Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems. In deriving the summary of day data, a minimum of 4 observations for the day must be present (allows for stations which report 4 synoptic observations/day). Since the data are converted to constant units (e.g, knots), slight rounding error from the originally reported values may occur (e.g, 9.9 instead of 10.0). The mean daily values described below are based on the hours of operation for the station. For some stations/countries, the visibility will sometimes 'cluster' around a value (such as 10 miles) due to the practice of not reporting visibilities greater than certain distances. The daily extremes and totals--maximum wind gust, precipitation amount, and snow depth--will only appear if the station reports the data sufficiently to provide a valid value. Therefore, these three elements will appear less frequently than other values. Also, these elements are derived from the stations' reports during the day, and may comprise a 24-hour period which includes a portion of the previous day. The data are reported and summarized based on Greenwich Mean Time (GMT, 0000Z - 2359Z) since the original synoptic/hourly data are reported and based on GMT.
Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.
This worldwide collection of surface weather observations is produced at the National Climatic Data Center (NCDC) from NCDC Surface Airway Hourly Observations (TD3280 [http://rda.ucar.edu/datasets/ds470.0/]), U.S.A.F. DATSAV3 Surface Hourly Observations (TD9956 [http://rda.ucar.edu/datasets/ds463.2/]), and NCDC Cooperative Hourly Precipitation (TD3240 [http://rda.ucar.edu/datasets/ds505.0/]). Observations are all in the same ASCII format. Mandatory data includes pressure, temperature, dew-point, visibility, sky condition, and wind observation, but there may also be additional data, data remarks, or data element quality sections. The earliest data is for 1901. The earliest years have the least volume of data, a few hundred megabytes; the volume in the 1950s-early 1960s increased by a factor of 10-20; 1965-1972 shows a decrease because of a loss of data; beginning in 1973 with about 5 gigabytes of data, volume has gradually increased to about 20 gigabytes per year. There are now about 10,000 active stations.
Local Climatological Data (LCD) are summaries of climatological conditions from airport and other prominent weather stations managed by NWS, FAA, and DOD. The product includes hourly observations and associated remarks, and a record of hourly precipitation for the entire month. Also included are daily summaries summarizing temperature extremes, degree days, precipitation amounts and winds. The tabulated monthly summaries in the product include maximum, minimum, and average temperature, temperature departure from normal, dew point temperature, average station pressure, ceiling, visibility, weather type, wet bulb temperature, relative humidity, degree days (heating and cooling), daily precipitation, average wind speed, fastest wind speed/direction, sky cover, and occurrences of sunshine, snowfall and snow depth. The source data is global hourly (DSI 3505) which includes a number of quality control checks.
The Global Historical Climatology Network - Daily (GHCN-Daily/GHCNd) dataset integrates daily climate observations from approximately 30 different data sources. Version 3 was released in September 2012 with the addition of data from two additional station networks. Changes to the processing system associated with the version 3 release also allowed for updates to occur 7 days a week rather than only on most weekdays. Version 3 contains station-based measurements from well over 90,000 land-based stations worldwide, about two thirds of which are for precipitation measurement only. Other meteorological elements include, but are not limited to, daily maximum and minimum temperature, temperature at the time of observation, snowfall and snow depth. Over 25,000 stations are regularly updated with observations from within roughly the last month. The dataset is also routinely reconstructed (usually every week) from its roughly 30 data sources to ensure that GHCNd is generally in sync with its growing list of constituent sources. During this process, quality assurance checks are applied to the full dataset. Where possible, GHCNd station data are also updated daily from a variety of data streams. Station values for each daily update also undergo a suite of quality checks.
