6 datasets found
  1. h

    NBA-Player-Career-Stats

    • huggingface.co
    Updated May 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mr. Stack (2024). NBA-Player-Career-Stats [Dataset]. https://huggingface.co/datasets/Hatman/NBA-Player-Career-Stats
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2024
    Authors
    Mr. Stack
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description

    This dataset contains a single CSV file with lifetime statistics for NBA players. The data includes various box score stats and personal information for each player's career.

      Data Fields
    

    The CSV file contains the following columns:

    FULL_NAME: The player's full name AST: Total career assists BLK: Total career blocks DREB: Total career defensive rebounds FG3A: Total 3-point field goal attempts FG3M: Total 3-point field goals made FG3_PCT: 3-point field… See the full description on the dataset page: https://huggingface.co/datasets/Hatman/NBA-Player-Career-Stats.

  2. t

    NBA Player Dataset & Prediction Model Artifacts

    • test.researchdata.tuwien.ac.at
    bin, csv, json, png +2
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    json, png, csv, bin, txt, text/markdownAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    TU Wien
    Authors
    Burak Baltali; Burak Baltali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This dataset contains end-of-season box-score aggregates for NBA players over the 2012–13 through 2023–24 seasons, split into training and test sets for both regular season and playoffs. Each CSV has one row per player per season with columns for points, rebounds, steals, turnovers, 3-pt attempts, FG attempts, plus identifiers.

    Brief overview of Files

    1. end-of-season box-score aggregates (2012–13 – 2023–24) split into train/test;

    2. the Jupyter notebook (Analysis.ipynb); All the code can be executed in there

    3. the trained model binary (nba_model.pkl); Serialized Random Forest model artifact

    4. Evaluation plots (LAL vs. whole‐league) for regular & playoff predictions are given as png outputs and uploaded in here

    5. FAIR4ML metadata (fair4ml_metadata.jsonld);
      see README.md and abbreviations.txt for file details.”

    6. For further information you can go to the github site (Link below)

    File Details

    Notebook

    Analysis.ipynb: Involves the graphica output of the trained and tested data.

    Trained/ Test csv Data

    NameDescriptionPID
    regular_train.csvFor training purposes, the seasons 2012-2013 through 2021-2022 were selected as training purpose4421e56c-4cd3-4ec1-a566-a89d7ec0bced
    regular_test.csv:For testing purpose of the regular season, the 2022-2023 season was selectedf9d84d5e-db01-4475-b7d1-80cfe9fe0e61
    playoff_train.csvFor training purposes of the playoff season, the seasons 2012-2013 through 2022-2023 were selected bcb3cf2b-27df-48cc-8b76-9e49254783d0
    playoff_test.csvFor testing purpose of the playoff season, 2023-2024 season was selectedde37d568-e97f-4cb9-bc05-2e600cc97102

    Others

    abbrevations.txt: Involves the fundemental abbrevations of the columns in csv data

    Additional Notes

    Raw csv files are taken from Kaggle (Source: https://www.kaggle.com/datasets/shivamkumar121215/nba-stats-dataset-for-last-10-years/data)

    Some preprocessing has to be done before uploading into dbrepo

    Plots have also been uploaded as an output for visual purposes.

    A more detailed version can be found on github (Link: https://github.com/bubaltali/nba-prediction-analysis/)

  3. NBA_list

    • kaggle.com
    Updated Aug 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmiR (2019). NBA_list [Dataset]. https://www.kaggle.com/datasets/atavangar/nba-list
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 6, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    AmiR
    Description

    Context

    I needed an easy, interesting dataset for a presentation a few days before NBA final this year. So I thought NBA players' stats might catch my audiences attention. Here is the dataset. I've also shared a kernel including a few interactive visualizations of the data. Let me know what you think.

    Content

    NBA 2018/2019 Season Players' Statistics Data. I obtained data from NBA.com and converted to CSV format.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  4. h

    nba-games

    • huggingface.co
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamza Shezad (2025). nba-games [Dataset]. https://huggingface.co/datasets/hamzas/nba-games
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 13, 2025
    Authors
    Hamza Shezad
    Description

    NBA Games Data

    This data is an updated version of the original NBA Games by Nathan Lauga.

