100+ datasets found
  1. NEAR Gravity Map Collection

    • arcnav.psi.edu
    Updated Feb 12, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kahan, Daniel; Konopliv, Alex S. (2001). NEAR Gravity Map Collection [Dataset]. https://arcnav.psi.edu/urn:nasa:pds:near_rss_derived:data_img
    Explore at:
    Dataset updated
    Feb 12, 2001
    Dataset provided by
    NASAhttp://nasa.gov/
    Authors
    Kahan, Daniel; Konopliv, Alex S.
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This collection contains a set of gravity maps of the asteroid Eros derived from data acquired from the Radio Science Subsystem on the Near Earth Asteroid Rendezvous mission. It was migrated from PDS3 to PDS4 in 2024 by the Radio Science Sub-Node. This bundle contains all the derived data from the PDS3 data set NEAR_A_RSS_5_EROS_GRAVITY_V1_0.

  2. a

    Satellite Maps 3D Scene 2023 - for website

    • noaa.hub.arcgis.com
    Updated Jul 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2023). Satellite Maps 3D Scene 2023 - for website [Dataset]. https://noaa.hub.arcgis.com/maps/320e766fff7d4b5a8280c86373ee60e0
    Explore at:
    Dataset updated
    Jul 24, 2023
    Dataset authored and provided by
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the Maps​What does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why are the North and South Poles dark?The raw satellite data used in these web map apps goes through several processing steps after it has been acquired from space. These steps translate the raw data into geospatial data and imagery projected onto a map. NOAA Satellite Maps uses the Mercator projection to portray the Earth's 3D surface in two dimensions. This Mercator projection does not include data at 80 degrees north and south latitude due to distortion, which is why the poles appear black in these maps. NOAA's polar satellites are a critical resource in acquiring operational data at the poles of the Earth and some of this imagery is available on our website (for example, here ).Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?NOAA Satellite Maps offers an interoperable map service to the public. Use the camera tool to select the area of the map you would like to capture and click ‘download GIS WorldFile.’The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?What am I seeing in the NOAA Satellite Maps 3D Scene?There are four options to choose from, each depicting a different view of the Earth using the latest satellite imagery available. The first three views show the Western Hemisphere and the Pacific Ocean, as captured by the NOAA GOES East (GOES-16) and GOES West (GOES-17) satellites. These images are updated approximately every 15 minutes as we receive data from the satellites in space. The three views show GeoColor, infrared and water vapor. See our other FAQs to learn more about what the imagery layering options depict.The fourth option is a global view, captured by NOAA’s polar-orbiting satellites (NOAA/NASA Suomi NPP and NOAA-20). The polar satellites circle the globe 14 times a day, taking in one complete view of the Earth in daylight every 24 hours. This composite view is what is projected onto the 3D map scene each morning, so you are seeing how the Earth looked from space one day ago.What am I seeing in the Latest 24 Hrs. GOES Constellation Map?In this map you are seeing the past 24 hours (updated approximately every 15 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-17) satellites. In this map you can also view three different ‘layers’. The three views show ‘GeoColor’ ‘infrared’ and ‘water vapor’.(Please note: GOES West imagery is currently only available in GeoColor. The infrared and water vapor imagery will be available in Spring 2019.)This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What am I seeing in the Global Archive Map?In this map, you will see the whole Earth as captured each day by our polar satellites, based on our multi-year archive of data. This data is provided by NOAA’s polar orbiting satellites (NOAA/NASA Suomi NPP from January 2014 to April 19, 2018 and NOAA-20 from April 20, 2018 to today). The polar satellites circle the globe 14 times a day taking in one complete view of the Earth every 24 hours. This complete view is what is projected onto the flat map scene each morning.What does the GOES GeoColor imagery show?The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent?In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in

  3. d

    Shuttle Radar Topography Mission (SRTM) Images

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). Shuttle Radar Topography Mission (SRTM) Images [Dataset]. https://catalog.data.gov/dataset/shuttle-radar-topography-mission-srtm-images
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated: Radar Image Radar Image with Color as Height Radar Image with Color Wrapped Fringes -Shaded Relief Perspective View with B/W Radar Image Overlaid Perspective View with Radar Image Overlaid, Color as Height Perspective View of Shaded Relief Perspective View with Landsat or other Image Overlaid Contour Map - B/W with Contour Lines Stereo Pair Anaglypgh The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.

