88 datasets found
  1. NCHS - Death rates and life expectancy at birth

    • catalog.data.gov
    • healthdata.gov
    • +6more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Death rates and life expectancy at birth [Dataset]. https://catalog.data.gov/dataset/nchs-death-rates-and-life-expectancy-at-birth
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  2. Health Inequality Project

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jan 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Health Inequality Project [Dataset]. http://doi.org/10.57761/7wg0-e126
    Explore at:
    parquet, arrow, avro, spss, csv, stata, sas, application/jsonlAvailable download formats
    Dataset updated
    Jan 17, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 2001 - Dec 31, 2014
    Description

    Abstract

    The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.

    Section 7

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 13

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 6

    This dataset was created on 2020-01-10 18:53:00.508 by merging multiple datasets together. The source datasets for this version were:

    Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile

    Commuting Zone Characteristics: CZ-level characteristics

    Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile

    Section 15

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 11

    This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.

    Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths

    Source

    Section 3

    This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 9

    This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/

    Source

    Section 10

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only

    Source

    Section 2

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 8

    This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.

    Source

    Section 12

    This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.

    Two variables constructed by the Cen

  3. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +1more
    application/rdfxml +5
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xml, tsv, csv, application/rdfxml, json, application/rssxmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  4. d

    COVID-19 Cases and Deaths by Gender - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Gender - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-gender
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by gender. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in Ju

  5. O

    COVID-19-Associated Deaths by Date of Death - ARCHIVE

    • data.ct.gov
    • datasets.ai
    • +1more
    application/rdfxml +5
    Updated Jun 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19-Associated Deaths by Date of Death - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Associated-Deaths-by-Date-of-Death-ARCHIV/abag-bjkj
    Explore at:
    csv, json, xml, application/rdfxml, application/rssxml, tsvAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    Count of COVID-19-associated deaths by date of death. Deaths reported to either the OCME or DPH are included in the COVID-19 data. COVID-19-associated deaths include persons who tested positive for COVID-19 around the time of death and persons who were not tested for COVID-19 whose death certificate lists COVID-19 disease as a cause of death or a significant condition contributing to death.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Note the counts in this dataset may vary from the death counts in the other COVID-19-related datasets published on data.ct.gov, where deaths are counted on the date reported rather than the date of death.

    Starting in July 2020, this dataset will be updated every weekday. Data are subject to future revision as reporting changes.

  6. Pri-2012 Private Retirement Plans Mortality Study

    • soa.org
    xlsx
    Updated Oct 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Society of Actuaries (2019). Pri-2012 Private Retirement Plans Mortality Study [Dataset]. https://www.soa.org/resources/experience-studies/2019/pri-2012-private-mortality-tables/
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 23, 2019
    Dataset provided by
    Society of Actuarieshttp://www.soa.org/
    Time period covered
    2010 - 2014
    Area covered
    United States of America
    Description

    Mortality experience data from 2010 through 2014 on private pension plans in the United States

  7. China CN: Life Expectancy: Male: Liaoning

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). China CN: Life Expectancy: Male: Liaoning [Dataset]. https://www.ceicdata.com/en/china/population-life-expectancy-by-region/cn-life-expectancy-male-liaoning
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2020
    Area covered
    China
    Description

    Life Expectancy: Male: Liaoning data was reported at 75.960 Year Old in 12-01-2020. This records an increase from the previous number of 74.120 Year Old for 12-01-2010. Life Expectancy: Male: Liaoning data is updated decadal, averaging 72.815 Year Old from Dec 1990 (Median) to 12-01-2020, with 4 observations. The data reached an all-time high of 75.960 Year Old in 12-01-2020 and a record low of 68.720 Year Old in 12-01-1990. Life Expectancy: Male: Liaoning data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Life Expectancy: By Region.

  8. C

    China CN: Life Expectancy: Male: Sichuan

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China CN: Life Expectancy: Male: Sichuan [Dataset]. https://www.ceicdata.com/en/china/population-life-expectancy-by-region/cn-life-expectancy-male-sichuan
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2020
    Area covered
    China
    Description

    Life Expectancy: Male: Sichuan data was reported at 75.010 Year Old in 12-01-2020. This records an increase from the previous number of 72.250 Year Old for 12-01-2010. Life Expectancy: Male: Sichuan data is updated decadal, averaging 70.750 Year Old from Dec 1990 (Median) to 12-01-2020, with 4 observations. The data reached an all-time high of 75.010 Year Old in 12-01-2020 and a record low of 65.060 Year Old in 12-01-1990. Life Expectancy: Male: Sichuan data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Life Expectancy: By Region.

