first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Fire Island National Seashore in New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  8. d

    Shapefile of the flood-inundation maps for the Salamonie River at Portland,...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Shapefile of the flood-inundation maps for the Salamonie River at Portland, Indiana [Dataset]. https://catalog.data.gov/dataset/shapefile-of-the-flood-inundation-maps-for-the-salamonie-river-at-portland-indiana
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Indiana, Salamonie River, Portland
    Description

    Digital flood-inundation maps for a 6.5-mile reach of the Salamonie River at Portland, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Salamonie River at Portland, Indiana (station 03324200). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System web interface at https://doi.org/10.5066/F7P55KJN or the National Weather Service Advanced Hydrologic Prediction Service (site PORI3) at https:/water.weather.gov/ahps/. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the current stage-discharge relation at the Salamonie River at Portland, Indiana, streamgage. The hydraulic model then was used to compute nine water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 10.7 ft or near bankfull to 18.7 ft, which equals the highest point on the streamgage rating curve. The simulated water-surface profiles then were combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.49-ft root mean square error and 4.9-ft horizontal resolution, resampled to a 10-ft grid) to delineate the area flooded at each stage. The availability of these maps, along with information regarding current stage from the USGS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, and for postflood recovery efforts.

  9. d

    Data from: EAARL Submerged Topography-U.S. Virgin Islands 2003

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Submerged Topography-U.S. Virgin Islands 2003 [Dataset]. https://catalog.data.gov/dataset/eaarl-submerged-topography-u-s-virgin-islands-2003
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    U.S. Virgin Islands
    Description

    A submerged topography elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the U.S. Virgin Islands was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  10. d

    Model Archive of the flood-inundation maps for the White River at...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Model Archive of the flood-inundation maps for the White River at Noblesville, Indiana [Dataset]. https://catalog.data.gov/dataset/model-archive-of-the-flood-inundation-maps-for-the-white-river-at-noblesville-indiana
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Noblesville, Indiana
    Description

    Digital flood-inundation maps for a 7.5-mile reach of the White River at Noblesville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03349000, White River at Noblesville, Ind. Real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site NBLI3). Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03349000, White River at Noblesville, Ind. and documented high-water marks from the floods of September 4, 2003 and May 6, 2017. The hydraulic model was then used to compute 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 10.0 ft (the NWS “action stage”) to 24.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foott horizontal resolution) to delineate the area flooded at each stage. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts. Dataset is a model archive containing all relevant files to document and re-run the models that are discussed in the cited U.S. Geological Survey Scientific Investigations Report.

  11. d

    Shapefiles of the flood-inundation maps (combined flooding scenarios) for...

    • catalog.data.gov
    • datasets.ai
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Shapefiles of the flood-inundation maps (combined flooding scenarios) for Fourmile Creek at Silver Grove, Kentucky [Dataset]. https://catalog.data.gov/dataset/shapefiles-of-the-flood-inundation-maps-combined-flooding-scenarios-for-fourmile-creek-at--beea2
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Kentucky, Silver Grove
    Description

