Facebook
TwitterThe 2018 Nigeria Demographic and Health Survey (2018 NDHS) was implemented by the National Population Commission (NPC). Data collection took place from 14 August to 29 December 2018. ICF provided technical assistance through The DHS Program, which is funded by the United States Agency for International Development (USAID) and offers financial support and technical assistance for population and health surveys in countries worldwide. Other agencies and organisations that facilitated the successful implementation of the survey through technical or financial support were the Global Fund, the Bill and Melinda Gates Foundation (BMGF), the United Nations Population Fund (UNFPA), and the World Health Organization (WHO).
SURVEY OBJECTIVES The primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.
The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.
national coverage
Households Women Men children
the survey covered all household members (permanent residents and visitor), all Women aged 15-49 years, all children 0-59 months and all men aged 15-59 years in one-third of households
Sample survey data [ssd]
The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.
The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.
In the first stage, 1,400 EAs were selected with probability proportional to EA size. EA size was the number of households in the EA. A household listing operation was carried out in all selected EAs, and the resulting lists of households served as a sampling frame for the selection of households in the second stage. In the second stage’s selection, a fixed number of 30 households was selected in every cluster through equal probability systematic sampling, resulting in a total sample size of approximately 42,000 households. The household listing was carried out using tablets, and random selection of households was carried out through computer programming. The interviewers conducted interviews only in the pre-selected households. To prevent bias, no replacements and no changes of the pre-selected households were allowed in the implementing stages.
Due to the non-proportional allocation of the sample to the different states and the possible differences in response rates, sampling weights were calculated, added to the data file, and applied so that the results would be representative at the national level as well as the domain level. Because the 2018 NDHS sample was a two-stage stratified cluster sample selected from the sampling frame, sampling weights were calculated based on sampling probabilities separately for each sampling stage and for each cluster.
The survey was successfully carried out in 1,389 clusters after 11 clusters with deteriorating law-and-order situations during fieldwork were dropped. These areas were in Zamfara (4 clusters), Lagos (1 cluster), Katsina (2 clusters), Sokoto (3 clusters), and Borno (1 cluster). In the case of Borno, 11 of the 27 LGAs were dropped due to high insecurity, and therefore the results might not represent the entire state. Please refer to Appendix A in the final report for details.
Computer Assisted Personal Interview [capi]
Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.
The survey protocol was reviewed and approved by the National Health Research Ethics Committee of Nigeria (NHREC) and the ICF Institutional Review Board. After all questionnaires were finalised in English, they were translated into Hausa, Yoruba, and Igbo. The 2018 NDHS used computer-assisted personal interviewing (CAPI) for data collection.
The Household Questionnaire listed all members of and visitors to selected households. Basic demographic information was collected on each person listed, including age, sex, marital status, education, and relationship to the head of the household. For children under age 18, survival status of parents was determined. Data on age, sex, and marital status of household members were used to identify women and men who were eligible for individual interviews. The Household Questionnaire also collected information on characteristics of the household’s dwelling unit, such as source of drinking water; type of toilet facilities; materials used for flooring, external walls, and roofing; ownership of various durable goods; and ownership of mosquito nets. In addition, data were gathered on salt testing and disability.
The Woman’s Questionnaire was used to collect information from all eligible women age 15-49. These women were asked questions on the following topics: - Background characteristics (including age, education, and media exposure) - Birth history and child mortality - Knowledge, use, and source of family planning methods - Antenatal, delivery, and postnatal care - Vaccinations and childhood illnesses - Breastfeeding and infant feeding practices - Women’s minimum dietary diversity - Marriage and sexual activity - Fertility preferences (including desire for more children and ideal number of children) - Women’s work and husbands’ background characteristics - Knowledge, awareness, and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs) - Knowledge, attitudes, and behaviour related to other health issues (e.g., smoking) - Female genital cutting - Fistula - Adult and maternal mortality - Domestic violence
The Man’s Questionnaire was administered to all men age 15-59 in the subsample of households selected for the men’s survey. The Man’s Questionnaire collected much of the same information as the Woman’s Questionnaire but was shorter because it did not contain a detailed reproductive history or questions on maternal and child health.
The Biomarker Questionnaire was used to record the results of anthropometry measurements and other biomarkers for women and children. This questionnaire was administered only to the subsample selected for the men’s survey. All children age 0-59 months and all women age 15-49 were eligible for height and weight measurements. Women age 15-49 were also eligible for haemoglobin testing. Children age 6-59 months were also eligible for haemoglobin testing, malaria testing, and genotype testing for sickle cell disease.
The purpose of the Fieldworker Questionnaire was to collect basic background information on the people who were collecting data in the field, including the team supervisor, field editor, interviewers, and the biomarker team
Facebook
TwitterNASC is an exercise designed to fill the existing data gap in the agricultural landscape in Nigeria. It is a comprehensive enumeration of all agricultural activities in the country, including crop production, fisheries, forestry, and livestock activities. The implementation of NASC was done in two phases, the first being the Listing Phase, and the second is the Sample Survey Phase. Under the first phase, enumerators visited all the selected Enumeration Areas (EAs) across the Local Government Areas (LGAs) and listed all the farming households in the selected enumeration areas and collected the required information. The scope of information collected under this phase includes demographic details of the holders, type of agricultural activity (crop production, fishery, poultry, or livestock), the type of produce or product (for example: rice, maize, sorghum, chicken, or cow), and the details of the contact persons. The listing exercise was conducted concurrently with the administration of a Community Questionnaire, to gather information about the general views of the communities on the agricultural and non-agricultural activities through focus group discussions.
The main objective of the listing exercise is to collect information on agricultural activities at household level in order to provide a comprehensive frame for agricultural surveys. The main objective of the community questionnaire is to obtain information about the perceptions of the community members on the agricultural and non-agricultural activities in the community.
Additional objectives of the overall NASC program include the following: · To provide data to help the government at different levels in formulating policies on agriculture aimed at attaining food security and poverty alleviation · To provide data for the proposed Gross Domestic Product (GDP) rebasing
Estimation domains are administrative areas from which reliable estimates are expected. The sample size planned for the extended listing operation allowed reporting key structural agricultural statistics at Local Government Area (LGA) level.
