59 datasets found
  1. Materials Data on NdBi by Materials Project

    • osti.gov
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Materials Project (2020). Materials Data on NdBi by Materials Project [Dataset]. https://www.osti.gov/dataexplorer/biblio/dataset/1199407-materials-data-ndbi-materials-project
    Explore at:
    Dataset updated
    Jul 16, 2020
    Dataset provided by
    Office of Sciencehttp://www.er.doe.gov/
    Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
    Authors
    The Materials Project
    Description

    Bi(Nd) is Halite, Rock Salt structured and crystallizes in the cubic Fm-3m space group. The structure is three-dimensional. Nd is bonded to six equivalent Bi atoms to form a mixture of edge and corner-sharing NdBi6 octahedra. The corner-sharing octahedral tilt angles are 0°. All Nd–Bi bond lengths are 3.26 Å. Bi is bonded to six equivalent Nd atoms to form a mixture of edge and corner-sharing BiNd6 octahedra. The corner-sharing octahedral tilt angles are 0°.

  2. o

    Computational stability data of NdBi2BrO4from Density Functional Theory...

    • oqmd.org
    Updated Jan 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Open Quantum Materials Database (2023). Computational stability data of NdBi2BrO4 from Density Functional Theory calculations [Dataset]. https://oqmd.org/materials/composition/NdBi2BrO4
    Explore at:
    Dataset updated
    Jan 6, 2023
    Dataset authored and provided by
    The Open Quantum Materials Database
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Stability, Composition, Decomposition Energy
    Measurement technique
    Computational, Density Functional Theory
    Description

    This composition appears in the Bi-Br-Nd-O region of phase space. It's relative stability is shown in the Bi-Br-Nd-O phase diagram (left). The relative stability of all other phases at this composition (and the combination of other stable phases, if no compound at this composition is stable) is shown in the relative stability plot (right)

  3. d

    NCBI Datasets

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Library of Medicine (2025). NCBI Datasets [Dataset]. https://catalog.data.gov/dataset/ncbi-datasets-beta
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    National Library of Medicine
    Description

    NCBI Datasets is one-stop shop for finding, browsing, and downloading genomic data. Find and download taxonomy, genome, gene, transcript, protein data, including installation of NCBI Datasets command-line tools.

  4. o

    Computational data of Hexagonal NdBi from Density Functional Theory...

    • oqmd.org
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Open Quantum Materials Database, Computational data of Hexagonal NdBi from Density Functional Theory calculations [Dataset]. https://oqmd.org/materials/entry/326790
    Explore at:
    Dataset authored and provided by
    The Open Quantum Materials Database
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Name, Bandgap, Stability, Crystal volume, Formation energy, Symmetry spacegroup, Number of atoms in unit cell
    Measurement technique
    Computational, Density Functional Theory
    Description

    Data obtained from computational DFT calculations on Hexagonal NdBi is provided. Available data include crystal structure, bandgap energy, stability, density of states, and calculation input/output files.

  5. a

    Remote Sensed Land Cover Data

    • city-of-hope-spatial-datasets-bricoh.hub.arcgis.com
    Updated Apr 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ctribby_bricoh (2022). Remote Sensed Land Cover Data [Dataset]. https://city-of-hope-spatial-datasets-bricoh.hub.arcgis.com/items/0eaad1502d8c4c55875e17a50e2ec53f
    Explore at:
    Dataset updated
    Apr 27, 2022
    Dataset authored and provided by
    ctribby_bricoh
    Area covered
    Description

    Normalized Difference Built Index (NDBI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI) are remote sensing derived indexes that estimate land cover of impervious surface, vegetation, and water, respectively. NDVI is one measure of “greenness” which has been used in public health studies.

