Facebook
TwitterDatabases of protein sequences and 3D structures of proteins. Collection of sequences from several sources, including translations from annotated coding regions in GenBank, RefSeq and TPA, as well as records from SwissProt, PIR, PRF, and PDB.
Facebook
TwitterThe NCBI taxonomy database is not a primary source for taxonomic or phylogenetic information. Furthermore, the database does not follow a single taxonomic treatise but rather attempts to incorporate phylogenetic and taxonomic knowledge from a variety of sources, including the published literature, web-based databases, and the advice of sequence submitters and outside taxonomy experts. Consequently, the NCBI taxonomy database is not a phylogenetic or taxonomic authority and should not be cited as such.
Facebook
TwitterDatabase of unannotated short single-read primarily genomic sequences from GenBank including random survey sequences clone-end sequences and exon-trapped sequences. The GSS division of GenBank is similar to the EST division, with the exception that most of the sequences are genomic in origin, rather than cDNA (mRNA). It should be noted that two classes (exon trapped products and gene trapped products) may be derived via a cDNA intermediate. Care should be taken when analyzing sequences from either of these classes, as a splicing event could have occurred and the sequence represented in the record may be interrupted when compared to genomic sequence. The GSS division contains (but is not limited to) the following types of data: * random single pass read genome survey sequences. * cosmid/BAC/YAC end sequences * exon trapped genomic sequences * Alu PCR sequences * transposon-tagged sequences Although dbGSS sequences are incorporated into the GSS Division of GenBank, annotation in dbGSS is more comprehensive and includes detailed information about the contributors, experimental conditions, and genetic map locations.
Facebook
TwitterComparison of the sequences of 36A23 ORFs with uncharacterized and characterized proteins available in the CAZy and NCBI databases.
Facebook
TwitterLinkOut is a service that allows you to link directly from PubMed and other NCBI databases to a wide range of information and services beyond the NCBI systems. LinkOut aims to facilitate access to relevant online resources in order to extend, clarify, and supplement information found in NCBI databases. Third parties can link directly from PubMed and other Entrez database records to relevant Web-accessible resources beyond the Entrez system. Includes full-text publications, biological databases, consumer health information and research tools.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The olfactory system is exposed to external and internal harmful agents that may impair the communication between the olfactory sensory neurons and olfactory brain areas. Inflammatory molecules increase in the olfactory system in response to infections and chronic systemic diseases. Interleukin-1β (IL-1β) is a cytokine produced in many inflammatory processes. In previous studies, we observed that IL-1β increased in the olfactory bulb (OB) of diabetic rats, which also presented olfactory dysfunction. This study aimed to determine whether IL-1β could be responsible for the olfactory impairment. To address this question, IL-1β and its antagonist IL-1Ra were microinjected in the OB of rats to evaluate the electrophysiological activity in the OB and entorhinal cortex (EC) by recording the local field potentials (LFPs) in resting conditions and during olfactory stimulation. RNA-seq analysis from NCBI databases demonstrated the expression of IL-1β receptor 1 (IL1-R1) in the OB from rats and mice. Interestingly, IL-1β reduced total spectral power in the OB and increased total signal frequency and gamma power in both OB and EC. Moreover, IL-1β reduced the amplitude and increased the latency of the olfactory evoked potentials (OEPs) after OB stimulation with amyl acetate. IL-1Ra microinjection before IL-1β rescued amplitude and latency of OEPs, but only partially reverted the effects of IL-1β in total spectral power and relative gamma power. In addition, IL-1Ra changed the electrophysiological activity of OB and EC; however, its effect was lower than that of IL-1β. These results suggest that IL-1β may induce olfactory dysfunction by suppressing neuronal activity in the OB and EC. Furthermore, IL-1β may also have a physiological role in the olfactory system since IL-1Ra can modify the electrical activity in these brain areas.
Facebook
Twitterhttp://www.ncbi.nlm.nih.gov/About/disclaimer.htmlhttp://www.ncbi.nlm.nih.gov/About/disclaimer.html
The gene database provides information on gene sequence, structure, location, and function for annotated genes from the NCBI database. Users can search by accession ID or keyword, compare and identify sequences using BLAST, or submit references into function (RIFs) based on experimental results. Bulk download and an update mailing list are available.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Indexed NCBI nucleotide database, used to benchmark CCMetagen in its original publication.To download from the command line, use:curl "https://mediaflux.researchsoftware.unimelb.edu.au:443/mflux/share.mfjp?_token=i8yedNiYfdjrBfGJ8Y5z1128247857&browser=true&filename=ncbi_nt_kma.zip" -d browser=false -o ncbi_nt_kma.zip
Facebook
TwitterA comprehensive, integrated, non-redundant, well-annotated set of reference sequences including genomic, transcript, and protein.