  9. J

    Japan IPSS: Median Mortality (MM): Mediam Birth Rate (MBR): Median Age

    • ceicdata.com
    Updated Apr 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). Japan IPSS: Median Mortality (MM): Mediam Birth Rate (MBR): Median Age [Dataset]. https://www.ceicdata.com/en/japan/2023-population-estimates-2020-census-national-institute-of-population-and-social-security-research/ipss-median-mortality-mm-mediam-birth-rate-mbr-median-age
    Explore at:
    Dataset updated
    Apr 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2059 - Dec 1, 2070
    Area covered
    Japan
    Description

    Japan IPSS: Median Mortality (MM): Mediam Birth Rate (MBR): Median Age data was reported at 56.600 NA in 2070. This records an increase from the previous number of 56.500 NA for 2069. Japan IPSS: Median Mortality (MM): Mediam Birth Rate (MBR): Median Age data is updated yearly, averaging 54.000 NA from Dec 2020 (Median) to 2070, with 51 observations. The data reached an all-time high of 56.600 NA in 2070 and a record low of 48.500 NA in 2020. Japan IPSS: Median Mortality (MM): Mediam Birth Rate (MBR): Median Age data remains active status in CEIC and is reported by National Institute of Population and Social Security Research. The data is categorized under Global Database’s Japan – Table JP.G005: 2023 Population Estimates: 2020 Census: National Institute of Population and Social Security Research.

  10. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  11. Japan IPSS: Median Mortality (MM): Median Birth Rate (MBR): Average Age

    • ceicdata.com
    Updated Apr 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). Japan IPSS: Median Mortality (MM): Median Birth Rate (MBR): Average Age [Dataset]. https://www.ceicdata.com/en/japan/2023-population-estimates-2020-census-national-institute-of-population-and-social-security-research/ipss-median-mortality-mm-median-birth-rate-mbr-average-age
    Explore at:
    Dataset updated
    Apr 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2059 - Dec 1, 2070
    Area covered
    Japan
    Description

    Japan IPSS: Median Mortality (MM): Median Birth Rate (MBR): Average Age data was reported at 54.000 NA in 2070. This stayed constant from the previous number of 54.000 NA for 2069. Japan IPSS: Median Mortality (MM): Median Birth Rate (MBR): Average Age data is updated yearly, averaging 51.900 NA from Dec 2020 (Median) to 2070, with 51 observations. The data reached an all-time high of 54.000 NA in 2070 and a record low of 47.600 NA in 2020. Japan IPSS: Median Mortality (MM): Median Birth Rate (MBR): Average Age data remains active status in CEIC and is reported by National Institute of Population and Social Security Research. The data is categorized under Global Database’s Japan – Table JP.G005: 2023 Population Estimates: 2020 Census: National Institute of Population and Social Security Research.

  12. C

    China CN: Life Expectancy: Female: Tianjin

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China CN: Life Expectancy: Female: Tianjin [Dataset]. https://www.ceicdata.com/en/china/population-life-expectancy-by-region/cn-life-expectancy-female-tianjin
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2020
    Area covered
    China
    Description

    Life Expectancy: Female: Tianjin data was reported at 83.400 Year Old in 12-01-2020. This records an increase from the previous number of 80.480 Year Old for 12-01-2010. Life Expectancy: Female: Tianjin data is updated decadal, averaging 78.555 Year Old from Dec 1990 (Median) to 12-01-2020, with 4 observations. The data reached an all-time high of 83.400 Year Old in 12-01-2020 and a record low of 73.730 Year Old in 12-01-1990. Life Expectancy: Female: Tianjin data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Life Expectancy: By Region.