This version has been superseded by a newer version. It is highly recommended for users to access the current version. Users should only access this superseded version for special cases, such as reproducing studies. If necessary, this version can be accessed by contacting NCEI.The Integrated Surface Dataset (ISD) is composed of worldwide surface weather observations from over 35,000 stations, though the best spatial coverage is evident in North America, Europe, Australia, and parts of Asia. Parameters included are: air quality, atmospheric pressure, atmospheric temperature/dew point, atmospheric winds, clouds, precipitation, ocean waves, tides and more. ISD refers to the data contained within the digital database as well as the format in which the hourly, synoptic (3-hourly), and daily weather observations are stored. The format conforms to Federal Information Processing Standards (FIPS). ISD provides hourly data that can be used in a wide range of climatological applications. For some stations, data may go as far back as 1901, though most data show a substantial increase in volume in the 1940s and again in the early 1970s. Currently, there are over 14,000 "active" stations updated daily in the database. For user convenience, a subset of just the hourly data is available to users for download. It is referred to as Integrated Surface Global Hourly data, see associated download links for access to this subset.
The Global Hourly Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically are statistical analyses of station data over 5-, 10-, 20-, 30-year or longer time periods. In a GIS map service, the results of these calculations are represented by a given symbology set for different statistical criteria and observation type. Having the ability to modify the symbology "on-the-fly" is a useful tool in the analysis of station trends, accuracy, and regional or localized variances. The summaries are computed from the global surface hourly dataset. This dataset totaling over 350 gigabytes is comprised of 40 different types of weather observations with 20,000 stations worldwide. NCDC and the U.S. Navy have developed these value added products in the form of hourly summaries from many of these observations. These data are a subset of the Integrated Surface Hourly dataset (DSI-3505) (C00532).
The NOAA Cooperative Observer Program (COOP) 15-Minute Precipitation Data consists of quality controlled precipitation amounts, which are measurements of 15 minute accumulation of precipitation, including rain and snow for approximately 2,000 observing stations around the country, and several U.S. territories in the Caribbean and Pacific operated or managed by the NOAA National Weather Service (NWS). Stations are primary, secondary, or cooperative observer sites that have the capability to measure precipitation at 15 minute intervals. This dataset contains 15-minute precipitation data (reported 4 times per hour, if precipitation occurred) for U.S. stations along with selected non-U.S. stations in U.S. territories and associated nations. It includes major city locations and many small town locations. Daily total precipitation is also included as part of the data record. The dataset period of record is from May 1970 to December 2013. The dataset is archived by the NOAA National Centers for Environmental Information (NCEI).
This point layer contains monthly summaries of daily temperatures (means, minimums, and maximums) and precipitation levels (sum, lowest, and highest) for the period January 1981 through December 2010 for weather stations in the Global Historical Climate Network Daily (GHCND). Data in this service were obtained from web services hosted by the Applied Climate Information System ( ACIS). ACIS staff curate the values for the U.S., including correcting erroneous values, reconciling data from stations that have been moved over their history, etc. The data were compiled at Esri from publicly available sources hosted and administered by NOAA. Because the ACIS data is updated and corrected on an ongoing basis, the date of collection for this layer was Jan 23, 2019. The following process was used to produce this dataset:Download the most current list of stations from ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt. Import this into Microsoft Excel and save as CSV. In ArcGIS, import the CSV as a geodatabase table and use the XY Event layer tool to locate each point. Using a detailed U.S. boundary extract the points that fall within the 50 U.S. States, the District of Columbia, and Puerto Rico. Using Python with DA.UpdateCursor and urllib2 access the ACIS Web Services API to determine whether each station had at least 50 monthly values of temperature data for each station. Delete the other stations. Using Python add the necessary field names and acquire all monthly values for the remaining stations. Thus, there are stations that have some missing data. Using Python Add fields and convert the standard values to metric values so both would be present. Thus, there are four sets of monthly data in this dataset: Monthly means, mins, and maxes of daily temperatures - degrees Fahrenheit. Monthly mean of monthly sums of precipitation and the level of precipitation that was the minimum and maximum during the period 1981 to 2010 - mm. Temperatures in 3a. in degrees Celcius. Precipitation levels in 3b in Inches. After initially publishing these data in a different service, it was learned that more precise coordinates for station locations were available from the Enhanced Master