The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety of source data sets in the NCDC (now NCEI) archive in order to find records covering a particular time period and geographic region, and then to download the results of the search in a variety of formats. The formats currently supported are Shapefile (for GIS), KMZ (for Google Earth), CSV (comma-separated), and XML. The current data layers in SWDI are: Storm Cells from NEXRAD (Level-III Storm Structure Product); Hail Signatures from NEXRAD (Level-III Hail Product); Mesocyclone Signatures from NEXRAD (Level-III Meso Product); Digital Mesocyclone Detection Algorithm from NEXRAD (Level-III MDA Product); Tornado Signature from NEXRAD (Level-III TVS Product); Preliminary Local Storm Reports from the NOAA National Weather Service; Lightning Strikes from Vaisala NLDN.
Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.
Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems. In deriving the summary of day data, a minimum of 4 observations for the day must be present (allows for stations which report 4 synoptic observations/day). Since the data are converted to constant units (e.g, knots), slight rounding error from the originally reported values may occur (e.g, 9.9 instead of 10.0). The mean daily values described below are based on the hours of operation for the station. For some stations/countries, the visibility will sometimes 'cluster' around a value (such as 10 miles) due to the practice of not reporting visibilities greater than certain distances. The daily extremes and totals--maximum wind gust, precipitation amount, and snow depth--will only appear if the station reports the data sufficiently to provide a valid value. Therefore, these three elements will appear less frequently than other values. Also, these elements are derived from the stations' reports during the day, and may comprise a 24-hour period which includes a portion of the previous day. The data are reported and summarized based on Greenwich Mean Time (GMT, 0000Z - 2359Z) since the original synoptic/hourly data are reported and based on GMT.
The data quality monitoring system (DQMS) developed by the Satellite Oceanography Program at the NOAA National Centers for Environmental Information (NCEI) is based on the concept of a Rich Inventory developed by the previous NCEI Enterprise Data Systems Group. The principal concept of a Rich Inventory is to calculate the data Quality Assurance (QA) descriptive statistics for selected parameters in each Level-2 data file and publish the pre-generated images and NetCDF-format data to the public. The QA descriptive statistics include valid observation number, observation number over 3-sigma edited, minimum, maximum, mean, and standard deviation. The parameters include sea surface height anomaly, significant wave height, altimeter, and radiometer wind speed, radiometer water vapor content, and radiometer wet tropospheric correction from Jason-3 Level-2 Final Geophysical Data Record (GDR) and Interim Geophysical Data Record (IGDR) products.
No description is available. Visit https://dataone.org/datasets/%7BEA9ACC6C-1FA2-4829-89F9-15C87B0D2FEB%7D for complete metadata about this dataset.
No description is available. Visit https://dataone.org/datasets/%7B03813C5B-0895-45D3-88AA-EB1EFEF98414%7D for complete metadata about this dataset.
The study will conduct a seven-day geophysical survey using magnetometer, sidescan sonar, and sub-bottom profiler to identify targets. On two subsequent six-day cruises divers will ground truth targets in an attempt to locate and identify one or more of the lost French ships.
Marine Geologic data compilations and reports in the NCEI archive are from academic and government sources around the world. Over ten terabytes of analyses, descriptions, and images of sediment and rock from the ocean floor and lakebeds are available. Examples of data available include sediment/rock composition, physical properties, petrology/mineralogy, geochemistry, paleontology, paleomagnetism, x-rays, photographs, and other imagery. All reports and data, regardless of format, are accessible via the Marine Geology Digital Inventory and/or linked to the Index to Marine and Lacustrine Geological Samples (IMLGS). Searches offer free, immediate download of digital data, many images, and .PDF reports, and information on how to obtain full-resolution images from the archive, and order CD-ROMs, microfilm, or oversize charts. Some larger data sets, including the IMLGS, have their own web interfaces. The IMLGS provides searches of sea floor and lakebed cores, grabs, dredges, and drill samples available from sample repositories at partner institutions, with links to browse and download related information from NCEI and other sources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA National Centers for Environmental Information. This product uses optimal interpolation (OI) by interpolating and extrapolating SST observations from different sources, resulting in a smoothed complete field. The sources of data are satellite (AVHRR) and in situ platforms (i.e., ships and buoys), and the specific datasets employed may change over. At the marginal ice zone, sea ice concentrations are used to generate proxy SSTs. A preliminary version of this file is produced in near-real time (1-day latency), and then replaced with a final version after 2 weeks. Note that this is the AVHRR-ONLY (AVHRR-OI), available from September 1, 1981, but there is a companion SST product that includes microwave satellite data, available from June 2002.