Agricultural Households.
Population units of this operation are households with members practicing agricultural activities on their own account (farming households). However, all households in selected EAs were observed as much as possible to ensure a complete coverage of farming households.
Census/enumeration data [cen]
An advanced methodology was adopted in the conduct of the listing exercise. For the first time in Nigeria, the entire listing was conducted digitally. NBS secured newly demarcated digitized enumeration area (EA) maps from the National Population Commission (NPC) and utilized them for the listing exercise. This newly carved out maps served as a basis for the segmentation of the areas visited for listing exercise. With these maps, the process for identifying the boundaries of the enumeration areas by the enumerators was seamless.
The census was carried out in all the 36 States of the Federation and FCT. Forty (40) enumeration Areas (EAs) were selected to be canvassed in each LGA, the number of EAs covered varied by state, which is a function of the number of LGAs in the state. Both urban and rural EAs were canvassed. Out of 774 LGAs in the country, 767 LGAs were covered and the remaining 7 LGAs (4 in Imo and 3 in Borno States) were not covered due to insecurity (99% coverage). In all, thirty thousand, nine hundred and sixty (30,960) EAs were expected to be covered nationwide but 30,546 EAs were canvassed.
The Sampling method adopted involved three levels of stratification. The objective of this was to provide representative data on every Local Government Area (LGA) in Nigeria. Thus, the LGA became the primary reporting domain for the NASC and the first level of stratification. Within each LGA, eighty (80) EAs were systematically selected and stratified into urban and rural EAs, which then formed the second level of stratification, with the 80 EAs proportionally allocated to urban and rural according to the total share of urban/rural EAs within the LGA. These 80 EAs formed the master sample from which the main NASC sample was selected. From the 80 EAs selected across all the LGAs, 40 EAs were systematically selected per LGA to be canvassed. This additional level selection of EAs was again stratified across urban and rural areas with a target allocation of 30 rural and 10 urban EAs in each LGA. The remaining 40 EAs in each LGA from the master sample were set aside for replacement purposes in case there would be need for any inaccessible EA to be replaced.
Details of sampling procedure implemented in the NASC (LISTING COMPONENT). A stratified two-phase cluster sampling method was used. The sampling frame was stratified by urban/rural criteria in each LGA (estimation domain/analytical stratum).
First phase: in each LGA, a total sample of 80 EAs were allocated in each strata (urban/rural) proportionally to their number of EAs with reallocations as need be. In each stratum, the sample was selected with a Pareto probability proportional to size considering the number of households as measure of size.
Second phase: systematic subsampling of 40 EAs was done (10 in Urban and 30 in Rural with reallocations as needed, if there were fewer than 10 Urban or 30 Rural EAs in an LGA). This phase was implicitly stratified through sorting the first phase sample by geography.
With a total of 773 LGAs covered in the frame, the total planned sample size was 30920 EAs. However, during fieldwork 2 LGAs were unable to be covered due to insecurity and additional 4 LGAs were suspended early due to insecurity. For the same reason, replacements of some sampled EAs were needed in many LGAs. The teams were advised to select replacement units where possible considering appurtenance to the same stratum and similarity including in terms of population size. However about 609 EAs replacement units were selected from a different stratum and were discarded from data processing and reporting.
Out of 774 LGAs in the country, 767 LGAs were covered and the remaining 7 LGAs (4 in Imo and 3 in Borno states) were not covered due to insecurity (99% coverage).
Computer Assisted Personal Interview [capi]
The NASC household listing questionnaire served as a meticulously designed instrument administered within every household to gather comprehensive data. It encompassed various aspects such as household demographics, agricultural activities including crops, livestock (including poultry), fisheries, and ownership of agricultural/non-agricultural enterprises.
The questionnaire was structured into the following sections:
Section 0: ADMINISTRATIVE IDENTIFICATION Section 1: BUILDING LISTING Section 2: HOUSEHOLD LISTING (Administered to the Head of Household or any knowledgeable adult member aged 15 years and above).
Data processing of the NASC household listing survey included checking for inconsistencies, incompleteness, and outliers. Data editing and cleaning was carried out electronically using the Stata software package. In some cases where data inconsistencies were found a call back to the household was carried out. A pre-analysis tabulation plan was developed and the final tables for publication were created using the Stata software package.
Given the complexity of the sample design, sampling errors were estimated through re-sampling approaches (Bootstrap/Jackknife)
Facebook
TwitterThe primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.
The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-5 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.
The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.
For further details on sample selection, see Appendix A of the final report.
Computer Assisted Personal Interview [capi]
Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.
The processing of the 2018 NDHS data began almost immediately after the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the NPC central office in Abuja. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding the open-ended questions. The NPC data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in the second week of April 2019.
A total of 41,668 households were selected for the sample, of which 40,666 were occupied. Of the occupied households, 40,427 were successfully interviewed, yielding a response rate of 99%. In the households interviewed, 42,121 women age 15-49 were identified for individual interviews; interviews were completed with 41,821 women, yielding a response rate of 99%. In the subsample of households selected for the male survey, 13,422 men age 15-59 were identified and 13,311 were successfully interviewed, yielding a response rate of 99%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Nigeria Demographic and Health Survey (NDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 NDHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Standardisation exercise results from anthropometry training - Height and weight data completeness and quality for children - Height measurements from random subsample of measured children - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends - Data collection period - Malaria prevalence according to rapid diagnostic test (RDT)
Note: See detailed data quality tables in APPENDIX C of the report.
Facebook
TwitterAs of July 2024, Nigeria's population was estimated at around 229.5 million. Between 1965 and 2024, the number of people living in Nigeria increased at an average rate of over two percent. In 2024, the population grew by 2.42 percent compared to the previous year. Nigeria is the most populous country in Africa. By extension, the African continent records the highest growth rate in the world. Africa's most populous country Nigeria was the most populous country in Africa as of 2023. As of 2022, Lagos held the distinction of being Nigeria's biggest urban center, a status it also retained as the largest city across all of sub-Saharan Africa. The city boasted an excess of 17.5 million residents. Notably, Lagos assumed the pivotal roles of the nation's primary financial hub, cultural epicenter, and educational nucleus. Furthermore, Lagos was one of the largest urban agglomerations in the world. Nigeria's youthful population In Nigeria, a significant 50 percent of the populace is under the age of 19. The most prominent age bracket is constituted by those up to four years old: comprising 8.3 percent of men and eight percent of women as of 2021. Nigeria boasts one of the world's most youthful populations. On a broader scale, both within Africa and internationally, Niger maintains the lowest median age record. Nigeria secures the 20th position in global rankings. Furthermore, the life expectancy in Nigeria is an average of 62 years old. However, this is different between men and women. The main causes of death have been neonatal disorders, malaria, and diarrheal diseases.