Station History Report (EMSHR) published by NOAA NCDC. With the publication of this layer these most precise coordinates are used. A large subset of the EMSHR metadata is available via EMSHR Stations Locations and Metadata 1738 to Present. If your study area includes areas outside of the U.S., use the World Historical Climate - Monthly Averages for GHCN-D Stations 1981 - 2010 layer. The data in this layer come from the same source archive, however, they are not curated by the ACIS staff and may contain errors. Revision History: Initially Published: 23 Jan 2019 Updated 16 Apr 2019 - We learned more precise coordinates for station locations were available from the Enhanced Master Station History Report (EMSHR) published by NOAA NCDC. With the publication of this layer the geometry and attributes for 3,222 of 9,636 stations now have more precise coordinates. The schema was updated to include the NCDC station identifier and elevation fields for feet and meters are also included. A large subset of the EMSHR data is available via EMSHR Stations Locations and Metadata 1738 to Present. Cite as: Esri, 2019: U.S. Historical Climate - Monthly Averages for GHCN-D Stations for 1981 - 2010. ArcGIS Online, Accessed
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
U.S. Enhanced Hourly Wind Station Data is digital data set DSI-6421, archived at the National Centers for Environmental Information (NCEI; formerly National Climatic Data Center, NCDC). During earlier work at NCDC, it was noted that anemometer elevations at U.S. weather stations (for which metadata related to anemometer height was available) varied widely with time. Between 1931 and 2000, there were up to 12 significant anemometer height changes at some of these stations, and on average there was one change per decade at any station with more than 10 years of record. For example, at Los Angeles International Airport, the anemometer height changed 4 times during the 60 years, varying from 59 ft to 20 ft, while at Edwards Air Force Base, the anemometer height was changed 10 times and varied from 13 ft to 75 ft. Therefore, the elevation homogenization of the near-surface wind time series is a necessary pre-requisite for any climatological assessments. This was done at NCDC, creating the DSI-6421 data set. Stations were included in DSI-6421 on a year-by-year basis, depending upon the availability of anemometer metadata and the number of observations made during a year. The earliest data was from 1931, with very few stations. The number of stations increased during World War II to about 200, decreased briefly after the war, and increased to about 350 during the period 1948-1972 because most first-order (primary) stations qualified for inclusion. After 1972, as the importance of metadata was more widely recognized, the number of qualified stations rose to near 1000 by 1985, and continued at about that number through year 2000. The formulae used were U10g = Ua log[(10-Hsnod)/z0]/log[(Ha - Hsnod)/z0], and U10s = Ua log[10/z0]/log[(Ha - Hsnod)/z0], where z0 is the surface roughness (a function of the presence of snow cover at the site); Hsnod is the snow depth; Ha is the anemometer height above the ground; Ua is the wind speed at the anemometer height; U10g is the speed at 10 m above the ground; and U10s is the speed at 10 m above the surface.
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
A BitTorrent file to download data with the title 'NOAA Weather Data 2002'
In March 2015, data for thirteen Alaskan climate divisions were added to the NClimDiv data set. Data for the new Alaskan climate divisions begin in 1925 through the present and are included in all monthly updates. Alaskan climate data include the following elements for divisional and statewide coverage: average temperature, maximum temperature (highs), minimum temperature (lows), and precipitation. The Alaska NClimDiv data were created and updated using similar methodology as that for the CONUS, but with a different approach to establishing the underlying climatology. The Alaska data are built upon the 1971-2000 PRISM averages whereas the CONUS values utilize a base climatology derived from the NClimGrid data set. In January 2025, the National Centers for Environmental Information (NCEI) began summarizing the State of the Climate for Hawaii. This was made possible through a collaboration between NCEI and the University of Hawaii/Hawaii Climate Data Portal and completes a long-standing gap in NCEI's ability to characterize the State of the Climate for all 50 states. NCEI maintains monthly statewide, divisional, and gridded average temperature, maximum temperatures (highs), minimum temperature (lows) and precipitation data for Hawaii over the period 1991-2025. As of November 2018, NClimDiv includes county data and additional inventory files In March 2015, data for thirteen Alaskan climate divisions were added to the NClimDiv data set. Data for the new Alaskan climate divisions begin in 1925 through the present and are included in all monthly updates. Alaskan climate data include the following elements for divisional and statewide coverage: average temperature, maximum temperature (highs), minimum temperature (lows), and precipitation. The Alaska NClimDiv data were created and updated using similar methodology as that for the CONUS, but with a different approach to establishing the underlying climatology. The Alaska data are built upon the 1971-2000 PRISM averages whereas the CONUS values utilize a base climatology derived from the NClimGrid data set.