    Digital flood-inundation maps for a 3.4-mile reach of Fourmile Creek at Silver Grove, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Silver Grove and the U.S. Army Corps of Engineers Louisville District. Because the City of Silver Grove is subject to flooding from Fourmile Creek and the Ohio River (backwater flooding up Fourmile Creek), a set of flood-inundation maps was created for each flooding source independently and for combinations of possible flooding scenarios. The flood-inundation maps depict estimates of the areal extent and depth of flooding corresponding to a range of different gage heights (gage height is commonly referred to as “stage,” or the water-surface elevation at a streamgage) at the USGS streamgage on Fourmile Creek at Grays Crossing at Silver Grove, Kentucky (station number 03238785), and the USGS streamgage on Fourmile Creek at Highway 8 at Silver Grove, Kentucky (station number 03238798). Near-real-time stages at these streamgages can be obtained on the internet from the USGS National Water Information System at https://waterdata.usgs.gov/. The USGS streamgage on the Ohio River at Cincinnati, Ohio (station number 03255000) is also important in this study because the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS), at https://water.weather.gov/ahps/, forecasts flood hydrographs for this site (NWS AHPS site CCNO1). The NWS AHPS forecast peak-stage information can be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. Flood profiles were computed for the Fourmile Creek reach by means of a one-dimensional, step-backwater hydraulic model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the current stage-discharge relation (USGS rating number 1.1) at USGS streamgage 03238785, Fourmile Creek at Grays Crossing at Silver Grove, Kentucky. The model was then used to compute water-surface profiles for 83 combinations of flood stages on the Ohio River and Fourmile Creek ranging from approximately baseflow to greater than a 2-percent annual exceedance probability event. An additional 50 water-surface profiles were computed for backwater-only flood profiles (from the Ohio River) for flood elevations (referenced to the North American Vertical Datum of 1988 [NAVD 88]) at 1-ft intervals referenced to USGS streamgage 03238798, Fourmile Creek at Highway 8 at Silver Grove, Kentucky, and ranged from approximately normal pool (460 ft NAVD 88) to greater than a major flood stage on the Ohio River (509 ft NAVD 88). The computed water-surface profile information was then combined with a digital elevation model derived from light detection and ranging (lidar) data to delineate the approximate areas flooded. The digital flood-inundation maps are available through the USGS Flood Inundation Mapper application (https://fim.wim.usgs.gov/fim/) that presents map libraries and provides detailed information on flood extent and depths for selected sites. The flood-inundation maps developed in this study, in conjunction with the real-time stage data from the USGS streamgages on Fourmile Creek at Silver Grove, Ky., and forecasted stream stages from the NWS AHPS, are intended to provide information that can help inform the public about potential flooding and provide emergency management personnel with a tool to efficiently manage emergency flood operations, such as evacuations and road closures, and assist in postflood recovery efforts. This metadata record is comprised of shapefiles of the flood-inundation maps for 83 combinations of flood stages on the Ohio River and Fourmile Creek ranging from approximately baseflow to greater than a 2-percent annual exceedance probability event. Flood profiles were computed for the Fourmile Creek reach by means of a one-dimensional, step-backwater hydraulic model that was calibrated by using the current stage-discharge relation at the USGS streamgage on Fourmile Creek at Grays Crossing (03238785).

  12. d

    Single-Beam Bathymetry Sounding Data of Cape Canaveral, Florida, (2014)...

    • search.dataone.org
    • data.usgs.gov
    • +2more
    Updated Sep 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Hansen (2017). Single-Beam Bathymetry Sounding Data of Cape Canaveral, Florida, (2014) gridded in ESRI GRID format [Dataset]. https://search.dataone.org/view/7c98f9c6-272b-41b5-9ddd-b09acb36daab
    Explore at:
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Mark Hansen
    Time period covered
    Aug 18, 2014 - Aug 20, 2014
    Area covered
    Variables measured
    Band_1
    Description

    The Cape Canaveral Coastal System (CCCS) is a prominent feature along the Southeast U.S. coastline and is the only large cape south of Cape Fear, North Carolina. Most of the CCCS lies within the Merritt Island National Wildlife Refuge and included in its boundaries are the Cape Canaveral Air Force Station (CCAFS), NASA’s Kennedy Space Center (KSC), and a large portion of Canaveral National Seashore. The actual promontory of the modern cape falls within the jurisdictional boundaries of the CCAFS. These various agencies have ongoing concerns related to erosion hazards and vulnerability of the system including critical infrastructure, habitats, and recreational and cultural resources. The USGS conducted a bathymetric mapping survey August 18-20, 2014, in the Atlantic Ocean offshore of Cape Canaveral, Florida (USGS Field Activity Number 2014-324-FA). The study area covered an area extending south from Port Canaveral, Florida, to the northern end of the KSC property and from the shoreline to about 2.5 km offshore. Bathymetric data were collected with single-beam sonar- and lidar-based systems. Two jet skis and a 17-ft outboard motor boat equipped with the USGS SANDS hydrographic system collected precision sonar data. The sonar operations were conducted in three missions, one on each day, with the boat and jet skis operating concurrently. The USGS airborne EAARL-B mapping system flown in a twin engine plane was used to collect lidar data. The lidar operations were conducted in three missions, one in the afternoon of August 19, 2015, and two more in the morning and afternoon of August 20, 2014. The missions were synchronized such that there was some temporal and spatial overlap between the sonar and lidar operations. Additional data were collected to evaluate the actual water clarity corresponding to lidar's ability to receive bathymetric returns. This dataset serves as an archive of processed single-beam and lidar bathymetry data collected at Cape Canaveral, Florida, in 2014 (in XYZ comma-delimited, ASCII and shapefile format). Also included in this archive are Geographic Information System (GIS) data products: gridded map data (in ESRI© binary and ASCII grid format) and a color-coded bathymetry map (in PDF).

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2023). Flowlines [Dataset]. https://www.oregonwaterdata.org/datasets/esri::national-hydrography-dataset-plus-high-resolution-1?layer=0
Organization logo

Flowlines

Explore at:
Dataset updated
Mar 15, 2023
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Pacific Ocean, North Pacific Ocean
Description

The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

Search
Clear search
Close search
Google apps
Main menu