  6. s

    GENSAT at NCBI - Gene Expression Nervous System Atlas

    • scicrunch.org
    • dknet.org
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). GENSAT at NCBI - Gene Expression Nervous System Atlas [Dataset]. http://identifiers.org/RRID:SCR_003923
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    THIS RESOURCE IS NO LONGER IN SERVICE, documented on March 19, 2012. Due to budgetary constraints, the National Center for Biotechnology Information (NCBI) has discontinued support for the NCBI GENSAT database, and it has been removed from the Entrez System. The Gene Expression Nervous System Atlas (GENSAT) project involves the large-scale creation of transgenic mouse lines expressing green fluorescent protein (GFP) reporter or Cre recombinase under control of the BAC promoter in specific neural and glial cell populations. BAC expression data for all the lines generated (over 1300 lines) are available in online, searchable databases (www.gensat.org and the Database of GENSAT BAC-Cre driver lines). If you have any specific questions, please feel free to contact us at info_at_ncbi.nlm.nih.gov The GENSAT project aims to map the expression of genes in the central nervous system of the mouse, using both in situ hybridization and transgenic mouse techniques. Search criteria include gene names, gene symbols, gene aliases and synonyms, mouse ages, and imaging protocols. Mouse ages are restricted to E10.5 (embryonic day 10.5), E15.5 (embryonic day 15.5), P7 (postnatal day 7), and Adult (adult). The project focuses on two techniques * Evaluation of unmodified mice lines for expression of a given gene using radiolabelled riboprobes and in-situ hybridization. * Creation of transgenic mice lines containing a BAC construct that expresses a marker gene in the same environment as the native gene

  7. d

    NCBI Virus

    • catalog.data.gov
    • datadiscovery.nlm.nih.gov
    • +2more
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Library of Medicine (2025). NCBI Virus [Dataset]. https://catalog.data.gov/dataset/ncbi-virus
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    National Library of Medicine
    Description

    NCBI Virus is an integrative, value-added resource designed to support retrieval, display and analysis of a curated collection of virus sequences and large sequence datasets. Its goal is to increase the usability of viral sequence data archived in GenBank and other NCBI repositories. This resource includes resources previously included in HIV-1, Human Protein Interaction Database, Influenza Virus Resource, and Virus Variation.

  8. o

    Computational data of Cubic NdBi from Density Functional Theory calculations...

    • oqmd.org
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Open Quantum Materials Database, Computational data of Cubic NdBi from Density Functional Theory calculations [Dataset]. http://oqmd.org/materials/entry/305706
    Explore at:
    Dataset authored and provided by
    The Open Quantum Materials Database
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Name, Bandgap, Stability, Crystal volume, Formation energy, Symmetry spacegroup, Number of atoms in unit cell
    Measurement technique
    Computational, Density Functional Theory
    Description

    Data obtained from computational DFT calculations on Cubic NdBi is provided. Available data include crystal structure, bandgap energy, stability, density of states, and calculation input/output files.

  9. n

    NCBI BioSystems Database

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). NCBI BioSystems Database [Dataset]. http://identifiers.org/RRID:SCR_004690
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.

  10. h

    ncbi_disease

    • huggingface.co
    Updated May 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NLM/DIR BioNLP Group (2024). ncbi_disease [Dataset]. https://huggingface.co/datasets/ncbi/ncbi_disease
    Explore at:
    Dataset updated
    May 23, 2024
    Dataset authored and provided by
    NLM/DIR BioNLP Group
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    This paper presents the disease name and concept annotations of the NCBI disease corpus, a collection of 793 PubMed abstracts fully annotated at the mention and concept level to serve as a research resource for the biomedical natural language processing community. Each PubMed abstract was manually annotated by two annotators with disease mentions and their corresponding concepts in Medical Subject Headings (MeSH®) or Online Mendelian Inheritance in Man (OMIM®). Manual curation was performed using PubTator, which allowed the use of pre-annotations as a pre-step to manual annotations. Fourteen annotators were randomly paired and differing annotations were discussed for reaching a consensus in two annotation phases. In this setting, a high inter-annotator agreement was observed. Finally, all results were checked against annotations of the rest of the corpus to assure corpus-wide consistency.

    For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/

    The original dataset can be downloaded from: https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBI_corpus.zip This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll Note: there is a duplicate document (PMID 8528200) in the original data, and the duplicate is recreated in the converted data.

  11. d

    NCBI Learn

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Library of Medicine (2025). NCBI Learn [Dataset]. https://catalog.data.gov/dataset/ncbi-learn
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    National Library of Medicine
    Description

    NCBI creates a variety of educational products including courses, workshops, webinars, training materials and documentation. NCBI educational events are free and open to everyone. All NCBI educational materials are available for anyone to re-use and distribute

  12. EOCIS: Lake Catchment Change Indicators V1.0

    • catalogue.ceda.ac.uk
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Simis; Mark Warren; Nick Selmes; XIaohan Liu (2025). EOCIS: Lake Catchment Change Indicators V1.0 [Dataset]. https://catalogue.ceda.ac.uk/uuid/6e329e32570d4d4f818b8f8aa18e7a85
    Explore at:
    Dataset updated
    Apr 4, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Stefan Simis; Mark Warren; Nick Selmes; XIaohan Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2016 - Dec 31, 2023
    Area covered
    Description

    This dataset contains Lake Catchment Change Indicators data produced within the Earth Observation Climate Information Service (EOCIS) project by Plymouth Marine Laboratory.