  4. n

    VIIRS/JPSS1+JPSS2 Hourly Cumulative L3 Global Flood Composite 250m Linear...

    • cmr.earthdata.nasa.gov
    • data.nasa.gov
    • +1more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). VIIRS/JPSS1+JPSS2 Hourly Cumulative L3 Global Flood Composite 250m Linear Lat Lon Grid - NRT [Dataset]. http://doi.org/10.5067/VIIRS/VCDWDG_L3_NRT.002
    Explore at:
    Dataset updated
    Apr 23, 2025
    Time period covered
    Apr 15, 2025 - Present
    Area covered
    Earth
    Description

    The VIIRS/JPSS1+JPSS2 Hourly Cumulative L3 Global Flood Composite 250m Linear Lat Lon Grid Near Real Time (NRT) Product, short-name VCDWDG_L3_NRT provides hourly updated maps of flooding globally. The VCDWDG_L3_NRT product is generated using VIIRS Surface Reflectance (VJ109/VJ209) products as inputs from NOAA-20 and NOAA-21 satellites. The product files are in EOS-HDF5 file format. The VIIRS Near Real-Time Global Flood Product (Collection 2) is processed by NASA's Land, Atmosphere Near real-time Capability for Earth observation (LANCE). The VCDWDG_L3_NRT is currently at Beta 1, under VIIRS collection 2. For more information, visit product page at:

    https://www.earthdata.nasa.gov/global-flood-product

  5. n

    U.S. Geological Survey Aerial Photography

    • cmr.earthdata.nasa.gov
    • s.cnmilf.com
    • +3more
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). U.S. Geological Survey Aerial Photography [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220566204-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Apr 1, 1937 - Present
    Area covered
    Earth
    Description

    The U.S. Geological Survey (USGS) Aerial Photography data set includes over 2.5 million film transparencies. Beginning in 1937, photographs were acquired for mapping purposes at different altitudes using various focal lengths and film types. The resultant black-and-white photographs contain less than 5 percent cloud cover and were acquired under rigid quality control and project specifications (e.g., stereo coverage, continuous area coverage of map or administrative units). Prior to the initiation of the National High Altitude Photography (NHAP) program in 1980, the USGS photography collection was one of the major sources of aerial photographs used for mapping the United States. Since 1980, the USGS has acquired photographs over project areas that require photographs at a larger scale than the photographs in the NHAP and National Aerial Photography Program collections.

  6. MAP for website - Satellite Maps Western Hemisphere

    • noaa.hub.arcgis.com
    Updated Aug 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2023). MAP for website - Satellite Maps Western Hemisphere [Dataset]. https://noaa.hub.arcgis.com/maps/noaa::map-for-website-satellite-maps-western-hemisphere-2023/about?path=
    Explore at:
    Dataset updated
    Aug 4, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the Maps​What does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.What does the Time Slider icon do?The Time Slider widget enables you to view temporal layers in a map, and play the animation to see how the data changes over time. Using this widget, you can control the animation of the data with buttons to play and pause, go to the previous time period, and go to the next time period.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?In this map you are seeing the past 24 hours (updated approximately every 10 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-18) satellites. In this map you can also view four different ‘layers’. The views show ‘GeoColor’, ‘infrared’, and ‘water vapor’.This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What does the GOES GeoColor imagery show?The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent?In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in real time. Water vapor imagery, which is useful for determining locations of moisture and atmospheric circulations, is created using a wavelength of energy sensitive to the content of water vapor in the atmosphere. In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate little or no moisture present. This imagery is derived from band #10 on the GOES East and GOES West Advanced Baseline Imager.What do the colors on the water vapor map represent?In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate less moisture present. Learn more about this water vapor imagery.About the satellitesWhat are the GOES satellites?NOAA’s most sophisticated Geostationary Operational Environmental Satellites (GOES), known as the GOES-R Series, provide advanced imagery and atmospheric measurements of Earth’s Western Hemisphere, real-time mapping of lightning activity, and improved monitoring of solar activity and space weather.The first satellite in the series, GOES-R, now known as GOES-16, was launched in 2016 and is currently operational as NOAA’s GOES East satellite. In 2018, NOAA launched another satellite in the series, GOES-T, which joined GOES-16 in orbit as GOES-18. GOES-17 became operational as GOES West in January 2023.Together, GOES East and GOES West provide coverage of the Western Hemisphere and most of the Pacific Ocean, from the west coast of Africa all the way to New Zealand. Each satellite orbits the Earth from about 22,200 miles away.