The Regional Snowfall Index (RSI) is an index of significant snowstorms that impact the eastern two thirds of the U.S. The RSI ranks snowstorm impacts on a scale from 1 to 5, similar to the Fujita scale for tornadoes or the Saffir-Simpson scale for hurricanes. NCEI has analyzed and assigned RSI values to over 500 storms going as far back as 1900. New storms are added operationally. As such, RSI puts the regional impacts of snowstorms into a century-scale historical perspective. The RSI differs from other indices because it includes population. RSI is based on the spatial extent of the storm, the amount of snowfall, and the juxtaposition of these elements with population. The area and population are cumulative values above regional specific thresholds. For example, the thresholds for the Southeast are 2", 5", 10", and 15" of snowfall while the thresholds for the Northeast are 4", 10", 20", and 30" of snowfall. Population information ties the index to societal impacts. Currently, the index uses population based on the 2000 Census. The RSI is an evolution of the Northeast Snowfall Impact Scale (NESIS) which NCDC (the precursor to NCEI) began producing operationally in 2005. While NESIS was developed for storms that had a major impact in the Northeast, it includes the impact of snow on other regions as well. It can be thought of as a quasi-national index that is calibrated to Northeast snowstorms. By contrast, the RSI is a regional index; a separate index is produced for each of the six NCDC climate regions in the eastern two-thirds of the nation. The indices are calculated in a similar fashion to NESIS, but our experience has led us to propose a change in the methodology. The new indices require region-specific parameters and thresholds for the calculations. For details on how RSI is calculated, see Squires et al. 2011.
We believe that the proposed surveys will provide important knowledge and information critical to understanding, and ultimately preserving, the underwater cultural heritage of this historically significant place in the Arctic, and will offer considerable value to others who share an interest in and a desire to know more about this place and its natural and cultural resources. Ultimately, it may also produce essential information about this area that can help to establish the criteria for what places in the marine environment we, as a society, choose to protect and preserve in the Arctic and elsewhere in the US EEZ.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The World Ocean Database (WOD) is the world's largest publicly available uniform format quality controlled ocean profile dataset. Ocean profile data are sets of measurements of an ocean variable vs. depth at a single geographic location within a short (minutes to hours) temporal period in some portion of the water column from the surface to the bottom. To be considered a profile for the WOD, there must be more than a single depth/variable pair. Multiple profiles at the same location from the same set of instruments is an oceanographic cast. Ocean variables in the WOD include temperature, salinity, oxygen, nutrients, tracers, and biological variables such as plankton and chlorophyll. Quality control procedures are documented and performed on each cast and the results are included as flags on each measurement. The WOD contains the data on the originally measured depth levels (observed) and also interpolated to standard depth levels to present a more uniform set of iso-surfaces for oceanographic and climate work.
The source of the WOD is more than 21,000 separate archived data sets contributed by institutions, project, government agencies, and individual investigators from the United States and around the world. Each data set is available in its original form in the National Centers for Environmental Information data archives. All data sets are converted to the same standard format, checked for duplication within the WOD, and assigned quality flags based on objective tests. Additional subjective flags are set upon calculation of ocean climatological mean fields which make up the World Ocean Atlas (WOA) series.
The WOD consists of periodic major releases and quarterly updates to those releases. Each major release is associated with a concurrent release of a WOA release, and contains final quality control flags used in the WOA, which includes manual as well as automated steps. Each quarterly update release includes additional historical and recent data and preliminary quality control. The latest major release was WOD 2013 (WOD13), which includes more than 13 million oceanographic casts, from the second voyage of Captain Cook (1772) to the modern Argo floats (end of 2012).
The WOD presents data in netCDF ragged array format following the Climate and Forecast (CF) conventions for ease of use mindful of space limitations.
The Northeast Pacific (NEP) new regional climatology is derived from the NCEI World Ocean Database archive of temperature and salinity and covers a time period from 1955 to 2012, or roughly six decades. The NEP is an important region in the North Pacific Ocean. The NEP is home to the California Current System (CCS) and contains a large coastal upwelling zone along the west coast of North America. The CCS is one of the most productive ecosystems in the World Ocean, and its multidecadal variability is also important for long-term Earth and ocean climate change studies. Due to the economic significance and climatic importance of the CCS, intensive observational and research programs took place over many decades and yielded rich oceanographic data arrays of the CCS and adjacent NEP regions. To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the CCS and NEP, the NCEI Regional Climatology Team developed a new set of high-resolution, quality-controlled, and long-term annual, seasonal and monthly mean temperature and salinity fields at standard depth levels.