    The Product(s) can be used to map daily variations in the reflectance of water bodies contained in the target lake catchment. The derived quantities turbidity and chlorophyll-a can be used to determine variability in the optical and biochemical conditions of the lake and other included water bodies.

    A set of vegetation, built-up area, and water indices are included to aid users in selection data ranges and locations of interest. These include the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-Up Index (NDBI) Augmented Normalized Difference Water Index (ANDWI) and Modified Normalized Difference Water Index (MDNWI).

    These data sets have been created following the specific format for climate data at high resolution for the UK (CHUK) within the EOCIS project. The CHUK grid consists of 100m x 100m cells in British National Grid (BNG) projection. The CHUK grid covers the whole area of the British Isles, an area approximately 1,000km x 1,500km, whereas the data sets presented here are limited to parts of this grid for the extent of each lake catchment.

  13. h

    Hidden-Flaws-GPT-4V

    • huggingface.co
    Updated Apr 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NLM/DIR BioNLP Group (2024). Hidden-Flaws-GPT-4V [Dataset]. https://huggingface.co/datasets/ncbi/Hidden-Flaws-GPT-4V
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 5, 2024
    Dataset authored and provided by
    NLM/DIR BioNLP Group
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Models, data, and code posted here reflect the research conducted in the Computational Biology Branch, NCBI/NLM. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If… See the full description on the dataset page: https://huggingface.co/datasets/ncbi/Hidden-Flaws-GPT-4V.

  14. d

    NCBI Submission Portal

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Library of Medicine (2025). NCBI Submission Portal [Dataset]. https://catalog.data.gov/dataset/ncbi-submission-portal-85d6f
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    National Library of Medicine
    Description

    A single entry point for users to link to and find information about data submission processes at NCBI.

  15. h

    ncbi

    • huggingface.co
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chengguang Gan (2025). ncbi [Dataset]. https://huggingface.co/datasets/ganchengguang/ncbi
    Explore at:
    Dataset updated
    Mar 9, 2025
    Authors
    Chengguang Gan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ganchengguang/ncbi dataset hosted on Hugging Face and contributed by the HF Datasets community

  16. o

    Sentinel-2 image index mosaics (S2ind) - Sentinel-2 kuvamosaiikit (S2ind)

    • opendata.fi
    • avoindata.fi
    • +1more
    wcs
    Updated May 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suomen ympäristökeskus (Syke) (2025). Sentinel-2 image index mosaics (S2ind) - Sentinel-2 kuvamosaiikit (S2ind) [Dataset]. https://www.opendata.fi/data/fi/dataset/sentinel-2-image-index-mosaics-s2ind-sentinel-2-kuvamosaiikit-s2ind
    Explore at:
    wcsAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset provided by
    Suomen ympäristökeskus (Syke)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The image index mosaics called S2ind are computed from Sentinel-2 images. Time period is from early April to late October, and the mosaics are computed on the 15th and the last day of month, each mosaic consisting of images of previous month. The purpose of these index mosaics is to enhance some physical property of target, like vegetation or built-up areas. Computed image indices are Normalized Difference Vegetation Index (NDVI), Tillage Index (NDTI), Built-up index (NDBI), Snow index (NDSI) and Moisture index (NDMI).

    Sentinel-2 image index mosaics are produced using images acquired using the MSI-instrument of the Sentinel 2A and 2B satellites. The original data is obtained automatically as tile packages (granules) from the Sodankylä National Satellite Data Center (NSDC) data archive and processed at CalFin-cluster of National Satellite Data Centre. Following image indices are computed:

    • NDVI = (B8-B4)/(B8+B4)
    • NDTI = (B11-B12)/(B11+B12)
    • NDMI = (B8-B11)/(B8+B11)
    • NDBI = ((B11-B8)/(B11+B8))-((B8-B4)/(B8+B4))
    • NDSI = (B3-B11)/(B3+B11)

    where B* indicates the Sentinel-2 image band Top-of-Atmosphere reflectance used in index computation.