  7. e

    Bright Earth eAtlas Basemap (NERP TE 13.1 eAtlas, AIMS)

    • catalogue.eatlas.org.au
    Updated Jan 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (2025). Bright Earth eAtlas Basemap (NERP TE 13.1 eAtlas, AIMS) [Dataset]. https://catalogue.eatlas.org.au/geonetwork/srv/api/records/ac57aa5a-233b-4c2c-bd52-1fb40a31f639
    Explore at:
    ogc:wms-1.1.1-http-get-map, www:link-1.0-http--downloaddata, www:download-1.0-http--download, www:link-1.0-http--related, www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Jan 25, 2025
    Dataset provided by
    Australian Institute of Marine Science
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    The Bright Earth eAtlas Basemap dataset collection is a satellite-derived global map of the world at a 1:1M scale for most of the world and 1:200k scale for Australia. This map was inspired by Natural Earth II (NEII) and NASA's Blue Marble Next Generation (BMNG) imagery.

    Its aim was to provide a basemap similar to NEII but with a higher resolution (~10x).

    This basemap is derived from the following datasets: Blue Marble Next Generation 2004-04 (NASA), VMap0 coastline, Coast100k 2004 Australian coastline (GeoScience Australia), SRTM30 Plus v8.0 (UCSD) hillshading, Natural Earth Vector 10m bathymetry and coastline v2.0 (NE), gbr100 hillshading (JCU).

    This dataset (World_Bright-Earth-e-Atlas-basemap) contains all the files required to setup the Bright Earth eAtlas basemap in a GeoServer. All the data files are stored in GeoTiffs or shapefiles and so can also be loaded into ArcMap, however no styling has been included for this purpose.

    This basemap is small enough (~900 MB) that can be readily used locally or deployed to a GeoServer.

    Base map aesthetics (added 28 Jan 2025)

    The Bright Earth e-Atlas Basemap is a high-resolution representation of the Earth's surface, designed to depict global geography with clarity, natural aesthetics with bright and soft color tones that enhance data overlays without overwhelming the viewer. The land areas are based on NASA's Blue Marble imagery, with modifications to lighten the tone and apply noise reduction filtering to soften the overall coloring. The original Blue Marble imagery was based on composite satellite imagery resulting in a visually appealing and clean map that highlights natural features while maintaining clarity and readability. Hillshading has been applied across the landmasses to enhance detail and texture, bringing out the relief of mountainous regions, plateaus, and other landforms.

    The oceans feature three distinct depth bands to illustrate shallow continental areas, deeper open ocean zones, and the very deep trenches and basins. The colors transition from light blue in shallow areas to darker shades in deeper regions, giving a clear sense of bathymetric variation. Hillshading has also been applied to the oceans to highlight finer structures on the seafloor, such as ridges, trenches, and other geological features, adding depth and dimensionality to the depiction of underwater topography.

    At higher zoom levels prominent cities are shown and the large scale roads are shown for Australia.

    Rendered Raster Version (added 28 Jan 2025)

    A low resolution version of the dataset is available as a raster file (PNG, JPG and GeoTiff) at ~2 km and 4 km resolutions. These rasters are useful for applications where GeoServer is not available to render the data dynamically. While the rasters are large they represent a small fraction of the full detail of the dataset. The rastered version was produced using the layout manager in QGIS to render maps of the whole world, pulling the imagery from the eAtlas GeoServer. This imagery from converted to the various formats using GDAL. More detail is provided in 'Rendered-bright-earth-processing.txt' in the download and browse section.