Facebook
TwitterDatabase that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.
Facebook
TwitterComparison of the sequences of 26H3 ORFS with uncharacterized and characterized proteins available in the CAZy and NCBI databases.
Facebook
TwitterA virtual database of annotations made by 50 database providers (April 2014) - and growing (see below), that map data to publication information. All NIF Data Federation sources can be part of this virtual database as long as they indicate the publications that correspond to data records. The format that NIF accepts is the PubMed Identifier, category or type of data that is being linked to, and a data record identifier. A subset of this data is passed to NCBI, as LinkOuts (links at the bottom of PubMed abstracts), however due to NCBI policies the full data records are not currently associated with PubMed records. Database providers can use this mechanism to link to other NCBI databases including gene and protein, however these are not included in the current data set at this time. (To view databases available for linking see, http://www.ncbi.nlm.nih.gov/books/NBK3807/#files.Databases_Available_for_Linking ) The categories that NIF uses have been standardized to the following types: * Resource: Registry * Resource: Software * Reagent: Plasmid * Reagent: Antibodies * Data: Clinical Trials * Data: Gene Expression * Data: Drugs * Data: Taxonomy * Data: Images * Data: Animal Model * Data: Microarray * Data: Brain connectivity * Data: Volumetric observation * Data: Value observation * Data: Activation Foci * Data: Neuronal properties * Data: Neuronal reconstruction * Data: Chemosensory receptor * Data: Electrophysiology * Data: Computational model * Data: Brain anatomy * Data: Gene annotation * Data: Disease annotation * Data: Cell Model * Data: Chemical * Data: Pathways For more information refer to Create a LinkOut file, http://neuinfo.org/nif_components/disco/interoperation.shtm Participating resources ( http://disco.neuinfo.org/webportal/discoLinkoutServiceSummary.do?id=4 ): * Addgene http://www.addgene.org/pgvec1 * Animal Imaging Database http://aidb.crbs.ucsd.edu * Antibody Registry http://www.neuinfo.org/products/antibodyregistry/ * Avian Brain Circuitry Database http://www.behav.org/abcd/abcd.php * BAMS Connectivity http://brancusi.usc.edu/ * Beta Cell Biology Consortium http://www.betacell.org/ * bioDBcore http://biodbcore.org/ * BioGRID http://thebiogrid.org/ * BioNumbers http://bionumbers.hms.harvard.edu/ * Brain Architecture Management System http://brancusi.usc.edu/bkms/ * Brede Database http://hendrix.imm.dtu.dk/services/jerne/brede/ * Cell Centered Database http://ccdb.ucsd.edu * CellML Model Repository http://www.cellml.org/models * CHEBI http://www.ebi.ac.uk/chebi/ * Clinical Trials Network (CTN) Data Share http://www.ctndatashare.org/ * Comparative Toxicogenomics Database http://ctdbase.org/ * Coriell Cell Repositories http://ccr.coriell.org/ * CRCNS - Collaborative Research in Computational Neuroscience - Data sharing http://crcns.org * Drug Related Gene Database https://confluence.crbs.ucsd.edu/display/NIF/DRG * DrugBank http://www.drugbank.ca/ * FLYBASE http://flybase.org/ * Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/ * Gene Ontology Tools http://www.geneontology.org/GO.tools.shtml * Gene Weaver http://www.GeneWeaver.org * GeneDB http://www.genedb.org/Homepage * Glomerular Activity Response Archive http://gara.bio.uci.edu * GO http://www.geneontology.org/ * Internet Brain Volume Database http://www.cma.mgh.harvard.edu/ibvd/ * ModelDB http://senselab.med.yale.edu/modeldb/ * Mouse Genome Informatics Transgenes ftp://ftp.informatics.jax.org/pub/reports/MGI_PhenotypicAllele.rpt * NCBI Taxonomy Browser http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html * NeuroMorpho.Org http://neuromorpho.org/neuroMorpho * NeuronDB http://senselab.med.yale.edu/neurondb * SciCrunch Registry http://neuinfo.org/nif/nifgwt.html?tab=registry * NIF Registry Automated Crawl Data http://lucene1.neuinfo.org/nif_resource/current/ * NITRC http://www.nitrc.org/ * Nuclear Receptor Signaling Atlas http://www.nursa.org * Olfactory Receptor DataBase http://senselab.med.yale.edu/ordb/ * OMIM http://omim.org * OpenfMRI http://openfmri.org * PeptideAtlas http://www.peptideatlas.org * RGD http://rgd.mcw.edu * SFARI Gene: AutDB https://gene.sfari.org/autdb/Welcome.do * SumsDB http://sumsdb.wustl.edu/sums/ * Temporal-Lobe: Hippocampal - Parahippocampal Neuroanatomy of the Rat http://www.temporal-lobe.com/ * The Cell: An Image Library http://www.cellimagelibrary.org/ * Visiome Platform http://platform.visiome.neuroinf.jp/ * WormBase http://www.wormbase.org * YPED http://medicine.yale.edu/keck/nida/yped.aspx * ZFIN http://zfin.org