  13. n

    Somali Health and Demographic Survey 2020 - Somalia

    • microdata.nbs.gov.so
    Updated Jul 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Somali National Bureau of Statistics (2023). Somali Health and Demographic Survey 2020 - Somalia [Dataset]. https://microdata.nbs.gov.so/index.php/catalog/50
    Explore at:
    Dataset updated
    Jul 21, 2023
    Dataset authored and provided by
    Somali National Bureau of Statistics
    Time period covered
    2018 - 2019
    Area covered
    Somalia
    Description

    Abstract

    The SHDS is a national sample survey designed to provide information on population, birth spacing, reproductive health, nutrition, maternal and child health, child survival, HIV/AIDS and sexually transmitted infections (STIs), in Somalia.. The main objective of the SHDS was to provide evidence on the health and demographic characteristics of the Somali population that will guide the development of programmes and formulation of effective policies. This information would also help monitor and evaluate national, sub-national and sector development plans, including the Sustainable Development Goals (SDGs), both by the government and development partners. The target population for SHDS was the women between 15 and 49 years of age, and the children less than the age of 5 years

    Geographic coverage

    The SHDS 2020 was a nationally representative household survey.

    Analysis unit

    The unit analysis of this survey are households, women aged 15-49 and children aged 0-5

    Universe

    This sample survey covered Women aged 15-49 and Children aged 0-5 years.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The sample for the SHDS was designed to provide estimates of key indicators for the country as a whole, for each of the eighteen pre-war geographical regions, which are the country's first-level administrative divisions, as well as separately for urban, rural and nomadic areas. With the exception of Banadir region, which is considered fully urban, each region was stratified into urban, rural and nomadic areas, yielding a total of 55 sampling strata. All three strata of Lower Shabelle and Middle Juba regions, as well as the rural and nomadic strata of Bay region, were completely excluded from the survey due to security reasons. A final total of 47 sampling strata formed the sampling frame. Through the use of up-to-date, high-resolution satellite imagery, as well as on-the-ground knowledge of staff from the respective ministries of planning, all dwelling structures were digitized in urban and rural areas. Enumeration Areas (EAs) were formed onscreen through a spatial count of dwelling structures in a Geographic Information System (GIS) software. Thereafter, a sample ground verification of the digitized structures was carried out for large urban and rural areas and necessary adjustments made to the frame.

    Each EA created had a minimum of 50 and a maximum of 149 dwelling structures. A total of 10,525 EAs were digitized: 7,488 in urban areas and 3,037 in rural areas. However, because of security and accessibility constraints, not all digitized areas were included in the final sampling frame-9,136 EAs (7,308 in urban and 1,828 in rural) formed the final frame. The nomadic frame comprised an updated list of temporary nomadic settlements (TNS) obtained from the nomadic link workers who are tied to these settlements. A total of 2,521 TNS formed the SHDS nomadic sampling frame. The SHDS followed a three-stage stratified cluster sample design in urban and rural strata with a probability proportional to size, for the sampling of Primary Sampling Units (PSU) and Secondary Sampling Units (SSU) (respectively at the first and second stage), and systematic sampling of households at the third stage. For the nomadic stratum, a two-stage stratified cluster sample design was applied with a probability proportional to size for sampling of PSUs at the first stage and systematic sampling of households at the second stage. To ensure that the survey precision is comparable across regions, PSUs were allocated equally to all regions with slight adjustments in two regions. Within each stratum, a sample of 35 EAs was selected independently, with probability proportional to the number of digitized dwelling structures. In this first stage, a total of 1,433 EAs were allocated (to urban - 770 EAs, rural - 488 EAs, and nomadic - 175 EAs) representing about 16 percent of the total frame of EAs. In the urban and rural selected EAs, all households were listed and information on births and deaths was recorded through the maternal mortality questionnaire. The data collected in this first phase was cleaned and a summary of households listed per EA formed the sampling frames for the second phase. In the second stage, 10 EAs were sampled out of the possible 35 that were listed, using probability proportional to the number of households. All households in each of these 10 EAs were serialized based on their location in the EA and 30 of these households sampled for the survey. The serialization was done to ensure distribution of the households interviewed for the survey in the EA sampled. A total of 220 EAs and 150 EAs were allocated to urban and rural strata respectively, while in the third stage, an average of 30 households were selected from the listed households in every EA to yield a total of 16,360 households from 538 EAs covered (220 EAs in urban, 147 EAs in rural and 171 EAs in nomadic) out of the sampled 545 EAs. In nomadic areas, a sample of 10 EAs (in this case TNS) were selected from each nomadic stratum, with probability proportional to the number of estimated households. A complete listing of households was carried out in the selected TNS followed by the selection of 30 households for the main survey interview. In those TNS with less than 30 households, all households were interviewed for the main survey. All eligible ever-married women aged 12 to 49 and never-married women aged 15 to 49 were interviewed in the selected households, while the household questionnaire was administered to all households selected. The maternal mortality questionnaire was administered to all households in each sampled TNS.