Facebook
TwitterA data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
Facebook
TwitterThe 2021 Nigeria Malaria Indicator Survey (NMIS) was implemented by the National Malaria Elimination Programme (NMEP) of the Federal Ministry of Health (FMoH) in collaboration with the National Population Commission (NPC) and National Bureau of Statistics (NBS).
The primary objective of the 2021 NMIS was to provide up-to-date estimates of basic demographic and health indicators related to malaria. Specifically, the NMIS collected information on vector control interventions (such as mosquito nets), intermittent preventive treatment of malaria in pregnant women, exposure to messages on malaria, care-seeking behaviour, treatment of fever in children, and social and behaviour change communication (SBCC). Children age 6–59 months were also tested for anaemia and malaria infection. The information collected through the NMIS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population.
National coverage
Sample survey data [ssd]
The sample for the 2021 NMIS was designed to provide most of the survey indicators for the country as a whole, for urban and rural areas separately, and for each of the country’s six geopolitical zones, which include 36 states and the Federal Capital Territory (FCT). Nigeria’s geopolitical zones are as follows: • North Central: Benue, Kogi, Kwara, Nasarawa, Niger, Plateau, and FCT • North East: Adamawa, Bauchi, Borno, Gombe, Taraba, and Yobe • North West: Jigawa, Kaduna, Kano, Katsina, Kebbi, Sokoto, and Zamfara • South East: Abia, Anambra, Ebonyi, Enugu, and Imo • South South: Akwa Ibom, Bayelsa, Cross River, Delta, Edo, and Rivers • South West: Ekiti, Lagos, Ogun, Osun, Ondo, and Oyo
The 2021 NMIS used the sample frame for the proposed 2023 Population and Housing Census (PHC) of the Federal Republic of Nigeria. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), each LGA is divided into wards, and each ward is divided into localities. Localities are further subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster unit for the 2021 NMIS, was defined on the basis of EAs for the proposed 2023 PHC.
A two-stage sampling strategy was adopted for the 2021 NMIS. In the first stage, 568 EAs were selected with probability proportional to the EA size. The EA size is the number of households residing in the EA. The sample selection was done in such a way that it was representative of each state. The result was a total of 568 clusters throughout the country, 195 in urban areas and 373 in rural areas.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Three questionnaires were used in the 2021 NMIS: the Household Questionnaire, the Woman’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. After the questionnaires were finalised in English, they were translated into Hausa, Yoruba, and Igbo.
The processing of the 2021 NMIS data began immediately after the start of fieldwork. As data collection was being completed in each cluster, all electronic data files were transferred via the IFSS to the NPC central office in Abuja. Data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted on any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding open-ended questions. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. Concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables also allowed for effective monitoring. Secondary editing of the data was completed in February 2022. The data processing team coordinated this exercise at the central office.
A total of 14,185 households were selected for the survey, of which 13,887 were occupied and 13,727 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 14,647 women age 15-49 were identified for individual interviews. Interviews were completed with 14,476 women, yielding a response rate of 99%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, or incorrect data entry. Although numerous efforts were made during the implementation of the 2021 Nigeria Malaria Indicator Survey (NMIS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2021 NMIS is only one of many samples that could have been selected from the same population, using the same design and expected sample size. Each of these samples would yield results that differ somewhat from the results of the selected sample. Sampling errors are a measure of the variability among all possible samples. Although the exact degree of variability is unknown, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, and so on), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2021 NMIS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed via SAS programmes developed by ICF. These programmes use the Taylor linearisation method to estimate variances for estimated means, proportions, and ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Sampling errors tables are presented in Appendix B of the final report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.
Facebook
TwitterThis statistic shows the total population of Nigeria from 2013 to 2023 by gender. In 2023, Nigeria's female population amounted to approximately 112.68 million, while the male population amounted to approximately 115.21 million inhabitants.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show the birth and citizenship status by Regional Commission in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
SumLevel
Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, Super District, etc)
GEOID
Census tract Federal Information Processing Series (FIPS) code
NAME
Name of geographic unit
Planning_Region
Planning region designation for ARC purposes
Acres
Total area within the tract (in acres)
SqMi
Total area within the tract (in square miles)
County
County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)
CountyName
County Name
TotPop_e
# Total population, 2017
TotPop_m
# Total population, 2017 (MOE)
Native_e
# U.S. Native, 2017
Native_m
# U.S. Native, 2017 (MOE)
pNative_e
% U.S. Native, 2017
pNative_m
% U.S. Native, 2017 (MOE)
BornUS_e
# Born in the United States, 2017
BornUS_m
# Born in the United States, 2017 (MOE)
pBornUS_e
% Born in the United States, 2017
pBornUS_m
% Born in the United States, 2017 (MOE)
BornState_e
# Born in state of residence, 2017
BornState_m
# Born in state of residence, 2017 (MOE)
pBornState_e
% Born in state of residence, 2017
pBornState_m
% Born in state of residence, 2017 (MOE)
BornDiffState_e
# Born in different state, 2017
BornDiffState_m
# Born in different state, 2017 (MOE)
pBornDiffState_e
% Born in different state, 2017
pBornDiffState_m
% Born in different state, 2017 (MOE)
BornTerr_e
# Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017
BornTerr_m
# Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017 (MOE)
pBornTerr_e
% Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017
pBornTerr_m
% Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017 (MOE)
ForBorn_e
# Foreign born, 2017
ForBorn_m
# Foreign born, 2017 (MOE)
pForBorn_e
% Foreign born, 2017
pForBorn_m
% Foreign born, 2017 (MOE)
Naturalized_e
# Naturalized U.S. citizen, 2017
Naturalized_m
# Naturalized U.S. citizen, 2017 (MOE)
pNaturalized_e
% Naturalized U.S. citizen, 2017
pNaturalized_m
% Naturalized U.S. citizen, 2017 (MOE)
NotNaturalized_e
# Not a U.S. citizen, 2017
NotNaturalized_m
# Not a U.S. citizen, 2017 (MOE)
pNotNaturalized_e
% Not a U.S. citizen, 2017
pNotNaturalized_m
% Not a U.S. citizen, 2017 (MOE)
last_edited_date
Last date the feature was edited by ARC
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/6900/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6900/terms
The main objectives of this data collection effort were to assemble a set of cross-nationally comparable microdata samples for Economic Commission for Europe (ECE) countries based on the 1990 national population and housing censuses in countries of Europe and North America, and to use these samples to study the social and economic conditions of older persons. The samples are designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. Included in the Romania data collection are questions on type of dwelling unit and the presence of amenities, such as telephones, toilets, automobiles, baths/showers, washers, and TV sets, as well as the availability of utility systems. Also covered are the characteristics of the buildings within which these dwelling units were located. Demographic and socioeconomic information on household members includes age, sex, year of birth, household composition, marital status, number of children, education, income, religion, and occupation.