Facebook
TwitterThe NCBI Taxonomy database is a curated set of names and classifications for all organisms that are represented in the Entrez databases. The Taxonomy database attempts to incorporate phylogenetic and taxonomic knowledge from a variety of sources, including the published literature, web-based databases, and the advice of sequence submitters and outside taxonomy experts.
Facebook
TwitterDatabase for a curated classification and nomenclature that contains the names of all organisms that are represented in the public sequence databases with at least one nucleotide or protein sequence. Data provided encompasses archaea, bacteria, eukaryota, viroids and viruses. The NCBI taxonomy database is not a primary source for taxonomic or phylogenetic information. Furthermore, the database does not follow a single taxonomic treatise but rather attempts to incorporate phylogenetic and taxonomic knowledge from a variety of sources, including the published literature, web-based databases, and the advice of sequence submitters and outside taxonomy experts. Consequently, the NCBI taxonomy database is not a phylogenetic or taxonomic authority and should not be cited as such.
Facebook
TwitterDatabase developed to archive and distribute clinical data and results from studies that have investigated interaction of genotype and phenotype in humans. Database to archive and distribute results of studies including genome-wide association studies, medical sequencing, molecular diagnostic assays, and association between genotype and non-clinical traits.
Facebook
TwitterNCBI Virus is an integrative, value-added resource designed to support retrieval, display and analysis of a curated collection of virus sequences and large sequence datasets. Its goal is to increase the usability of viral sequence data archived in GenBank and other NCBI repositories. This resource includes resources previously included in HIV-1, Human Protein Interaction Database, Influenza Virus Resource, and Virus Variation.
Facebook
TwitterBiodiversity changes due to human activities highlight the need for efficient biodiversity monitoring approaches. Environmental DNA (eDNA) metabarcoding offers a non-invasive method used for biodiversity monitoring and ecosystem assessment, but its accuracy depends on comprehensive DNA reference databases. Natural history collections often contain rare or difficult-to-obtain samples that can serve as a valuable resource to fill gaps in eDNA reference databases. Here, we discuss the utility of specimens from natural history collections in supporting future eDNA applications. Museomics—the application of -omics techniques to museum specimens—offers a promising avenue for improving eDNA reference databases by increasing species coverage. Furthermore, museomics can provide transferable methodological advancements for extracting genetic material from samples with low and degraded DNA. The integration of natural history collections, museomics, and eDNA approaches has the potential to signific..., Dataset for analyzing the potential of museum specimens to improve the DNA reference database To examine the cumulative number of species sequenced for a given DNA barcode/mitochondrial genome (also referred to as mitogenome) over the years, we retrieved all data available from NCBI using the R package rentrez v1.2.3 (Winter 2017). We searched the nucleotide database for the rRNA 12S, rRNA 16S, rRNA 18S, cytochrome B (cytB), cytochrome oxidase I (COI) barcodes, as well as for the complete mitogenomes for all fish orders. In addition, we also retrieved all the fish species with available data on the sequence read archive (SRA) using the Entrez Direct (Kans 2024), which provides access to the NCBI databases from a Unix terminal window. To highlight the potential of museum specimens for increasing the number of species with an available barcode/mitogenome sequence, we first downloaded all available datasets on the Global Biodiversity Information Facility (GBIF) listing fish specimens store..., , # Unlocking natural history collections to improve eDNA reference databases and biodiversity monitoring
The dataset consists of a main folder, data.zip.