    The monthly mosaics are composed based on maximum NDVI, in other words the pixel values to mosaics are selected from image where the NDVI value is the highest within selected time frame. Then, pixel values are scaled from interval -1,...,1 to interval 0,...,200 and saved as 8-bit integers instead of 32-bit real numbers. This has been done in order to reduce data size. The amount of monthly Sentinel-2 data is so large that it is not possible to process the whole Finland as one process. Instead, Finland has been divided to ten areas and mosaics are done for each area, and then these mosaics of areas are transformed to TM35Fin-coordinate system (EPSG 3067) and mosaicked to cover whole Finland and surroundings. The single mosaics are stored in Cloud-Optimized-Geotiff format. The final spatial resolution of S2ind-image index mosaics is 10 m per pixel. The metadata mosaic, in other words the number of day from the start of the year, is called META.

    The mosaics as available from the interfaces of NSDC which are:

    These S2ind-mosaics are produced by Finnish Environment Institute Syke using CalFin-cluster of Sodankylä National Satellite Data Center, and they were developed as part of sub program “Distribution and Processing of Satellite Imagery” of "Geospatial Platform of Finnish Public Administration"-program (2017-2019). This Syke’s dataset can be used according to open data license (CC BY 4.0).

    Kuvaindeksimosaiikit S2ind lasketaan Sentinel-2 kuvista. Ajanjakso on vuosittain huhtikuun alusta lokakuun loppuun, mosaiikit lasketaan kuukauden 15 ja viimeinen päivä ja kukin mosaiikki käsittää edellisen kuukauden kuvat. Kuvaindeksimosaiikkien tarkoituksena on korostaa jotain kohteen ominaisuutta kuten kasvillisuuden tai elottoman alueen esiintyminen. Lasketut kuvaindeksit ovat Normalized Difference Vegetation Index (NDVI, kasvillisuusindeksi), Tillage Index (NDTI, maanmuokkaus), Built-up index (NDBI, eloton alue), Snow index (NDSI, lumi) ja Moisture index (NDMI, kosteus).

    Sentinel-2 kuvaindeksimosaiikit tuotetaan Sentinel-2A ja -2B satelliittien MSI-instrumentin ottamista kuvista. Prosessointi tapahtuu Ilmatieteen laitoksen Kansallisen satelliittidatakeskuksen infrastruktuuria hyödyntäen, kuvat on arkistoitu sinne ja prosessoitu CalFin-prosessointiklusterissa. Kuvaindeksit ovat

    • NDVI = (B8-B4)/(B8+B4)
    • NDTI = (B11-B12)/(B11+B12)
    • NDMI = (B8-B11)/(B8+B11)
    • NDBI = ((B11-B8)/(B11+B8))-((B8-B4)/(B8+B4))
    • NDSI = (B3-B11)/(B3+B11)

    jossa B* on Sentinel-2 kuvan kanavan * Top-of-Atmosphere-reflektanssi.

    Mosaikointi perustuu ajanjakson maksimi-NDVI-arvoon, eli mosaiikin pikselin indeksiarvot valitaan siitä kuvasta jolla NDVI-arvo on kaikkein suurin. Pikselin arvot skaalataan lukualueesta -1,...,1 lukualueeseen 0,...,200 ja talletetaan käyttäen 8-bittisiä kokonaislukuja, 32-bittisten reaalilukujen sijaan. Tämä tehdään tallennettavan datamäärän pienentämiseksi. Sekä koko mosaiikin pinta-ala että kuukausittaisten kuvien lukumäärä on sen verran suuri, että koko mosaiikkia ei lasketa yhtenä prosessina vaan Suomi on jaettu kymmeneen alueeseen. Ensinnä muodostetaan kunkin alueen oma mosaiikki jotka koordinaatistomuunnosvaiheessa maantieteellinen Lat/Lon-koordinaatisto -> TM35Fin- koordinaatisto yhdistetään koko Suomen ja lähialueet kattavaksi mosaiikiksi. Mosaiikit on tallennettu yksittäin omiksi Cloud-Optimized Geotiff-tiedostoiksi. Mosaiikkien pikselikoko on 10 metriä. Metadatamosaiikkia, eli päivän numero laskien vuoden alusta, kutsutaan nimellä META.