Facebook
TwitterThe 2010 Nigeria Malaria Indicator Survey (2010 NMIS) was implemented by the National Population Commission (NPC) and the National Malaria Control Programme (NMCP). ICF International provided technical assistance through the MEASURE DHS programme, a project funded by the United States Agency for International Development (USAID), which provides support and technical assistance in the implementation of population and health surveys in countries worldwide. It was carried out from October to December 2010 on a nationally representative sample of more than 6,000 households. All women age 15-49 in the selected households were eligible for individual interviews. During the interviews, they were asked questions about malaria prevention during pregnancy and the treatment of fever among their children. In addition, the survey included testing for anaemia and malaria among children age 6-59 months using finger (or heel) prick blood samples. Test results were available immediately and were provided to the children’s parents or guardians. Thick blood smears and thin blood films were also made in the field and transported to the Department of Medical Microbiology and Parasitology at the College of Medicine, University of Lagos. Microscopy was performed to determine the presence of malaria parasites and to identify the parasite species. Slide validation was carried out by the University of Calabar Teaching Hospital in Calabar.
The 2009-2013 National Strategic Plan for Malaria Control in Nigeria aims to massively scale up malaria control interventions in parts of the country. The 2010 Nigeria Malaria Indicator Survey (NMIS) was, therefore, designed to measure progress toward achieving the goals and targets of this strategic plan by providing data on key malaria indicators, including ownership and use of bed nets, diagnosis and prompt treatment of malaria using artemisinin-based therapy (ACT), indoor residual spraying, and behaviour change communication.
The following are the specific objectives of the 2010 NMIS: - To measure the extent of ownership and use of mosquito bed nets - To assess the coverage of intermittent and preventive treatment programmes for pregnant women - To identify practices used to treat malaria among children under age 5 and the use of specific antimalarial medications - To measure the prevalence of malaria and anaemia among children age 6-59 months - To determine the species of plasmodium parasite most prevalent in Nigeria - To assess knowledge, attitudes, and practices regarding malaria in the general population
National
The survey covered all de jure household members (usual residents), all women aged between 15-49 years, and all children age 6-59 months living in the household.
Sample survey data [ssd]
The 2010 Nigeria Malaria Indicator Survey (NMIS) called for a nationally representative sample of about 6,000 households. The survey is designed to provide information on key malaria-related indicators including mosquito net ownership and use, coverage of preventive treatment for pregnant women, treatment of childhood fever, and the prevalence of anaemia and malaria among children age 6-59 months. The sample for the 2010 NMIS was designed to provide most of these indicators for the country as a whole, for urban and rural areas separately, and for each of the six zones formed by grouping the 36 states and the Federal Capital Territory (FCT). The zones are as follows: 1. North Central: Benue, FCT-Abuja, Kogi, Kwara, Nasarawa, Niger, and Plateau 2. North East: Adamawa, Bauchi, Borno, Gombe, Taraba, and Yobe 3. North West: Jigawa, Kaduna, Kano, Katsina, Kebbi, Sokoto, and Zamfara 4. South East: Abia, Anambra, Ebonyi, Enugu, and Imo 5. South South: Akwa Ibom, Bayelsa, Cross River, Delta, Edo, and Rivers 6. South West: Ekiti, Lagos, Ogun, Ondo, Osun, and Oyo
SAMPLING FRAME The sampling frame used for the 2010 NMIS was the Population and Housing Census of the Federal Republic of Nigeria, which was conducted in 2006 by the National Population Commission (NPC). Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into localities. In addition to these administrative units, during the 2006 Population Census, each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2010 NMIS, is defined on the basis of EAs from the 2006 EA census frame.
Although the 2006 Population Census did not provide the number of households and population for each EA, population estimates were published for more than 800 LGA units. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census were used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rual for the survey sample frame.
SAMPLE ALLOCATION The 2010 NMIS sample was selected using a stratified, two-stage cluster design consisting of 240 clusters, 83 in the urban areas and 157 in the rural areas. (The final sample included 239 clusters because access to one cluster was prevented by inter-communal disturbances.) A sample of 6,240 households was selected for the survey, with a minimum target of 920 completed individual women's interviews per zone. Within each zone, the number of households was distributed proportionately among urban and rural areas. A fixed 'take' of 26 households per cluster was adopted for both urban and rural clusters.
SAMPLING PROCEDURE AND UPDATING OF THE SAMPLING FRAME The 2010 NMIS sample is a stratified sample selected in two stages. The primary sampling units (PSUs) are the enumeration areas (EAs) from the 2006 census, and the secondary sampling units (SSUs) are the households. In the first stage of selection, the 240 EAs were selected with a probability proportional to the size of the EA, where size is the number of approximate households calculated within the sampling frame.
A complete listing of households and a mapping exercise for each cluster was carried out from August through September 2010. The lists of households resulting from this exercise served as the sampling frame for the selection of households in the second stage. In addition to listing the households, the NPC listing enumerators used global positioning system (GPS) receivers to record the coordinates of the 2010 NMIS sample clusters.
