4 datasets found
  1. P

    NCT-CRC-HE-100K Dataset

    • paperswithcode.com
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). NCT-CRC-HE-100K Dataset [Dataset]. https://paperswithcode.com/dataset/nct-crc-he-100k
    Explore at:
    Dataset updated
    Sep 30, 2021
    Description

    The NCT-CRC-HE-100K dataset is a set of 100,000 non-overlapping image patches extracted from 86 H$&$E stained human cancer tissue slides and normal tissue from the NCT biobank (National Center for Tumor Diseases) and the UMM pathology archive (University Medical Center Mannheim). While the dataset Colorectal Cacner-Validation-Histology-7K (CRC-VAL-HE-7K) consist of 7180 images extracted from 50 patients with colorectal adenocarcinoma and were used to create a dataset that does not overlap with patients in the NCT-CRC-HE-100K dataset. It was created by pathologists by manually delineating tissue regions in whole slide images into the following nine tissue classes: Adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR), colorectal adenocarcinoma epithelium (TUM).

  2. 100,000 histological images of human colorectal cancer and healthy tissue

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jakob Nikolas Kather; Jakob Nikolas Kather; Niels Halama; Alexander Marx; Niels Halama; Alexander Marx (2020). 100,000 histological images of human colorectal cancer and healthy tissue [Dataset]. http://doi.org/10.5281/zenodo.1214456
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jakob Nikolas Kather; Jakob Nikolas Kather; Niels Halama; Alexander Marx; Niels Halama; Alexander Marx
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Description "NCT-CRC-HE-100K"

    • This is a set of 100,000 non-overlapping image patches from hematoxylin & eosin (H&E) stained histological images of human colorectal cancer (CRC) and normal tissue.
    • All images are 224x224 pixels (px) at 0.5 microns per pixel (MPP). All images are color-normalized using Macenko's method (http://ieeexplore.ieee.org/abstract/document/5193250/, DOI 10.1109/ISBI.2009.5193250).
    • Tissue classes are: Adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR), colorectal adenocarcinoma epithelium (TUM).
    • These images were manually extracted from N=86 H&E stained human cancer tissue slides from formalin-fixed paraffin-embedded (FFPE) samples from the NCT Biobank (National Center for Tumor Diseases, Heidelberg, Germany) and the UMM pathology archive (University Medical Center Mannheim, Mannheim, Germany). Tissue samples contained CRC primary tumor slides and tumor tissue from CRC liver metastases; normal tissue classes were augmented with non-tumorous regions from gastrectomy specimen to increase variability.

    Ethics statement "NCT-CRC-HE-100K"

    All experiments were conducted in accordance with the Declaration of Helsinki, the International Ethical Guidelines for Biomedical Research Involving Human Subjects (CIOMS), the Belmont Report and the U.S. Common Rule. Anonymized archival tissue samples were retrieved from the tissue bank of the National Center for Tumor diseases (NCT, Heidelberg, Germany) in accordance with the regulations of the tissue bank and the approval of the ethics committee of Heidelberg University (tissue bank decision numbers 2152 and 2154, granted to Niels Halama and Jakob Nikolas Kather; informed consent was obtained from all patients as part of the NCT tissue bank protocol, ethics board approval S-207/2005, renewed on 20 Dec 2017). Another set of tissue samples was provided by the pathology archive at UMM (University Medical Center Mannheim, Heidelberg University, Mannheim, Germany) after approval by the institutional ethics board (Ethics Board II at University Medical Center Mannheim, decision number 2017-806R-MA, granted to Alexander Marx and waiving the need for informed consent for this retrospective and fully anonymized analysis of archival samples).

    Data set "CRC-VAL-HE-7K"

    This is a set of 7180 image patches from N=50 patients with colorectal adenocarcinoma (no overlap with patients in NCT-CRC-HE-100K). It can be used as a validation set for models trained on the larger data set. Like in the larger data set, images are 224x224 px at 0.5 MPP. All tissue samples were provided by the NCT tissue bank, see above for further details and ethics statement.

    Data set "NCT-CRC-HE-100K-NONORM"

    This is a slightly different version of the "NCT-CRC-HE-100K" image set: This set contains 100,000 images in 9 tissue classes at 0.5 MPP and was created from the same raw data as "NCT-CRC-HE-100K". However, no color normalization was applied to these images. Consequently, staining intensity and color slightly varies between the images. Please note that although this image set was created from the same data as "NCT-CRC-HE-100K", the image regions are not completely identical because the selection of non-overlapping tiles from raw images was a stochastic process.

    General comments

    Please note that the classes are only roughly balanced. Classifiers should never be evaluated based on accuracy in the full set alone. Also, if a high risk of training bias is excepted, balancing the number of cases per class is recommended.

  3. NCT-CRC-HE-100K-NONORM

    • kaggle.com
    Updated Dec 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Imran Khan (2021). NCT-CRC-HE-100K-NONORM [Dataset]. https://www.kaggle.com/imrankhan77/nct-crc-he-100k-nonorm/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 7, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Imran Khan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Imran Khan

    Released under CC0: Public Domain

    Contents

  4. H

    Native Medical CNN Model Training Records before and after Optimization

    • dataverse.harvard.edu
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Li (2025). Native Medical CNN Model Training Records before and after Optimization [Dataset]. http://doi.org/10.7910/DVN/5T5TXE
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Jie Li
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The model is for colon cancer tissue classification. In order to increase the complexity of the classification task, this research collectively applied NCT-CRC-HE-100K (n = 100,000) and CRC-VAL-HE-7K (n = 7,180) to increase the volume and variety of the dataset.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2021). NCT-CRC-HE-100K Dataset [Dataset]. https://paperswithcode.com/dataset/nct-crc-he-100k

NCT-CRC-HE-100K Dataset

Explore at:
280 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 30, 2021
Description

The NCT-CRC-HE-100K dataset is a set of 100,000 non-overlapping image patches extracted from 86 H$&$E stained human cancer tissue slides and normal tissue from the NCT biobank (National Center for Tumor Diseases) and the UMM pathology archive (University Medical Center Mannheim). While the dataset Colorectal Cacner-Validation-Histology-7K (CRC-VAL-HE-7K) consist of 7180 images extracted from 50 patients with colorectal adenocarcinoma and were used to create a dataset that does not overlap with patients in the NCT-CRC-HE-100K dataset. It was created by pathologists by manually delineating tissue regions in whole slide images into the following nine tissue classes: Adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR), colorectal adenocarcinoma epithelium (TUM).

Search
Clear search
Close search
Google apps
Main menu