    Mode of data collection

    Face-to-face [f2f]

    Response rate

    A total of 16,360 households were selected for the sample, of which 15,870 were occupied. Of the occupied households, 15,826 were successfully interviewed, yielding a response rate of 99.7 percent. The SHDS 2020 interviewed 16,486 women-11,876 ever-married women and 4,610 never-married women.

    Sampling error estimates

    Sampling errors are important data quality parameters which give measure of the precision of the survey estimates. They aid in determining the statistical reliability of survey estimates. The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Somaliland Health and Demographic Survey ( SHDS 2020) to minimise this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically. Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the SHDS 2020 is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design. If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the SHDS 2020 sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The variance approximation procedure that account for the complex sample design used R program was estimated sampling errors in SHDS which is Taylor series linearization. The non-linear estimates are approximated by linear ones for estimating variance. The linear approximation is derived by taking the first-order Tylor series approximation. Standard variance estimation methods for linear statistics are then used to estimate the variance of the linearized estimator. The Taylor linearisation method treats any linear statistic such as a percentage or mean as a ratio estimate, r = y/x, where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration

    Data appraisal

    • Household age distribution
    • Age distribution of eligible and interviewed women
    • Pregnancy- related mortality trends Note: See detailed data quality tables in APPENDIX C of the report.
  14. w

    Demographic and Health Survey 2019-2020 - Rwanda

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Statistics of Rwanda (NISR) (2021). Demographic and Health Survey 2019-2020 - Rwanda [Dataset]. https://microdata.worldbank.org/index.php/catalog/4065
    Explore at:
    Dataset updated
    Oct 5, 2021
    Dataset authored and provided by
    National Institute of Statistics of Rwanda (NISR)
    Time period covered
    2019 - 2020
    Area covered
    Rwanda
    Description

    Abstract

    The 2019-20 Rwanda Demographic and Health Survey (2019-20 RDHS) follows those implemented in 1992, 2000, 2005, 2010, and 2014-15. A nationally representative sample of 500 clusters and 13,000 households were selected. All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey.

    The primary objective of the 2019-20 RDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2019-20 RDHS: • collected data on fertility levels and preferences; contraceptive use; maternal and child health; infant, child, and neonatal mortality levels; maternal mortality; gender; nutrition; awareness about HIV/AIDS; self-reported sexually transmitted infections (STIs); and other health issues relevant to the achievement of the Sustainable Development Goals (SDGs) • obtained information on the availability of, access to, and use of mosquito nets as part of the National Malaria Control Program • gathered information on other health issues such as injections, tobacco use, and health insurance • collected data on women’s empowerment and domestic violence • tested household salt for iodine levels • obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and women age 15-49 • conducted anemia testing of women age 15-49 and children age 6-59 months • conducted malaria testing of women age 15-49 and children age 6-59 months • conducted HIV testing of women age 15-49 and men age 15-59 • conducted micronutrient testing of women age 15-49 and children age 6-59 months

    The information collected through the 2019-20 RDHS is intended to assist policymakers and program managers in evaluating and designing programs and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15 to 59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, all men age 15-59, and all children aged 0-5 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2019-20 RDHS is the fourth Rwanda Population and Housing Census (RPHC), which was conducted in 2012 by the National Institute of Statistics of Rwanda (NISR). The sampling frame is a complete list of enumeration areas (EAs) covering the whole country provided by the National Institute of Statistics, the implementing agency for the RDHS. An EA is a natural village or part of a village created for the 2012 RPHC; these areas served as the counting units for the census.

    The 2019-20 RDHS followed a two-stage sample design and was intended to allow estimates of key indicators at the national level as well as for urban and rural areas, five provinces, and each of Rwanda’s 30 districts for some limited indicators. The first stage involved selecting sample points (clusters) consisting of EAs delineated for the 2012 RPHC. A total of 500 clusters were selected, 112 in urban areas and 388 in rural areas.

    The second stage involved systematic sampling of households. A household listing operation was undertaken in all selected EAs from June to August 2019, and households to be included in the survey were randomly selected from these lists. Twenty-six households were selected from each sample point, for a total sample size of 13,000 households. Because of the approximately equal sample sizes in each district, the sample is not self-weighting at the national level, and weighting factors have been added to the data file so that the results will be proportional at the national level.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Five questionnaires were used for the 2019-20 RDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaires, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Rwanda.