Various
barcodes_data
output from the cumul_barcodes_plot.R script.
occurence_data
contains a different type of list of species (museum, 12S availability, etc.)
museum_potential/1_process_gbif_datasets.R. Contains all the species of fish found in the main natural ...,
Facebook
TwitterTHIS RESOURCE IS NO LONGER IN SERVICE, documented on March 19, 2012. Due to budgetary constraints, the National Center for Biotechnology Information (NCBI) has discontinued support for the NCBI GENSAT database, and it has been removed from the Entrez System. The Gene Expression Nervous System Atlas (GENSAT) project involves the large-scale creation of transgenic mouse lines expressing green fluorescent protein (GFP) reporter or Cre recombinase under control of the BAC promoter in specific neural and glial cell populations. BAC expression data for all the lines generated (over 1300 lines) are available in online, searchable databases (www.gensat.org and the Database of GENSAT BAC-Cre driver lines). If you have any specific questions, please feel free to contact us at info_at_ncbi.nlm.nih.gov The GENSAT project aims to map the expression of genes in the central nervous system of the mouse, using both in situ hybridization and transgenic mouse techniques. Search criteria include gene names, gene symbols, gene aliases and synonyms, mouse ages, and imaging protocols. Mouse ages are restricted to E10.5 (embryonic day 10.5), E15.5 (embryonic day 15.5), P7 (postnatal day 7), and Adult (adult). The project focuses on two techniques * Evaluation of unmodified mice lines for expression of a given gene using radiolabelled riboprobes and in-situ hybridization. * Creation of transgenic mice lines containing a BAC construct that expresses a marker gene in the same environment as the native gene
Facebook
TwitterDatabase of three-dimensional structures of macromolecules that allows the user to retrieve structures for specific molecule types as well as structures for genes and proteins of interest. Three main databases comprise Structure-The Molecular Modeling Database; Conserved Domains and Protein Classification; and the BioSystems Database. Structure also links to the PubChem databases to connect biological activity data to the macromolecular structures. Users can locate structural templates for proteins and interactively view structures and sequence data to closely examine sequence-structure relationships. * Macromolecular structures: The three-dimensional structures of biomolecules provide a wealth of information on their biological function and evolutionary relationships. The Molecular Modeling Database (MMDB), as part of the Entrez system, facilitates access to structure data by connecting them with associated literature, protein and nucleic acid sequences, chemicals, biomolecular interactions, and more. It is possible, for example, to find 3D structures for homologs of a protein of interest by following the Related Structure link in an Entrez Protein sequence record. * Conserved domains and protein classification: Conserved domains are functional units within a protein that act as building blocks in molecular evolution and recombine in various arrangements to make proteins with different functions. The Conserved Domain Database (CDD) brings together several collections of multiple sequence alignments representing conserved domains, in addition to NCBI-curated domains that use 3D-structure information explicitly to define domain boundaries and provide insights into sequence/structure/function relationships. * Small molecules and their biological activity: The PubChem project provides information on the biological activities of small molecules and is a component of NIH''''s Molecular Libraries Roadmap Initiative. PubChem includes three databases: PCSubstance, PCBioAssay, and PCCompound. The PubChem data are linked to other data types (illustrated example) in the Entrez system, making it possible, for example, to retrieve information about a compound and then Link to its biological activity data, retrieve 3D protein structures bound to the compound and interactively view their active sites, and find biosystems that include the compound as a component. * Biological Systems: A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. The NCBI BioSystems Database provides centralized access to biological pathways from several source databases and connects the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system. BioSystem records list and categorize components (illustrated example), such as the genes, proteins, and small molecules involved in a biological system. The companion FLink icon FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems.
Facebook
TwitterDatabase of nucleotide sequences from several sources, including GenBank, RefSeq, TPA and PDB. Genome, gene and transcript sequence data provide the foundation for biomedical research and discovery.
Facebook
TwitterDatabases of protein sequences and 3D structures of proteins. Collection of sequences from several sources, including translations from annotated coding regions in GenBank, RefSeq and TPA, as well as records from SwissProt, PIR, PRF, and PDB.