    Data source Code Updated to: 2025-02-13

    The dataset retains the original format and includes the following files:

    games.csv – Summary of NBA games, including scores and team details. games_details.csv – Detailed player statistics for each game. players.csv – Player information. ranking.csv – Daily NBA team rankings. teams.csv – List of all NBA teams.

  5. NBA Regular Season Data 1950-2021

    • kaggle.com
    Updated Jul 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amanuel Wolde-Kidan (2021). NBA Regular Season Data 1950-2021 [Dataset]. https://www.kaggle.com/amanuelwk/nba-regular-season-data/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 12, 2021
    Dataset provided by
    Kaggle
    Authors
    Amanuel Wolde-Kidan
    License

    http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html

    Description

    NBA Regular Season Data 1950-2021

    This data is obtained from basketball-reference.com using a self-written webcrawler. It contains detailed game data and player specific stats for each game of the respective season.

    Content

    Data for each season is arranged in two csv-files. The first file season_XXXX_basic.csv contains basic data for each game of the season, such as the date, time, scores and attendance. The second file season_XXXX_detailed.csv contains additional statistics for each player participating in a specific game, such as the minutes played, field goals made and field goals attempted. A lot of data is missing for older seasons, since it wasn't recorded and is not listed on basketball-reference.com.

    Inspiration

    It would be interesting to see what statistics changed over the course of time when the game evolved and teams focused more on 3PT shots for example.

  6. Data used in the manuscript - A Hierarchical Approach for Evaluating Athlete...

    • zenodo.org
    • data.niaid.nih.gov
    csv, txt
    Updated Jun 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thiago de Paula Oliveira; Thiago de Paula Oliveira (2023). Data used in the manuscript - A Hierarchical Approach for Evaluating Athlete Performance with an Application in Elite Basketball [Dataset]. http://doi.org/10.5281/zenodo.8056757
    Explore at:
    txt, csvAvailable download formats
    Dataset updated
    Jun 20, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Thiago de Paula Oliveira; Thiago de Paula Oliveira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The database contains several datasets and files with NBA statistical data spanning four seasons (2015-2016 to 2018-2019). These datasets were procured from the Basketball Reference database (https://www.basketball-reference.com/), a publicly accessible source of NBA data.

    The main file, `dat.cleaned.csv`, includes the Win/Loss records for all thirty NBA teams, along with box scores and advanced statistics. The data captured over the four seasons correspond to about 4,920 regular-season games. A distinguishing feature of this dataset is the repeated measurements per player within a team across the seasons. However, it's important to note that these repeated measurements are not independent, necessitating the use of hierarchical modelling to properly handle the data.

    Two sets of additional text files (`per_2017.txt`, `per_2018.txt`, `rpm_2017.txt`, `rpm_2018.txt`) provide specific metrics for player performance. The 'PER' files contain the Athlete Efficiency Rating (PER) for the years 2017 and 2018. The 'RPM' files contain the ESPN-developed score called Real Plus-Minus (RPM) for the same years.

    However, potential biases or limitations within the datasets should be acknowledged. For instance, the Basketball Reference website might not include data from some matches or may exclude certain variables, potentially affecting the quality and accuracy of the dataset.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Mr. Stack (2024). NBA-Player-Career-Stats [Dataset]. https://huggingface.co/datasets/Hatman/NBA-Player-Career-Stats

NBA-Player-Career-Stats

Hatman/NBA-Player-Career-Stats

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 19, 2024
Authors
Mr. Stack
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

Dataset Description

This dataset contains a single CSV file with lifetime statistics for NBA players. The data includes various box score stats and personal information for each player's career.

  Data Fields

The CSV file contains the following columns:

FULL_NAME: The player's full name AST: Total career assists BLK: Total career blocks DREB: Total career defensive rebounds FG3A: Total 3-point field goal attempts FG3M: Total 3-point field goals made FG3_PCT: 3-point field… See the full description on the dataset page: https://huggingface.co/datasets/Hatman/NBA-Player-Career-Stats.

Search
Clear search
Close search
Google apps
Main menu