In the second stage of the selection process, 26 households were selected in each cluster by equal probability systematic sampling. All women age 15-49 who were either permanent residents of the households in the 2010 NMIS sample or visitors present in the households on the night before the survey were eligible to be interviewed. In addition, all children age 6-59 months were eligible to be tested for malaria and anaemia.
The sampling procedures are fully described in Appendix A of "Nigeria Malaria Indicator Survey 2010 - Final Report" pp.69-71.
Face-to-face [f2f]
Two questionnaires were used in the NMIS: a Household Questionnaire and a Woman’s Questionnaire, which was administered to all women age 15-49 in the selected households. Both instruments were based on the standard Malaria Indicator Survey Questionnaires developed by the Roll Back Malaria and DHS programmes. These questionnaires were adapted to reflect the population and health issues relevant to Nigeria during a series of meetings convened with various stakeholders from the NMCP and other government ministries and agencies, nongovernmental organisations, and international donors. The questionnaires were translated into three major Nigerian languages: Hausa, Igbo, and Yoruba.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including age, sex, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women who were eligible for the individual interview and children age 6-59 months who were eligible for anaemia and malaria testing. The Household Questionnaire also collected information on characteristics of the household’s dwelling unit, such as the source of water; type of toilet facilities; materials used for the floor, roof, and walls of the house; ownership of various durable goods; and ownership and use of mosquito nets. In addition, the questionnaire was used to record the results of the anaemia and malaria testing as well as the signatures of the interviewer and the respondent who gave consent. Children’s temperatures were also recorded.
The Woman’s Questionnaire was used to collect information from all women age 15-49. These women were asked questions on the following main topics: - Background characteristics (such as age, residence, education, media exposure, and literacy) - Birth history and childhood mortality - Antenatal care and malaria prevention for most recent birth and pregnancy - Malaria prevention and treatment - Knowledge about malaria (symptoms, causes, prevention, and drugs used in treatment)
The processing of data for the 2010 NMIS ran concurrently with data collection. Completed questionnaires were retrieved by the zonal coordinators or the trainers and delivered to NPC in standard envelopes, labelled with the sample ID, team number, and state name. The shipment also contained a written summary of any
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.
For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e20
Estimate from 2016-20 ACS
_m20
Margin of Error from 2016-20 ACS
_e10
2006-10 ACS, re-estimated to 2020 geography
_m10
Margin of Error from 2006-10 ACS, re-estimated to 2020 geography
_e10_20
Change, 2010-20 (holding constant at 2020 geography)
Geographies
AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)
ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)
Census Tracts (statewide)
CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)
City (statewide)
City of Atlanta Council Districts (City of Atlanta)
City of Atlanta Neighborhood Planning Unit (City of Atlanta)
City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)
City of Atlanta Neighborhood Statistical Areas (City of Atlanta)
County (statewide)
Georgia House (statewide)
Georgia Senate (statewide)
MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)
Regional Commissions (statewide)
State of Georgia (statewide)
Superdistrict (ARC region)
US Congress (statewide)
UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)
WFF = Westside Future Fund (subarea of City of Atlanta)
ZIP Code Tabulation Areas (statewide)
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)
Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show household size, type, and composition data by Regional Commission in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here).
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
Facebook
TwitterThe 1993/94 National Agricultural Sample Census was undertaken by the Federal Office of Statistics (FOS) in collaboration with the Federal Ministry of Agriculture, Water Resources and Rural Development. It had technical inputs from FAO.
The operation involved the complete listing of household units and households within units. Farming households which for this purpose includes households engaged in crop farming, livestock and fishing were identified from the listing forms. One out of every four farming households was selected for study. A Holding questionnaire which dealth with farm practice and other agricultural structural issues was administered to all selected households. Also the basic questionnaire, that is the General Household Survey questionnaire, dealing with socio-economic activities of the household (health, education, detailed demographic information, housing status, employment, etc) was applied to all selected households.
The three principal objectives of the census were: a) To provide structural data on Agriculture in Nigeria mostly on those aspects that do not change frequently. In the context of this census, agriculture has been defined to include crop production (temporary and permanent), livestock rearing, keeping of poultry and fishing and forestry. b) To obtain the socio-economic activities, health and educational status, detailed demographic and housing status formation on households, household heads and household members. This would provide Local Government Areas with baseline statistics. c) To obtain production figures at the state level. The Census was in two phases: the first was to meet its first two objectives while the second phase was to meet its third objective. The attached report only deals with the phase 1 of the census.
The NASC Phase 1 covered 36 EAs in each LGA. At that time, 540 LGAs had been gazetted by the National Population Commission. Of these 18 LGAs on basis of their relative sizes compared to other LGAs in their respective states were split into sub-LGAs each. Therefore, there were 526 strata each with 36 sample EAs giving a total national sample of 20 232 EAs. Out of each EA, 12 households were selected for study giving a total national sample of 242 794 households.
The 540 LGAs gazetted did not reflect the last exercise of Government to creat new LGAs. Therefore some LGAs on the gazette were in fact two or more LGA8 on the ground. Since for such LGAs it was not possible at HQ to sort out the frame of EAs into their respective LGAs, it became necessary to select multiples of sample of EAs in the gazetted LGA. The selection of additional EAs was a condition- exercise and a total of about 59 additional samples (ach of 26 EA's) were added to the 242,784 indicated.
The pretest was in two phases in line with the design anticipated for the census. The phase one operation was carried out in five pretest states, namely, Anambra, Bauchi, Kano, Osun and Ondo.
Sample Design The Sampling Scheme adopted was a two phase stage sampling selection: Phase One involved three levels of stratification.
The basic objective of Phase I was to provide some baseline data on every local Government. Area (LGA) in Nigeria. The LGA thus became the primary of first level of stratification. The EAs in each LGA were stratified into urban or rural, which thus the second level of stratification, Thus, in listing the EAs within each LGA the urban EAs were listed first, followed by the rural EAs. Systematic sampling from the EA list was to ensure that. the sample was distributed between urban EAs in the same proportion as for the whole population, without the need for calculating urban and rural sampling rates separately.