    Change Log 2025-01-28: Added two rendered raster versions of the dataset at 21600x10800 and 10400x5400 pixels in size in PNG, JPG and GeoTiff format. Added

  8. Natural Earth

    • registry.opendata.aws
    Updated Aug 24, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North American Cartographic Information Society (nacis.org) (2021). Natural Earth [Dataset]. https://registry.opendata.aws/naturalearth/
    Explore at:
    Dataset updated
    Aug 24, 2021
    Dataset provided by
    North American Cartographic Information Societyhttps://nacis.org/
    Description

    Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

  9. n

    USGS High Resolution Orthoimagery

    • cmr.earthdata.nasa.gov
    • catalog.data.gov
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). USGS High Resolution Orthoimagery [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220567548-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.

    A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.

  10. Daily Planet Imagery

    • sdgs.amerigeoss.org
    • data.amerigeoss.org
    • +5more
    Updated Feb 7, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Daily Planet Imagery [Dataset]. https://sdgs.amerigeoss.org/maps/3d355e34cbd3405dbb3f031286f7b39b
    Explore at:
    Dataset updated
    Feb 7, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This series of products from MODIS represents the only daily global composites available and is suitable for use at global and regional levels. This True Color band composition (Bands 1 4 3 | Red, Green, Blue) most accurately shows how we see the earth’s surface with our own eyes. It is a natural looking image that is useful for land surface, oceanic and atmospheric analysis. There are four True Color products in total. For each satellite (Aqua and Terra) there is a 250 meter corrected reflectance product and a 500 meter surface reflectance product. Although the resolution is coarser than other satellites, this allows for a global collection of imagery on a daily basis, which is made available in near real-time. In contrast, Landsat needs 16 days to collect a global composite. Besides the maximum resolution difference, the surface and corrected reflectance products also differ in the algorithm used for atmospheric correction.NASA Global Imagery Browse Services (GIBS)This image layer provides access to a subset of the NASA Global Imagery Browse Services (GIBS), which are a set of standard services to deliver global, full-resolution satellite imagery. The GIBS goal is to enable interactive exploration of NASA's Earth imagery for a broad range of users. The purpose of this image layer, and the other GIBS image services hosted by Esri, is to enable convenient access to this beautiful and useful satellite imagery for users of ArcGIS. The source data used by this image layer is a finished image; it is not recommended for quantitative analysis.Several full resolution, global imagery products are built and served by GIBS in near real-time (usually within 3.5 hours of observation). These products are built from NASA Earth Observing System satellites data courtesy of LANCE data providers and other sources. The MODIS instrument aboard Terra and Aqua satellites, the AIRS instrument aboard Aqua, and the OMI instrument aboard Aura are used as sources. Several of the MODIS global products are made available on this Esri hosted service.This image layer hosted by Esri provides direct access to one of the GIBS image products. The Esri servers do not store any of this data itself. Instead, for each received data request, multiple image tiles are retrieved from GIBS, which are then processed and assembled into the proper image for the response. This processing takes place on-the-fly, for each and every request. This ensures that any update to the GIBS data is immediately available in the Esri mosaic service.Note on Time: The image service supporting this map is time enabled, but time has been disabled on this image layer so that the most recent imagery displays by default. If you would like to view imagery over time, you can update the layer properties to enable time animation and configure time settings. The results can be saved in a web map to use later or share with others.

  11. Satellite (MODIS) Thermal Hotspots and Fire Activity

    • wifire-data.sdsc.edu
    • emergency-lacounty.hub.arcgis.com
    Updated Mar 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Satellite (MODIS) Thermal Hotspots and Fire Activity [Dataset]. https://wifire-data.sdsc.edu/dataset/satellite-modis-thermal-hotspots-and-fire-activity
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Mar 4, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data. EOSDIS integrates remote sensing and GIS technologies to deliver global MODIS hotspot/fire locations to natural resource managers and other stakeholders around the World.