As of November 2018, NClimDiv includes county data and additional inventory files.
The Cooperative Observer Program (COOP) Hourly Precipitation Data (HPD) consists of quality controlled precipitation amounts, which are measurements of hourly accumulation of precipitation, including rain and snow for approximately 2,000 observing stations around the country, and several U.S. territories in the Caribbean and Pacific from the National Weather Service (NWS) Fischer-Porter Network. This new version of COOP HPD with faster automations due updated stations will result in faster access for the public. The data are from 1940 to present, depending upon when each station was installed. These stations, nearly all of which were part of HPD version 1, also known as DSI-3240, were gradually upgraded from paper punch tape data recording systems to a more modern electronic data logger system from 2004-2013.
The 15-min gauge depth time series are processed at NCEI via automated quality control and filtering algorithms to identify and remove spurious observations from noise and malfunctioning equipment, and also those due to natural phenomena such as evaporation and the necessary occasional emptying of the gauge. Hourly precipitation totals are then computed from the 15-min data and are quality controlled by a suite of automated algorithms that combine checks on the daily and hourly time scale. Data and metadata are ingested on a daily basis and combined in a single integrated dataset.
As with the legacy punch paper instrumentation, the electronic loggers record rain gauge depth every 15 minutes. Monthly site visits to each station are still performed, but instead of collecting punched paper (that would subsequently need conversion to a digital record via a MITRON reader), data are downloaded from the station's datalogger to a memory stick and centrally collected at the local Weather Forecast Office (WFO) for all stations in the WFO area. The WFO subsequently combines all data into a single tar file and transfers the data to NCEI via ftp upload nominally each month.
This updated HPD includes the historical data from the punch paper era and the recent digital era in order to provide the full period of record for each location. These data are formatted consistent with practices for NCEI Global In-situ datasets.
World Weather Records (WWR) is an archived publication and digital data set. WWR is meteorological data from locations around the world. Through most of its history, WWR has been a publication, first published in 1927. Data includes monthly mean values of pressure, temperature, precipitation, and where available, station metadata notes documenting observation practices and station configurations. In recent years, data were supplied by National Meteorological Services of various countries, many of which became members of the World Meteorological Organization (WMO). The First Issue included data from earliest records available at that time up to 1920. Data have been collected for periods 1921-30 (2nd Series), 1931-40 (3rd Series), 1941-50 (4th Series), 1951-60 (5th Series), 1961-70 (6th Series), 1971-80 (7th Series), 1981-90 (8th Series), 1991-2000 (9th Series), and 2001-2011 (10th Series). The most recent Series 11 continues, insofar as possible, the record of monthly mean values of station pressure, sea-level pressure, temperature, and monthly total precipitation for stations listed in previous volumes. In addition to these parameters, mean monthly maximum and minimum temperatures have been collected for many stations and are archived in digital files by NCEI. New stations have also been included. In contrast to previous series, the 11th Series is available for the partial decade, so as to limit waiting period for new records. It begins in 2010 and is updated yearly, extending into the entire decade.
The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and land-soil variables are available through this dataset, from temperatures, winds, and precipitation to soil moisture and atmospheric ozone concentration. The entire globe is covered by the GFS at a base horizontal resolution of 18 miles (28 kilometers) between grid points, which is used by the operational forecasters who predict weather out to 16 days in the future. Horizontal resolution drops to 44 miles (70 kilometers) between grid point for forecasts between one week and two weeks. The GFS model is a coupled model, composed of four separate models (an atmosphere model, an ocean model, a land/soil model, and a sea ice model), which work together to provide an accurate picture of weather conditions. Changes are regularly made to the GFS model to improve its performance and forecast accuracy. This dataset is run four times daily at 00z, 06z, 12z and 18z out to 192 hours with a 0.5 degree horizontal resolution and a 3 hour temporal resolution.