The third level of stratification, again implicitly, reflected general agro-ecological variation. Thus within the rural sector, the listing of EA in each LGA prior to selection was in a serpentine order on the map. 36 EAs were to be selected in each LGA using systematic selection with probability proportional to site. 12 households were selected per EA for study, the household being the primary sampling unit.
Sample Selection and the Associated Problems
The methodology of sample selection for NASC was as contained in the survey design by Chris Scott, FAO consultant. The preferred design which had several levels of stratification as state and Local Government had the Local Government further stratified into urban and rural sector,with additional level ofstratification, this time implicitly imposed on the rural sector to stratify it by cropping pattern. This design was believed to have the twin advantage of marrying most of what was good in the previous sample while at the same time remaining simple in application with regard to methodology of sample selection and estimation procedure. Over all it was believed that the resulting sample will provide us with better estimates than before.
The following steps were taken in the selection process. (i) Stratification or grouping of EAs in each Local Government Areas (LGA) into urban and rural (ii) The grouping of area within the rural EAs that produce similar crops together in a systematic manner until all the EAs within the rural sector of each LGA was strung together. (iii) The selection of 36 EAs systematically in a continious manner from each Local Government Area. By this implicit stratification, the urban EAs will appear in proportion to their weight. Rural EAs with different cropping will also appear according to their presence or weight.
To facilitate the work a two week training of the staff for the sample selection was put in place. During the period, effort was also intensified to get the EAs frame from the National Population Commission (NPC).It was however discovered that the format in which the frame was compiled by NPC did not include areas by locality. This made both the distinction between urban and rural EAs blurred and affected rural stratification by crop. At this junction the methodology for sample selection was reviewed. The above method was then replaced by a simple straight forward systematic selection of EAs via the cumulation and selection of households which are contained in the frame as supplied by NPC. Under this method 36 EAs were in most cases systematically selected from each LGA. However, due to the marked difference or variance in the sizes of EAs, it was decided that some criteria was needed to separate urge LGAs from the average ones to avoid some LGA being relatively over sampled or under sampled, with these 36 EAs were selected in each LGA while 72,108 EAs were selected in large EAs.
Soon after the rule guiding the sample selection for this revised method was established, the proper selection started. Once the initiall part of the frame came out of the computer, the work of selecting sample was done simultaneouslv with computer production of the frame. As the sample list of EAs per state were compiled arrangement was made to collect the corresponding sketch maps from NPC.
There were various problems in the course of compiling the frame for NASC. These were.
(i) Repeated requests and visits to NPC before the frame from which the sample list of EAs was selected. (ii) The frame obtained was somewhat defective and incomplete. It was about 95% complete and listing of EAs did not contain listing of localities. (iii) Because of the incompleteness of the frame a few LGAs in a few of the states were missing and so sample list for each LGA could not be obtained. Also the non-listing of EAs by localities in the frame presented some sampling problems leading to the review of the methodology of sample selection . (iv) Difficulties arising from further state creation was also encountered but it was easier to resolved since in nearly all cases it was a matter of reallocation of LGAs within the affected, state, except where they were subdivided and boundaries were not clearly defined. (v) Where LGAs were split there was the need to draw additional samples.
Face-to-face [f2f]
Listing Questionnaire: This was used to list households in the selected EA and to obtain data on crops grown, livestock/poultry kept and fishing activities.
General Household Questionnaire: This was used for sample household in Phase I and contained data on socioeconomic characteristics of each member of the household as well as housing conditions for the household.
Holding Questionnaire: This was for every holding identified as being operated by a member of the sample households in Phase 1 EA. Data was collected in respect of general farm practice, area of holding, tenure, use of inputs, farm implements, kinds of livestock/ poultry kept, access to credit and marketing channels. Most responses on the questionnaire were precoded using international standard classifications.
Data Processing: Questionnaires were retrieved from the field for processing at Headquarters. The retrieved questionnaires were first edited and coded manually by trained statistical clerks before being sent to the data entry clerks for computerisation. After data entry had been completed and checked by the programmers, the data diskettes were sent to the Statistician for computer editing and tabulation. The programme for Data Entry was written by FOS programmers, while editing and tabulation programmes were written by an FAO Consultant who worked with FOS for about six months. The FAO Consultant did a lot in building computer capability among the staff of the Division. All aspects Of Data Processing were carried out by our statisticians and programmers.
Spot/Quality Checks:
Right from the
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionSub-Saharan Africa (SSA) is plagued by myriads of diseases, mostly infectious; but cancer disease burden is rising among non-communicable diseases. Nigeria has a high burden of cancer, however its remote underserved culturally-conserved populations have been understudied, a gap this study sought to fill.MethodsThis was a cross-sectional multi-institutional descriptive study of histologically diagnosed cancers over a four-year period (January 2019-December 2022) archived in the Departments of Pathology and Cancer Registries of six tertiary hospitals in the northeast of Nigeria. Data obtained included age at diagnosis, gender, tumor site and available cancer care infrastructure. Population data of the study region and its demographics was obtained from the National Population Commission and used to calculate incident rates for the population studied.ResultsA total of 4,681 incident cancer cases from 2,770 females and 1,911 males were identified. The median age at diagnosis for females was 45 years (range 1–95yrs), and 56 years (range 1–99yrs) for males. Observed age-specific incidence rates (ASR) increased steadily for both genders reaching peaks in the age group 80 years and above with the highest ASR seen among males (321/100,000 persons) compared to females (215.5/100,000 persons). Breast, cervical, prostatic, colorectal and skin cancers were the five most common incident cancers. In females, breast, cervical, skin, ovarian and colorectal cancers were the top five malignancies; while prostate, haematolymphoid, skin, colorectal and urinary bladder cancers predominated in men.ConclusionRemote SSA communities are witnessing rising cancer disease burden. Proactive control programs inclusive of advocacy, vaccination, screening, and improved diagnostics are needed.