    Consumption Best Practices:

    • As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to 'https://en.wikipedia.org/wiki/Rate_limiting' rel='nofollow ugc'>Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.
    • When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.

    Scale/Resolution: 1km

    Update Frequency: 1/2 Hour (every 30 minutes) using the Aggregated Live Feed Methodology

    Area Covered: World

    What can I do with this layer?
    The MODIS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.

    Additional Information
    MODIS stands for MODerate resolution Imaging Spectroradiometer. The MODIS instrument is on board NASA’s Earth Observing System (EOS) Terra (EOS AM) and Aqua (EOS PM) satellites. The orbit of the Terra satellite goes from north to south across the equator in the morning and Aqua passes south to north over the equator in the afternoon resulting in global coverage every 1 to 2 days. The EOS satellites have a ±55 degree scanning pattern and orbit at 705 km with a 2,330 km swath width.

    It takes approximately 2 – 4 hours after satellite overpass for MODIS Rapid Response to process the data, and for the Fire Information for Resource Management System (FIRMS) to update the website. Occasionally, hardware errors can result in processing delays beyond the 2-4 hour range. Additional information on the MODIS system status can be found at MODIS Rapid Response.

    Attribute Information
    • Latitude and Longitude: The center point location of the 1km (approx.) pixel flagged as containing one or more fires/hotspots (fire size is not 1km, but variable). Stored by Point Geometry. See What does a hotspot/fire detection mean on the ground?
    • Brightness: The brightness temperature measured (in Kelvin) using the MODIS channels 21/22 and channel 31.
    • Scan and Track: The actual spatial resolution of the scanned pixel. Although the algorithm works at 1km resolution, the MODIS pixels get bigger toward the edge of the scan. See What does scan and track mean?
    • Date and Time: Acquisition date of the hotspot/active fire pixel and time of satellite overpass in UTC (client presentation in local time). Stored by Acquisition Date.
    • Acquisition Date: Derived Date/Time field combining Date and Time attributes.
    • Satellite: Whether the detection was picked up by the Terra or Aqua satellite.
    • Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel.
    • Version: Version refers to the processing collection and source of data. The number before the decimal refers to the collection (e.g. MODIS Collection 6). The number after the decimal indicates the source of Level 1B data; data processed in near-real time by MODIS Rapid Response will have the source code “CollectionNumber.0”. Data sourced from MODAPS (with a 2-month lag) and processed by FIRMS using the standard MOD14/MYD14 Thermal Anomalies algorithm will have a source code “CollectionNumber.x”. For example, data with the version listed as 5.0 is collection 5, processed by MRR, data with the version listed as 5.1 is collection 5 data processed by FIRMS using Level 1B data from MODAPS.
    • Bright.T31: Channel 31 brightness temperature (in Kelvins) of the hotspot/active fire pixel.
    • FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).
    • DayNight: The standard processing algorithm uses the solar zenith angle (SZA) to threshold the day/night value; if the SZA exceeds 85 degrees it is assigned a night value. SZA values less than 85 degrees are assigned a day time value. For the NRT algorithm the day/night flag is assigned by ascending (day) vs descending (night) observation. It is expected that the NRT assignment of the day/night flag will be amended to be consistent with the standard processing.
    • Hours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.
    Revisions
    • June 22, 2022: Added 'HOURS_OLD' field to enhance Filtering data. Added 'Last 7 days' Layer to extend data to match time range of VIIRS offering. Added Field level descriptions.
    This map is provided for informational purposes and is not monitored 24/7 for accuracy and

  12. d

    Digital Line Graph - 1:100,000 scale

    • search.dataone.org
    • catalog.data.gov
    Updated Mar 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (2017). Digital Line Graph - 1:100,000 scale [Dataset]. https://search.dataone.org/view/4ba6b26f-beb1-467e-9d7a-58be91639522
    Explore at:
    Dataset updated
    Mar 30, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center
    Area covered
    Description

    Digital line graph (DLG) data are digital representations of cartographic information. DLGs of map features are converted to digital form from maps and related sources. Intermediate-scale DLG data are derived from USGS 1:100,000-scale 30- by 60-minute quadrangle maps. If these maps are not available, Bureau of Land Management planimetric maps at a scale of 1:100,000 are used. Intermediate-scale DLGs are sold in five categories: (1) Public Land Survey System; (2) boundaries; (3) transportation; (4) hydrography; and (5) hypsography. All DLG data distributed by the USGS are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, and have passed certain quality-control checks.