Western Arctic ice drifting stations, AIDJEX, ARLIS I, ARLIS II, Ice Station Alpha, Ice Station Charlie, T-3 (called Ice Station Bravo during IGY), and ships Maud and Fram provide surface ... meteorological data for the Arctic Ocean. These data were collected and organized by NCDC and NSIDC leading to the production of a CDROM. Several different versions of the data are available, extending from the original key entered data to variable subsets and QC versions developed in uniform format for all stations.
This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska, Hawaii, U.S. territories and at military base sites. NEXRAD is a network of 160 high-resolution Doppler weather radars operated by the NOAA National Weather Service (NWS), the Federal Aviation Administration (FAA), and the U.S. Air Force (USAF). Doppler radars detect atmospheric precipitation and winds, which allow scientists to track and anticipate weather events, such as rain, ice pellets, snow, hail, and tornadoes, as well as some non-weather objects like birds and insects. NEXRAD stations use the Weather Surveillance Radar - 1988, Doppler (WSR-88D) system. This is a 10 cm wavelength (S-Band) radar that operates at a frequency between 2,700 and 3,000 MHz. The radar system operates in two basic modes: a slow-scanning Clear Air Mode (Mode B) for analyzing air movements when there is little or no precipitation activity in the area, and a Precipitation Mode (Mode A) with a faster scan for tracking active weather. The two modes employ nine Volume Coverage Patterns (VCPs) to adequately sample the atmosphere based on weather conditions. A VCP is a series of 360 degree sweeps of the antenna at pre-determined elevation angles and pulse repetition frequencies completed in a specified period of time. The radar scan times 4.5, 5, 6 or 10 minutes depending on the selected VCP. During 2008, the WSR-88D radars were upgraded to produce increased spatial resolution data, called Super Resolution. The earlier Legacy Resolution data provides radar reflectivity at 1.0 degree azimuthal by 1 km range gate resolution to a range of 460 km, and Doppler velocity and spectrum width at 1.0 degree azimuthal by 250 m range gate resolution to a range of 230 km. The upgraded Super Resolution data provides radar reflectivity at 0.5 degree azimuthal by 250 m range gate resolution to a range of 460 km, and Doppler velocity and spectrum width at 0.5 degree azimuthal by 250 m range gate resolution to a range of 300 km. Super resolution makes a compromise of slightly decreased noise reduction for a large gain in resolution. In 2010, the deployment of the Dual Polarization (Dual Pol) capability to NEXRAD sites began with the first operational Dual Pol radar in May 2011. Dual Pol radar capability adds vertical polarization to the previous horizontal radar waves, in order to more accurately discern the return signal. This allows the radar to better distinguish between types of precipitation (e.g., rain, hail and snow), improves rainfall estimates, improves data retrieval in mountainous terrain, and aids in removal of non-weather artifacts. The NEXRAD products are divided in two data processing levels. The lower Level II data are base products at original resolution. Level II data are recorded at all NWS and most USAF and FAA WSR-88D sites. From the Level II quantities, computer processing generates numerous meteorological analysis Level III products. The Level III data consists of reduced resolution, low-bandwidth, base products as well as many derived, post-processed products. Level III products are recorded at most U.S. sites, though non-US sites do not have Level III products. There are over 40 Level III products available from the NCDC. General products for Level III include the base and composite reflectivity, storm relative velocity, vertical integrated liquid, echo tops and VAD wind profile. Precipitation products for Level III include estimated ground accumulated rainfall amounts for one and three hour periods, storm totals, and digital arrays. Estimates are based on reflectivity to rainfall rate (Z-R) relationships. Overlay products for Level III are alphanumeric data that give detailed information on certain parameters for an identified storm cell. These include storm structure, hail index, mesocyclone identification, tornadic vortex signature, and storm tracking information. Radar messages for Level III are sent by the radar site to users in order to know more about the radar status and special product data. NEXRAD data are provided to the NOAA National Climatic Data Center for archiving and dissemination to users. Data coverage varies by station and ranges from May 1992 to 1 day from present. Most stations began observing in the mid-1990s, and most period of records are continuous.