Facebook
TwitterNASS is an exercise designed to provide accurate and up-to-date agricultural statistics that allows policymakers, researchers, and development partners to make informed decisions that directly impact the well-being of farmers, rural communities, and the broader economy. These statistics are essential for enhancing food security, improving productivity, and addressing regional disparities in agricultural performance. Additionally, robust agricultural data is vital in supporting Nigeria’s efforts to diversify its economy from oil dependency. By identifying key areas for investment, such as crop production, livestock management, and agro-processing, data can guide both public and private sector investments to boost agricultural output and expand exports. Moreover, they help track progress toward national goals while supporting Nigeria's efforts to meet global commitments like the Sustainable Development Goals (SDGs). Hence, NASS provides useful data for understanding the state of the agricultural sector and offer essential production and structural data to support evidence-based planning and implementation of agricultural programs vital for addressing current economic challenges and enhancing the livelihood of many Nigerians. This survey is also essential for monitoring and evaluating the effectiveness of existing agricultural programs and ensuring that resources are allocated efficiently. Capturing detailed data on agriculture practices, outputs, and challenges, the survey supports the planning and implementation of initiatives aimed at improving productivity, enhancing food security, and adapting to challenges like climate change and market fluctuations.
The objectives of the survey are to; i. provide data on agricultural production in 2022/ 2023 and the structure of the sector as a whole to assist the government in policy formulation and programme planning; ii. effectively and efficiently provide appropriate agricultural information to increase public awareness; and iii. provide data that could be used to compute agricultural sector contribution to the Gross Domestic Product (GDP).
The National Population Commission (NPC) provided the frame of Enumeration Areas (EAs), newly demarcated for the proposed 2023 Housing and Population Census. This was used as the primary sampling frame. Although data was collected across the 36 states and the Federal Capital Territory (FCT), some Local Government Areas (LGAs) were not covered due to insecurity. The LGAs covered during the survey were seven hundred and sixty-seven (767) out of the 774 LGAs in Nigeria due to security challenges. The affected states/LGAs are Borno state (Monguno, Kukawa and Abadam LGAs) and Orlu, Orsu, Oru East, and Njaba LGAs in Imo state. The number of EAs covered varied from state to state depending on the number of Agricultural EAs and LGAs. Nationally, a total of 15,591 EAs were selected across the 36 States of the Federation and FCT and a total of 152,485 households were designated to be covered.
Agricultural Households.
The final sampling units used were agricultural households involved in crop/ livestock farming, and fishery households selected in a subsample of EAs among the sample of EAs covered during the extensive listing survey.
Sample survey data [ssd]
The final sampling units used were agricultural households involved in crop/ livestock farming, and fishery households selected in a subsample of EAs among the sample of EAs covered during the extensive listing survey. The sampling method of NASS-household is a stratified three-phased sampling as follows: -First phase: Stratified Probability Proportional to Size (PPS) selection of 80 EAs Second phase: systematic sub-sampling of 40 EAs for the extended listing Third phase: two-stage sampling for NASS-household
i. First stage: Stratification of EAs into Agricultural and non-agricultural EAs drawn from the 40EAs listed in each LGA ii. Second stage: Systematic sampling of 10 farming households (crop/ livestock farming) and a systematic selection of complementary households practicing only fishery in fishery-intensive LGAs (18) up to a maximum of 12 households were interviewed in the concerned EAs. That selection was stratified by sorting the listed farming households by various agricultural-related information including farming activities practiced, number of plots, livestock numbers in tropical livestock units, as well as the gender of the household head.
Sample Size and Reallocation A total of 15,591 Enumeration Areas (EAs) were selected for the NASS household survey. The sample was distributed across Local Government Areas (LGAs) based on the estimated total number of plots per LGA. Within each LGA, the sample was further allocated between urban and rural areas in proportion to the estimated agricultural population. In the selected EAs, 152,485 households were finally sampled.
The probabilities of selecting EAs for NASS households were derived from two stages: the likelihood of their selection in the listing sample and the probability of selection from the subsample of EAs chosen for NASS households. These probabilities were then combined with the probabilities of selecting farming households within the EAs to determine the final selection probabilities for farming households. The design weights were calculated as the inverse of these selection probabilities. These weights were further adjusted to account for non-responses, resulting in final sampling weights used in estimating means, totals, proportions, and other statistics through standard Horvitz-Thompson estimators. Special consideration was given to fishery-related estimates, ensuring that data from the independent sample of households engaged solely in fishery activities were fully incorporated. Due to the complexity of the sampling design, sampling errors were estimated using resampling methods such as Bootstrap and Jackknife techniques.
Computer Assisted Personal Interview [capi]
The NASS household questionnaire served as a meticulously designed instrument administered within selected households to gather comprehensive data. The questionnaire was structured into the following sections:
0A. HOLDING IDENTIFICATION 0B. ROSTER OF HOUSEHOLD MEMBERS 0C. AGRICULTURAL ACTIVITIES 0D. AGRICULTURALACTIVITIES 2. PLOT ROSTER AND DETAILS 3. CROP ROSTER 1A: TEMPORARY (NON-VEGETABLE) CROP PRODUCTION 1H: TEMPORARY CROP PRODUCTION (VEGETABLE CROPS) 1B: TEMPORARY CROP DESTINATION 2A: PERMANENT CROP PRODUCTION 2B: PERMANENT CROP DESTINATION 4: SEED AND PLANT USE 3C: INPUT USE 2(DS): PLOT ROSTER AND DETAILS 3(DS): CROP ROSTER 1A(DS): TEMPORARY (NON-VEGETABLE) CROP PRODUCTION - DRY SEASON 1H(DS): TEMPORARY CROP PRODUCTION (VEGETABLE CROPS) - DRY SEASON 1B(DS): TEMPORARY CROP DESTINATION - DRY SEASON 4(DS): SEED AND PLANT USE - DRY SEASON 3C(DS): INPUT USE - DRY SEASON 4A: LIVESTOCK IN STOCK 4B: CHANGE IN STOCK- LARGE AND MEDIUM-SIZED ANIMALS 4C: CHANGE IN STOCK-POULTRY 4G: MILKPRODUCTION 4H: EGG PRODUCTION 4I: OTHERLIVESTOCKPRODUCTS 4J:APIARYPRODUCTION (BEEKEEPING) 5A: FISH FARMING/AQUACULTUREPRODUCTION 6A: FISH HUNTING/CAPTURE 7A: FORESTRYPRODUCTION 9: LABOUR 2_GPS.PLOT GPS MEASUREMENT 99. END OFTHE SURVEY
Data processing and analysis involved data cleaning, data analysis, data verification/validation, and table generation. World Food Programme (WFP), Food and Agricultural Organization (FAO), and NBS carried out the data processing and analysis for both the household and corporate farms questionnaires. The corporate farm questionnaire involved manual editing as well as data entry.