  13. a

    Color Radiance Imagery Services from NASA GIBS

    • hub.arcgis.com
    • anrgeodata.vermont.gov
    • +4more
    Updated Nov 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Color Radiance Imagery Services from NASA GIBS [Dataset]. https://hub.arcgis.com/maps/74d32a3d0d094de8bfe9151caea54a87
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.GIBS Available Imagery ProductsThe GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

  14. SEPAL

    • data.amerigeoss.org
    png, wms
    Updated Oct 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). SEPAL [Dataset]. https://data.amerigeoss.org/dataset/sepal
    Explore at:
    png(884051), png(409262), wmsAvailable download formats
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    What is SEPAL?

    SEPAL (https://sepal.io/) is a free and open source cloud computing platform for geo-spatial data access and processing. It empowers users to quickly process large amounts of data on their computer or mobile device. Users can create custom analysis ready data using freely available satellite imagery, generate and improve land use maps, analyze time series, run change detection and perform accuracy assessment and area estimation, among many other functionalities in the platform. Data can be created and analyzed for any place on Earth using SEPAL.

    https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/63a3efa0-08ab-4ad6-9d4a-96af7b6a99ec/download/cambodia_mosaic_2020.png" alt="alt text" title="Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia">

    Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia

    SEPAL reaches over 5000 users in 180 countries for the creation of custom data products from freely available satellite data. SEPAL was developed as a part of the Open Foris suite, a set of free and open source software platforms and tools that facilitate flexible and efficient data collection, analysis and reporting. SEPAL combines and integrates modern geospatial data infrastructures and supercomputing power available through Google Earth Engine and Amazon Web Services with powerful open-source data processing software, such as R, ORFEO, GDAL, Python and Jupiter Notebooks. Users can easily access the archive of satellite imagery from NASA, the European Space Agency (ESA) as well as high spatial and temporal resolution data from Planet Labs and turn such images into data that can be used for reporting and better decision making.

    National Forest Monitoring Systems in many countries have been strengthened by SEPAL, which provides technical government staff with computing resources and cutting edge technology to accurately map and monitor their forests. The platform was originally developed for monitoring forest carbon stock and stock changes for reducing emissions from deforestation and forest degradation (REDD+). The application of the tools on the platform now reach far beyond forest monitoring by providing different stakeholders access to cloud based image processing tools, remote sensing and machine learning for any application. Presently, users work on SEPAL for various applications related to land monitoring, land cover/use, land productivity, ecological zoning, ecosystem restoration monitoring, forest monitoring, near real time alerts for forest disturbances and fire, flood mapping, mapping impact of disasters, peatland rewetting status, and many others.

    The Hand-in-Hand initiative enables countries that generate data through SEPAL to disseminate their data widely through the platform and to combine their data with the numerous other datasets available through Hand-in-Hand.

    https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/868e59da-47b9-4736-93a9-f8d83f5731aa/download/probability_classification_over_zambia.png" alt="alt text" title="Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia">

    Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia
  15. GCOM-C/SGLI L1B Visible and Near Infrared (Non-Polarization) (250m)

    • eolp.jaxa.jp
    • fedeo.ceos.org
    • +1more
    Updated Jan 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Japan Aerospace Exploration Agency (JAXA) (2018). GCOM-C/SGLI L1B Visible and Near Infrared (Non-Polarization) (250m) [Dataset]. http://doi.org/10.57746/EO.01gs73b367cztgpz6nbhqhj6t1
    Explore at:
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    Japan Aerospace Exploration Agencyhttp://www.jaxa.jp/
    Authors
    Japan Aerospace Exploration Agency (JAXA)
    License

    http://earth.jaxa.jp/policy/en.htmlhttp://earth.jaxa.jp/policy/en.html

    Time period covered
    Jan 1, 2018 - Present
    Area covered
    Earth
    Description