The Northern North Pacific (NNP) plays a significant role in long-term earth and ocean climate change. It is also a region of high importance for regional marine ecosystems, and especially for regional fisheries. To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the NNP, NCEI Regional Climatology Team developed a new set of high-resolution quality-controlled long-term annual, seasonal and monthly mean temperature and salinity fields on different depth levels. This new regional climatology is based on the World Ocean Database archive of temperature and salinity from observations spanning over more than a hundred years and incorporates a great deal of new data not previously available.
Storm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of America. The data began as early as 1950 through to the present, updated monthly with up to a 120 day delay possible. NCDC Storm Event database allows users to find various types of storms recorded by county, or use other selection criteria as desired. The data contain a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail, floods, drought conditions, lightning, high winds, snow, temperature extremes and other weather phenomena.
This version has been superseded by a newer version. It is highly recommended for users to access the current version. Users should only access this superseded version for special cases, such as reproducing studies. If necessary, this version can be accessed by contacting NCEI. The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a blended product from two independent analysis products: the Extended Reconstructed Sea Surface Temperature (ERSST) analysis and the land surface temperature (LST) analysis using the Global Historical Climatology Network (GHCN) temperature database. The data is merged into a monthly global surface temperature dataset dating back from 1880 to the present. The monthly product output is in gridded (5 degree x 5 degree) and time series formats. The product is used in climate monitoring assessments of near-surface temperatures on a global scale. The changes from version 4 to version 5 include an update to the primary input datasets: ERSST version 5 (updated from v4), and GHCN-M version 4 (updated from v3.3.3). Version 5 updates also include a new netCDF file format with CF conventions. This dataset is formerly known as Merged Land-Ocean Surface Temperature (MLOST).
CTD and current meter data sets were collected in the Southern Oceans from ROGER REVILLE and moored CTD. Data were collected from 30 October 1997 to 16 March 1998 by Oregon State University and Fish Research Institute with support from the Joint Global Ocean Flux Study / Southern Ocean (JGOFS/Southern Ocean) project.
The Water, Temperature and Depth, bathythermograph data in this accession was digitized by COMPASS. The originator's UBT 33 data from 22 cruises was submitted on a diskette by Dr. Roger Bauer of US Navy.
The NF-19-09 expedition on board the NOAA Ship Nancy Foster was part of the multi-year Deep SEARCH project. This cruise occurred from October 21 to October 30, 2019. The cruise will focus on several seep sites, canyons, and hard bottom features located less than 100 nm offshore. This is the third research expedition associated with the Deep SEARCH project focused on exploring and characterizing seeps, corals, and canyon environments along the Atlantic margin. This project is a collaboration among three federal agencies: Bureau of Ocean Energy Management (BOEM), NOAA Office of Ocean Exploration and Research (OER), and the U.S. Geological Survey (USGS). TDI Brooks with academic partners has been selected to serve as BOEM contractor for this study. Data gathered during this mission and past cruises for this project will help inform multiple management issues concerning this region. The goal of this expedition was to recover benthic lander deployments, conduct mid-water trawling of the deep-scattering layer, collect water samples for christry and microbial diversity analyses, perform multibeam mapping at specific targeted areas, and collect sediment, water, and faunal samples for eDNA work.
This data has been superseded by a newer version of the dataset. Please refer to NOAA's Climate Divisional Database for more information. The U.S. Climate Divisional Dataset provides data access to current U.S. temperature, precipitation and drought indeces. Divisional indices included are: Precipitation Index, Palmer Drought Severity Index, Palmer Hydrological Drought Index, Modified Palmer Drought Severity Index, Temperature, Palmer Z Index, Cooling Degree Days, Heating Degree Days, 1-Month Standardized Precipitation Index (SPI), 2-Month (SPI), 3-Month (SPI), 6-Month (SPI),12-Month (SPI) and the 24-Month (SPI). All of these Indices, except for the SPI, are available for Regional, State and National views as well. There are 344 climate divisions in the CONUS. For each climate division, monthly station temperature and precipitation values are computed from the daily observations. The divisional values are weighted by area to compute statewide values and the statewide values are weighted by area to compute regional values. The indices were computed using daily station data from 1895 to present.
The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety of source data sets in the NCDC (now NCEI) archive in order to find records covering a particular time period and geographic region, and then to download the results of the search in a variety of formats. The formats currently supported are Shapefile (for GIS), KMZ (for Google Earth), CSV (comma-separated), and XML. The current data layers in SWDI are: Storm Cells from NEXRAD (Level-III Storm Structure Product); Hail Signatures from NEXRAD (Level-III Hail Product); Mesocyclone Signatures from NEXRAD (Level-III Meso Product); Digital Mesocyclone Detection Algorithm from NEXRAD (Level-III MDA Product); Tornado Signature from NEXRAD (Level-III TVS Product); Preliminary Local Storm Reports from the NOAA National Weather Service; Lightning Strikes from Vaisala NLDN.