The North American Dataset contains sets of Maximum, Minimum and Average Temperature data and Precipitation data that are either (1) raw (non-adjusted though flagged for possible quality issues), (2) adjusted due to time of observation bias (TOB) or (3) put through the Pairwise Homogenization Algorithm (PHA). These files contain North American stations and its data are measured in hundredths of degrees Celsius (without decimal place) for temperature and tenths of millimeters (without decimal place) for Precipitation. Each file includes the entire available Period of Record.
PERSIANN Precipitation Climate Data Record (PERSIANN-CDR) is a daily quasi-global precipitation product for the period of 1982 to the present (note that there is a delay in data availability due to processing and data input availability). The data covers from 60 degrees S to 60 degrees N and 0 degrees to 360 degrees longitude at 0.25 degree spatial resolution. The product is developed using Gridded Satellite (GridSat-B1) IR data that are derived from merging ISCCP B1 IR data, along with GPCP version 2.2.
This dataset consists of Level II weather radar data collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska, Hawaii, U.S. territories and at military base sites. NEXRAD is a network of 160 high-resolution Doppler weather radars operated by the NOAA National Weather Service (NWS), the Federal Aviation Administration (FAA), and the U.S. Air Force (USAF). Doppler radars detect atmospheric precipitation and winds, which allow scientists to track and anticipate weather events, such as rain, ice pellets, snow, hail, and tornadoes, as well as some non-weather objects like birds and insects. NEXRAD stations use the Weather Surveillance Radar - 1988, Doppler (WSR-88D) system. This is a 10 cm wavelength (S-Band) radar that operates at a frequency between 2,700 and 3,000 MHz. The radar system operates in two basic modes: a slow-scanning Clear Air Mode (Mode B) for analyzing air movements when there is little or no precipitation activity in the area, and a Precipitation Mode (Mode A) with a faster scan for tracking active weather. The two modes employ nine Volume Coverage Patterns (VCPs) to adequately sample the atmosphere based on weather conditions. A VCP is a series of 360 degree sweeps of the antenna at pre-determined elevation angles and pulse repetition frequencies completed in a specified period of time. The radar scan times 4.5, 5, 6 or 10 minutes depending on the selected VCP. The NEXRAD products are divided into multiple data processing levels. The lower Level II data contain the three meteorological base data quantities at original resolution: reflectivity, mean radial velocity, and spectrum width. With the advent of dual polarization beginning in 2011, additional base products of differential reflectivity, correlation coefficient and differential phase are available. Level II data are recorded at all NWS and most USAF and FAA WSR-88D sites. From the Level II quantities, computer processing generates numerous meteorological analysis Level 3 products. NEXRAD data are acquired by the NOAA National Centers for Environmental Information (NCEI) for archiving and dissemination to users. Data coverage varies by station and ranges from June 1991 to 1 day from present. Most stations began observing in the mid-1990s, and most period of records are continuous.
Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems. In deriving the summary of day data, a minimum of 4 observations for the day must be present (allows for stations which report 4 synoptic observations/day). Since the data are converted to constant units (e.g, knots), slight rounding error from the originally reported values may occur (e.g, 9.9 instead of 10.0). The mean daily values described below are based on the hours of operation for the station. For some stations/countries, the visibility will sometimes 'cluster' around a value (such as 10 miles) due to the practice of not reporting visibilities greater than certain distances. The daily extremes and totals--maximum wind gust, precipitation amount, and snow depth--will only appear if the station reports the data sufficiently to provide a valid value. Therefore, these three elements will appear less frequently than other values. Also, these elements are derived from the stations' reports during the day, and may comprise a 24-hour period which includes a portion of the previous day. The data are reported and summarized based on Greenwich Mean Time (GMT, 0000Z - 2359Z) since the original synoptic/hourly data are reported and based on GMT.