    Cleaning operations

    The processing of the 2019-20 RDHS data began almost as soon as the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the Internet File Streaming System (IFSS) to the NISR central office in City of Kigali. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding the open-ended questions. The NISR data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximized the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in the second week of September 2020.

    Response rate

    A total of 13,005 households were selected for the sample, of which 12,951 were occupied. All but two occupied households (12,949) were successfully interviewed, yielding a response rate of 100.0%. In the interviewed households, 14,675 women age 15-49 were identified for individual interviews; interviews were completed with 14,634 women, yielding a response rate of 99.7%. In the subsample selected for the male survey, 6,503 households were selected, of which 6,472 were occupied. All but one occupied household (6,471) were successfully interviewed, yielding a response rate of 100.0%. In this subsample, 6,544 men age 15-59 were identified and 6,513 were successfully interviewed, yielding a response rate of 99.5%. In the subsample selected for the micronutrient survey, 3,501 households were selected, of which 3,492 were occupied. All but one of the occupied households (3,491) were successfully interviewed, yielding a response rate of 100.0%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2019-20 Rwanda Demographic and Health Survey (2019-20 RDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2019-20 RDHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2019-20 RDHS sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Household age distribution
    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Completeness of reporting
    • Births by calendar years
    • Reporting of age at death in days
    • Reporting of age at death in months
    • Standardization exercise results from anthropometry training
    • Height and weight data completeness and quality for children
    • Height measurements from random sub-sample of measured children
    • Number of enumeration areas
  15. China CN: Life Expectancy: Gansu

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China CN: Life Expectancy: Gansu [Dataset]. https://www.ceicdata.com/en/china/population-life-expectancy-by-region/cn-life-expectancy-gansu
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2020
    Area covered
    China
    Description

    Life Expectancy: Gansu data was reported at 75.640 Year Old in 12-01-2020. This records an increase from the previous number of 72.230 Year Old for 12-01-2010. Life Expectancy: Gansu data is updated decadal, averaging 69.850 Year Old from Dec 1990 (Median) to 12-01-2020, with 4 observations. The data reached an all-time high of 75.640 Year Old in 12-01-2020 and a record low of 67.240 Year Old in 12-01-1990. Life Expectancy: Gansu data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Life Expectancy: By Region.

  16. C

    China CN: Life Expectancy: Female: Hubei

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China CN: Life Expectancy: Female: Hubei [Dataset]. https://www.ceicdata.com/en/china/population-life-expectancy-by-region/cn-life-expectancy-female-hubei
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2020
    Area covered
    China
    Description

    Life Expectancy: Female: Hubei data was reported at 80.530 Year Old in 12-01-2020. This records an increase from the previous number of 77.350 Year Old for 12-01-2010. Life Expectancy: Female: Hubei data is updated decadal, averaging 75.185 Year Old from Dec 1990 (Median) to 12-01-2020, with 4 observations. The data reached an all-time high of 80.530 Year Old in 12-01-2020 and a record low of 69.230 Year Old in 12-01-1990. Life Expectancy: Female: Hubei data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Life Expectancy: By Region.

  17. C

    China Life Expectancy: Female

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). China Life Expectancy: Female [Dataset]. https://www.ceicdata.com/en/china/population-life-expectancy-by-region/life-expectancy-female
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1981 - Dec 1, 2020
    Area covered
    China
    Description

    China Life Expectancy: Female data was reported at 80.880 Year Old in 2020. This records an increase from the previous number of 79.430 Year Old for 2015. China Life Expectancy: Female data is updated yearly, averaging 75.250 Year Old from Dec 1981 (Median) to 2020, with 7 observations. The data reached an all-time high of 80.880 Year Old in 2020 and a record low of 69.270 Year Old in 1981. China Life Expectancy: Female data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Life Expectancy: By Region.

  18. w

    National Demographic and Health Survey 2017 - Philippines

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 4, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philippines Statistics Authority (PSA) (2018). National Demographic and Health Survey 2017 - Philippines [Dataset]. https://microdata.worldbank.org/index.php/catalog/3220
    Explore at:
    Dataset updated
    Oct 4, 2018
    Dataset authored and provided by
    Philippines Statistics Authority (PSA)
    Time period covered
    2017
    Area covered
    Philippines
    Description

    Abstract

    The 2017 Philippines National Demographic and Health Survey (NDHS 2017) is a nationwide survey with a nationally representative sample of approximately 30,832 housing units. The primary objective of the survey is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS 2017 collected information on marriage, fertility levels, fertility preferences, awareness and use of family planning methods, breastfeeding, maternal and child health, child mortality, awareness and behavior regarding HIV/AIDS, women’s empowerment, domestic violence, and other health-related issues such as smoking.