    GCOM-C/SGLI L1B Visible and Near Infrared (Non-Polarization) (250m) dataset is obtained from the SGLI sensor onboard GCOM-C and produced by the Japan Aerospace Exploration Agency (JAXA). GCOM-C is Sun-synchronous sub-recurrent Orbit satellite launched on December 23, 2017, which mounts SGLI and conducts long-term global observations of geophysical variables related to the global climate system across 28 items including aerosol and vegetation over 4 areas of atmosphere, land, ocean, and cryosphere. The data will be used to contribute to higher accuracy of global warming prediction. The SGLI has swath of 1150 km in the visible band and 1400 km in the infrared band. GCOM-C/SGLI Level 1B products are using the data contained in Level 1A products as inputs, and the following processes are applied on the input data, calculation of spectral radiance, re-sampling of geometric correction, data and observation data to L1B, Reference Coordinate System, calculation of land/water flag, creation of quality information. This product is top of atmosphere radiance SI (Scaled Integer) data, using the Level 1A product as input. The provided format is HDF5. The spatial resolution is 250 m. 1 km is also available. Radiometric correction is stored. The geometries are projected to L1B reference coordinates commonly for VNR-NP and IRS, and the ground observation position in each band are same. Therefore, as geometric information, latitude, longitude, solar azimuth angle and solar zenith angle of 10 pixels interval are stored commonly for band. On the other hand, since the precise satellite position in observed pixels is varied depending on band, the satellite azimuth angle and the satellite zenith angle are stored by 10 pixels interval for each band. The stored geometric information is the center position of the pixel. In addition, The current version of the product is Version 2. QA flag corresponding to the observation image is appended to Level 1B product.

  16. Land Cover Classification, Snow Cover, and Fractional Snow-Covered Area Maps...

    • catalog.data.gov
    • search.dataone.org
    • +4more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA NSIDC DAAC (2025). Land Cover Classification, Snow Cover, and Fractional Snow-Covered Area Maps from Maxar WorldView Satellite Images V001 [Dataset]. https://catalog.data.gov/dataset/land-cover-classification-snow-cover-and-fractional-snow-covered-area-maps-from-maxar-worl
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    National Snow and Ice Data Center
    NASAhttp://nasa.gov/
    Description

    This data set includes: (1) fine-scale snow and land cover maps from two mountainous study sites in the Western U.S., produced using machine-learning models trained to extract land cover data from WorldView-2 and WorldView-3 stereo panchromatic and multispectral images; (2) binary snow maps derived from the land cover maps; and (3) 30 m and 465 m fractional snow-covered area (fSCA) maps, produced via downsampling of the binary snow maps. The land cover classification maps feature between three and six classes common to mountainous regions and integral for accurate stereo snow depth mapping: illuminated snow, shaded snow, vegetation, exposed surfaces, surface water, and clouds. Also included are Landsat and MODSCAG fSCA map products. The source imagery for these data are the Maxar WorldView-2 and Maxar WorldView-3 Level-1B 8-band multispectral images, orthorectified and converted to top-of-atmosphere reflectance. These Level-1B images are available under the NGA NextView/EnhancedView license.