    Mosaiikit on saatavilla Kansallisen satelliittidatakeskuksen käyttöliittymistä, jotka ovat

    Katselupalveluita ovat muun muassa

    Suomen Ympäristökeskus tuottaa nämä Sentinel-2 kuvaindeksimosaiikit käyttäen Kansallisen satelliittidatakeskuksen CalFin-prosessointiklusteria, ja ne on kehitetty osana Paikkatietoalusta-hankkeen (2017-2019) Satelliittidatan jakelu ja prosessointi-osahanketta. Aineisto kuuluu SYKEn avoimiin aineistoihin (CC BY 4.0).

    S2ind-mosaics have been developed as part of Finnish Geospatial Platform project (http://www.paikkatietoalusta.fi/en), which started 2017 and was completed at the end of 2019.

  17. Data from: NCBI Taxonomy

    • demo.gbif-test.org
    • gbif.org
    Updated Feb 19, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Biotechnology Information (NCBI) (2015). NCBI Taxonomy [Dataset]. http://doi.org/10.15468/rhydar
    Explore at:
    Dataset updated
    Feb 19, 2015
    Dataset provided by
    National Center for Biotechnology Informationhttp://www.ncbi.nlm.nih.gov/
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    Description

    The NCBI taxonomy database is not a primary source for taxonomic or phylogenetic information. Furthermore, the database does not follow a single taxonomic treatise but rather attempts to incorporate phylogenetic and taxonomic knowledge from a variety of sources, including the published literature, web-based databases, and the advice of sequence submitters and outside taxonomy experts. Consequently, the NCBI taxonomy database is not a phylogenetic or taxonomic authority and should not be cited as such.

  18. h

    pubmed

    • huggingface.co
    Updated Dec 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NLM/DIR BioNLP Group (2023). pubmed [Dataset]. https://huggingface.co/datasets/ncbi/pubmed
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    NLM/DIR BioNLP Group
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    NLM produces a baseline set of MEDLINE/PubMed citation records in XML format for download on an annual basis. The annual baseline is released in December of each year. Each day, NLM produces update files that include new, revised and deleted citations. See our documentation page for more information.

  19. r

    Data from: NCBI Taxonomy

    • rrid.site
    • neuinfo.org
    • +2more
    Updated Jul 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). NCBI Taxonomy [Dataset]. http://identifiers.org/RRID:SCR_003256
    Explore at:
    Dataset updated
    Jul 26, 2025
    Description

    Database for a curated classification and nomenclature that contains the names of all organisms that are represented in the public sequence databases with at least one nucleotide or protein sequence. Data provided encompasses archaea, bacteria, eukaryota, viroids and viruses. The NCBI taxonomy database is not a primary source for taxonomic or phylogenetic information. Furthermore, the database does not follow a single taxonomic treatise but rather attempts to incorporate phylogenetic and taxonomic knowledge from a variety of sources, including the published literature, web-based databases, and the advice of sequence submitters and outside taxonomy experts. Consequently, the NCBI taxonomy database is not a phylogenetic or taxonomic authority and should not be cited as such.

  20. l

    Human RNA-Seq data set GSM2819712 stored in NCBI (GEO)

    • seek.lisym.org
    Updated Aug 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mario Brosch (2022). Human RNA-Seq data set GSM2819712 stored in NCBI (GEO) [Dataset]. https://seek.lisym.org/data_files/685
    Explore at:
    Dataset updated
    Aug 29, 2022
    Authors
    Mario Brosch
    License

    https://choosealicense.com/no-permission/https://choosealicense.com/no-permission/

    Description

    Human RNA-Seq data set GSM2819712 stored in NCBI (GEO)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Materials Project (2020). Materials Data on NdBi by Materials Project [Dataset]. https://www.osti.gov/dataexplorer/biblio/dataset/1199407-materials-data-ndbi-materials-project
Organization logo

Materials Data on NdBi by Materials Project

Explore at:
Dataset updated
Jul 16, 2020
Dataset provided by
Office of Sciencehttp://www.er.doe.gov/
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Authors
The Materials Project
Description

Bi(Nd) is Halite, Rock Salt structured and crystallizes in the cubic Fm-3m space group. The structure is three-dimensional. Nd is bonded to six equivalent Bi atoms to form a mixture of edge and corner-sharing NdBi6 octahedra. The corner-sharing octahedral tilt angles are 0°. All Nd–Bi bond lengths are 3.26 Å. Bi is bonded to six equivalent Nd atoms to form a mixture of edge and corner-sharing BiNd6 octahedra. The corner-sharing octahedral tilt angles are 0°.

Search
Clear search
Close search
Google apps
Main menu