    The information collected through the NDHS 2017 is intended to assist policymakers and program managers in the Department of Health (DOH) and other organizations in designing and evaluating programs and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49

    Universe

    The survey covered all de jure household members (usual residents) and all women age 15-49 years resident in the sample household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the NDHS 2017 is based on a two-stage stratified sample design using the Master Sample Frame (MSF), designed and compiled by the PSA. The MSF is constructed based on the results of the 2010 Census of Population and Housing and updated based on the 2015 Census of Population. The first stage involved a systematic selection of 1,250 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.

    In the second stage, an equal take of either 20 or 26 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the pre-selected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.

    All women age 15-49 who were either permanent residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on domestic violence.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Two questionnaires were used for the NDHS 2017: the Household Questionnaire and the Woman’s Questionnaire. Both questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, universities, and international agencies.

    Cleaning operations

    The processing of the NDHS 2017 data began almost as soon as fieldwork started. As data collection was completed in each PSU, all electronic data files were transferred via an Internet file streaming system (IFSS) to the PSA central office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the PSU. Secondary editing involved resolving inconsistencies and the coding of openended questions; the former was carried out in the central office by a senior data processor, while the latter was taken on by regional coordinators and central office staff during a 5-day workshop following the completion of the fieldwork. Data editing was carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage, because it maximized the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for more effective monitoring. The secondary editing of the data was completed by November 2017. The final cleaning of the data set was carried out by data processing specialists from The DHS Program by the end of December 2017.

    Response rate

    A total of 31,791 households were selected for the sample, of which 27,855 were occupied. Of the occupied households, 27,496 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 25,690 women age 15-49 were identified for individual interviews; interviews were completed with 25,074 women, yielding a response rate of 98%.

    The household response rate is slightly lower in urban areas than in rural areas (98% and 99%, respectively); however, there is no difference by urban-rural residence in response rates among women (98% for each).

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Philippines National Demographic and Health Survey (NDHS) 2017 to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the NDHS 2017 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the NDHS 2017 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix C of the survey final report.

  19. N

    North Korea KP: Life Expectancy at Birth: Total

    • ceicdata.com
    Updated Feb 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). North Korea KP: Life Expectancy at Birth: Total [Dataset]. https://www.ceicdata.com/en/north-korea/health-statistics/kp-life-expectancy-at-birth-total
    Explore at:
    Dataset updated
    Feb 5, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    North Korea
    Description

    North Korea KP: Life Expectancy at Birth: Total data was reported at 71.685 Year in 2016. This records an increase from the previous number of 71.457 Year for 2015. North Korea KP: Life Expectancy at Birth: Total data is updated yearly, averaging 66.571 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 71.685 Year in 2016 and a record low of 51.297 Year in 1960. North Korea KP: Life Expectancy at Birth: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s North Korea – Table KP.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision, or derived from male and female life expectancy at birth from sources such as: (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  20. C

    China CN: Life Expectancy: Male: Shandong

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). China CN: Life Expectancy: Male: Shandong [Dataset]. https://www.ceicdata.com/en/china/population-life-expectancy-by-region/cn-life-expectancy-male-shandong
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2020
    Area covered
    China
    Description

    Life Expectancy: Male: Shandong data was reported at 76.460 Year Old in 12-01-2020. This records an increase from the previous number of 74.050 Year Old for 12-01-2010. Life Expectancy: Male: Shandong data is updated decadal, averaging 72.875 Year Old from Dec 1990 (Median) to 12-01-2020, with 4 observations. The data reached an all-time high of 76.460 Year Old in 12-01-2020 and a record low of 68.640 Year Old in 12-01-1990. Life Expectancy: Male: Shandong data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Life Expectancy: By Region.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). NCHS - Death rates and life expectancy at birth [Dataset]. https://catalog.data.gov/dataset/nchs-death-rates-and-life-expectancy-at-birth
Organization logo

NCHS - Death rates and life expectancy at birth

Explore at:
Dataset updated
Apr 23, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

Search
Clear search
Close search
Google apps
Main menu