5 datasets found
  1. a

    NC COVID-19 Cases by County

    • coronavirus-onslow.hub.arcgis.com
    Updated Feb 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onslow County GIS (2021). NC COVID-19 Cases by County [Dataset]. https://coronavirus-onslow.hub.arcgis.com/datasets/nc-covid-19-cases-by-county
    Explore at:
    Dataset updated
    Feb 22, 2021
    Dataset authored and provided by
    Onslow County GIS
    Area covered
    Description

    Data from the state on statistics & counts of COVID-19 data by zipcode. This data is updated and maintained by the North Carolina GIS Department. It is typically updated manually once a day. Any questions please call the Onslow County GIS Department at 1-910-937-1190, Monday - Friday 8am - 5pm.

  2. a

    NC COVID-19 by ZIPCODE

    • arcgis.com
    Updated Sep 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onslow County GIS (2020). NC COVID-19 by ZIPCODE [Dataset]. https://www.arcgis.com/sharing/oauth2/social/authorize?socialLoginProviderName=github&oauth_state=aUNHrNkY1EbeafBrENCL1_Q..FVl5JgvN91-90gjSY-rDLX4XQIiEeqoO7afp5IvGEpVLOjD1AGS-UUmHvobSEqcbnuSsUPySyn3fB8CWJE6ySywq0CnN4FpZHF8XZUUi2f9Be3ZX8eAG1ktIbwY8eqLgZcM0uAoppew2yVmJJsyqEzAsprYZu43XvRA0XV6csMawf_39Ak7x9_NzC2Ht0EzwkFJVEBV5a6YEWzGTOLGOPkqNIpxE8k3jVw5ESkweqhVwEIowE9dMWo-MZmbqmbgTLtZvdT2ORYrY6MwebSyjPJwQpSDu50CsNfhncIqsOFwNMRF_CVRyIWbhAYLJyLSjho65zIFpCA86jxrKRH39RA4OWtNuliIUsLE_HlEK1qOP5jz8B77Mc3gZFJ3RLGKQQopZonGYT0HrvbX5N70gv4o.
    Explore at:
    Dataset updated
    Sep 4, 2020
    Dataset authored and provided by
    Onslow County GIS
    Area covered
    Description

    North Carolina NC COVID-19 Cases and Deaths by ZIP Code. This base web map was created for the NC COVID-19 web application. Data provided by NCDHHS department. Any questions please call the Onslow County GIS Department at 1-910-937-1190, Monday - Friday 8am - 5pm.

  3. c

    The COVID Tracking Project

    • covidtracking.com
    google sheets
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The COVID Tracking Project [Dataset]. https://covidtracking.com/
    Explore at:
    google sheetsAvailable download formats
    Description

    The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.

    Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.

    From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.

  4. Provisional COVID-19 death counts and rates by month, jurisdiction of...

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts and rates by month, jurisdiction of residence, and demographic characteristics [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-and-rates-by-month-jurisdiction-of-residence-and-demogra
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  5. d

    Processed data for the analysis of human mobility changes from COVID-19...

    • search.dataone.org
    • data.niaid.nih.gov
    • +2more
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jin Bai; Michael Caslin; Madhusudan Katti (2025). Processed data for the analysis of human mobility changes from COVID-19 lockdown on bird occupancy in North Carolina, USA [Dataset]. http://doi.org/10.5061/dryad.gb5mkkwxr
    Explore at:
    Dataset updated
    Jul 29, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Jin Bai; Michael Caslin; Madhusudan Katti
    Area covered
    North Carolina
    Description

    The COVID-19 pandemic lockdown worldwide provided a unique research opportunity for ecologists to investigate the human-wildlife relationship under abrupt changes in human mobility, also known as Anthropause. Here we chose 15 common non-migratory bird species with different levels of synanthrope and we aimed to compare how human mobility changes could influence the occupancy of fully synanthropic species such as House Sparrow (Passer domesticus) versus casual to tangential synanthropic species such as White-breasted Nuthatch (Sitta carolinensis). We extracted data from the eBird citizen science project during three study periods in the spring and summer of 2020 when human mobility changed unevenly across different counties in North Carolina. We used the COVID-19 Community Mobility reports from Google to examine how community mobility changes towards workplaces, an indicator of overall human movements at the county level, could influence bird occupancy., The data source we used for bird data was eBird, a global citizen science project run by the Cornell Lab of Ornithology. We used the COVID-19 Community Mobility Reports by Google to represent the pause of human activities at the county level in North Carolina. These data are publicly available and were last updated on 10/15/2022. We used forest land cover data from NC One Map that has a high resolution (1-meter pixel) raster data from 2016 imagery to represent canopy cover at each eBird checklist location. We also used the raster data of the 2019 National Land Cover Database to represent the degree of development/impervious surface at each eBird checklist location. All three measurements were used for the highest resolution that was available to use. We downloaded the eBird Basic Dataset (EBD) that contains the 15 study species from February to June 2020. We also downloaded the sampling event data that contains the checklist efforts information. First, we used the R package Auk (versio..., , # Processed data for the analysis of human mobility changes on bird occupancy in NC

    https://doi.org/10.5061/dryad.gb5mkkwxr

    There are 3 types of data here including Google Community Mobility data, and processed data (data after extracting spatial covariates and merging with all covariates for the Occupancy Modeling as well as extracted predicted occupancy data that we used to create figures).

    Description of the data and file structure

    Google Community Mobility data: This is the dataset downloaded from https://www.google.com/covid19/mobility/ that measures the mobility changes throughout the world during the COVID-19 lockdown. Please visit the above website for more information about the data. Please see the "Anthropause_AMCR_02112024" R file (uploaded to Zenodo) for details on how we processed the raw data.

    | Dataset name | Dataset description ...

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Onslow County GIS (2021). NC COVID-19 Cases by County [Dataset]. https://coronavirus-onslow.hub.arcgis.com/datasets/nc-covid-19-cases-by-county

NC COVID-19 Cases by County

Explore at:
Dataset updated
Feb 22, 2021
Dataset authored and provided by
Onslow County GIS
Area covered
Description

Data from the state on statistics & counts of COVID-19 data by zipcode. This data is updated and maintained by the North Carolina GIS Department. It is typically updated manually once a day. Any questions please call the Onslow County GIS Department at 1-910-937-1190, Monday - Friday 8am - 5pm.

Search
Clear search
Close search
Google apps
Main menu