Given the complexity of the sample design, sampling errors were estimated through resampling approaches (Bootstrap/Jackknife)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show population by sex and age by US Congress in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here). Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show numbers and percentages for occupation, household income, and commuting pattern by race and by US Congress in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here).
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.
For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e20
Estimate from 2016-20 ACS
_m20
Margin of Error from 2016-20 ACS
_e10
2006-10 ACS, re-estimated to 2020 geography
_m10
Margin of Error from 2006-10 ACS, re-estimated to 2020 geography
_e10_20
Change, 2010-20 (holding constant at 2020 geography)
Geographies
AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)
ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)
Census Tracts (statewide)
CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)
City (statewide)
City of Atlanta Council Districts (City of Atlanta)
City of Atlanta Neighborhood Planning Unit (City of Atlanta)
City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)
City of Atlanta Neighborhood Statistical Areas (City of Atlanta)
County (statewide)
Georgia House (statewide)
Georgia Senate (statewide)
MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)
Regional Commissions (statewide)
State of Georgia (statewide)
Superdistrict (ARC region)
US Congress (statewide)
UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)
WFF = Westside Future Fund (subarea of City of Atlanta)
ZIP Code Tabulation Areas (statewide)
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)
Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about
Facebook
TwitterThe 2018 Nigeria Demographic and Health Survey (2018 NDHS) was implemented by the National Population Commission (NPC). Data collection took place from 14 August to 29 December 2018. ICF provided technical assistance through The DHS Program, which is funded by the United States Agency for International Development (USAID) and offers financial support and technical assistance for population and health surveys in countries worldwide. Other agencies and organisations that facilitated the successful implementation of the survey through technical or financial support were the Global Fund, the Bill and Melinda Gates Foundation (BMGF), the United Nations Population Fund (UNFPA), and the World Health Organization (WHO).
SURVEY OBJECTIVES The primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.
The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.
national coverage
Households Women Men children
the survey covered all household members (permanent residents and visitor), all Women aged 15-49 years, all children 0-59 months and all men aged 15-59 years in one-third of households
Sample survey data [ssd]
The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.
The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.
In the first stage, 1,400 EAs were selected with probability proportional to EA size. EA size was the number of households in the EA. A household listing operation was carried out in all selected EAs, and the resulting lists of households served as a sampling frame for the selection of households in the second stage. In the second stage’s selection, a fixed number of 30 households was selected in every cluster through equal probability systematic sampling, resulting in a total sample size of approximately 42,000 households. The household listing was carried out using tablets, and random selection of households was carried out through computer programming. The interviewers conducted interviews only in the pre-selected households. To prevent bias, no replacements and no changes of the pre-selected households were allowed in the implementing stages.
Due to the non-proportional allocation of the sample to the different states and the possible differences in response rates, sampling weights were calculated, added to the data file, and applied so that the results would be representative at the national level as well as the domain level. Because the 2018 NDHS sample was a two-stage stratified cluster sample selected from the sampling frame, sampling weights were calculated based on sampling probabilities separately for each sampling stage and for each cluster.
The survey was successfully carried out in 1,389 clusters after 11 clusters with deteriorating law-and-order situations during fieldwork were dropped. These areas were in Zamfara (4 clusters), Lagos (1 cluster), Katsina (2 clusters), Sokoto (3 clusters), and Borno (1 cluster). In the case of Borno, 11 of the 27 LGAs were dropped due to high insecurity, and therefore the results might not represent the entire state. Please refer to Appendix A in the final report for details.
Computer Assisted Personal Interview [capi]
Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.
The survey protocol was reviewed and approved by the National Health Research Ethics Committee of Nigeria (NHREC) and the ICF Institutional Review Board. After all questionnaires were finalised in English, they were translated into Hausa, Yoruba, and Igbo. The 2018 NDHS used computer-assisted personal interviewing (CAPI) for data collection.
The Household Questionnaire listed all members of and visitors to selected households. Basic demographic information was collected on each person listed, including age, sex, marital status, education, and relationship to the head of the household. For children under age 18, survival status of parents was determined. Data on age, sex, and marital status of household members were used to identify women and men who were eligible for individual interviews. The Household Questionnaire also collected information on characteristics of the household’s dwelling unit, such as source of drinking water; type of toilet facilities; materials used for flooring, external walls, and roofing; ownership of various durable goods; and ownership of mosquito nets. In addition, data were gathered on salt testing and disability.
The Woman’s Questionnaire was used to collect information from all eligible women age 15-49. These women were asked questions on the following topics: - Background characteristics (including age, education, and media exposure) - Birth history and child mortality - Knowledge, use, and source of family planning methods - Antenatal, delivery, and postnatal care - Vaccinations and childhood illnesses - Breastfeeding and infant feeding practices - Women’s minimum dietary diversity - Marriage and sexual activity - Fertility preferences (including desire for more children and ideal number of children) - Women’s work and husbands’ background characteristics - Knowledge, awareness, and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs) - Knowledge, attitudes, and behaviour related to other health issues (e.g., smoking) - Female genital cutting - Fistula - Adult and maternal mortality - Domestic violence
The Man’s Questionnaire was administered to all men age 15-59 in the subsample of households selected for the men’s survey. The Man’s Questionnaire collected much of the same information as the Woman’s Questionnaire but was shorter because it did not contain a detailed reproductive history or questions on maternal and child health.
The Biomarker Questionnaire was used to record the results of anthropometry measurements and other biomarkers for women and children. This questionnaire was administered only to the subsample selected for the men’s survey. All children age 0-59 months and all women age 15-49 were eligible for height and weight measurements. Women age 15-49 were also eligible for haemoglobin testing. Children age 6-59 months were also eligible for haemoglobin testing, malaria testing, and genotype testing for sickle cell disease.
The purpose of the Fieldworker Questionnaire was to collect basic background information on the people who were collecting data in the field, including the team supervisor, field editor, interviewers, and the biomarker team