  17. f

    Earth-Based 70-cm Wavelength Radar Maps of the Moon

    • smithsonian.figshare.com
    jpeg
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bruce Campbell (2024). Earth-Based 70-cm Wavelength Radar Maps of the Moon [Dataset]. http://doi.org/10.25573/data.26218523.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset provided by
    National Air and Space Museum
    Authors
    Bruce Campbell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    This archive contains Earth-based, 70-cm wavelength, dual-polarization radar data collected using the Arecibo and Green Bank Telescopes between 2003 and 2009. Earth-based data represent the only view of the Moon at this wavelength. An improved synthetic aperture focusing methodology yields the best possible spatial resolution, with a concurrent improvement in signal-to-noise ratio and multi-look summing. Image coverage is also expanded to the full illuminated beam area. These data will supersede maps currently archived with the Geoscience Node of the NASA Planetary Data System (PDS). Each map represents one-two days of observations (3-9 looks) where the beam is centered on a target point on the Moon.The two circular polarization modes are designated as OCP (opposite sense polarization) and SCP (same sense polarization). The circular polarization ratio (CPR) is defined as SCP/OCP power.Most maps use an image base of a simple cylindrical projection, sampled at 400 m per pixel at the equator, that is co-registered to the LROC-WAC mosaic. Each map is 15166 columns by 13650 rows, corresponding to the area from 100W to 100E, 90N to 90S. Individual radar maps fill only a fraction of the nearside, but the common format allows straightforward summing of data from multiple maps with small offset shifts. Maps of the two polar regions are in stereographic projection, also co-registered to a 400-m WAC mosaic.There are no PDS or other file labels.Both 32-bit images in units of power signal-to-noise ratio (SNR) corrected for the antenna beam pattern, and 8-bit browse TIFF images also normalized to the cosine of the incidence angle, are included. An 8-bit browse TIFF of the circular polarization ratio (scaled from 0.0-2.0) is also included. Note that the SNR values reflect the transmitted power, system thermal noise, and number of independent radar looks, so significant differences in brightness do occur between maps (e.g., between "Mitchell" and "Jura").Supporting files contain 32-bit values of the incidence angle and radar beam pattern angle for each pixel. These can be used to apply different correction schemes to the observed power. Beam pattern corrections applied here are estimates, and the margins of the illuminated areas can have erroneous brightening or darkening that also affects the CPR.An Excel table contains the information for each of the looks averaged into any map, including the sub-radar point latitude and longitude, limb-limb bandwidth, and Doppler angle positive-clockwise with respect to north-south.NASA Planetary Data System (Geoscience Node) Archive of Earlier Processing: https://pds-geosciences.wustl.edu/missions/lunar_radar/index.htmPublications to Cite in Using this Dataset:Campbell, B.A., D.B. Campbell, J.L. Margot, R.R. Ghent, M. Nolan, J. Chandler, L.M. Carter, N.J.S. Stacy (2007). Focused 70-cm radar mapping of the Moon. IEEE Trans. on Geoscience and Remote Sensing, 45(12), 4032-4042, doi:10.1109/TGRS.2007.906582Campbell, B.A., Jawin, E.R., Morgan, G.A. (2024). Refined Earth-based lunar radar maps and a new interpretation of the Cruger-Sirsalis cryptomare. Icarus, 116234. https://doi.org/10.1016/j.icarus.2024.116324.

  18. Terrain Map Image Pairs

    • kaggle.com
    Updated Nov 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Pappas (2017). Terrain Map Image Pairs [Dataset]. https://www.kaggle.com/tpapp157/terrainimagepairs/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 19, 2017
    Dataset provided by
    Kaggle
    Authors
    Thomas Pappas
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    I created this dataset to train a network to generate realistic looking terrain maps based on simple color region codings. You can see some samples of the result here: https://www.reddit.com/r/MachineLearning/comments/7dwj1q/p_fun_project_mspaint_to_terrain_map_with_gan/

    Content

    This is a dataset of 1360 image pairs. The ground truth image is a random 512x512 pixel crop of terrain from a global map of the Earth. The second image is a color quantized and mode filtered version of the base image to create a very simple terrain region mapping composed of five colors. The five colors correspond to terrain types as follows: blue - water, grey - mountains, green - forest/jungle/marshland, yellow - desert/grassland/glacier, brown - hills/badlands.

  19. e

    Vegetation and Earth Maps (Rala) 1:25,000

    • data.europa.eu
    zip
    Updated Oct 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Vegetation and Earth Maps (Rala) 1:25,000 [Dataset]. https://data.europa.eu/data/datasets/groour-og-jaroakort-rala-1-25-000
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 15, 2021
    License

    http://opingogn.is/pages/notkunarleidbeiningarhttp://opingogn.is/pages/notkunarleidbeiningar

    Description

    Vegetation and Earth map (Rala) 1:25,000, in tif format, coordinates. Metadata: also, https://gatt.lmi.is/geonetwork/srv/eng/catalog.search#/metadata/%7B941103B8-8AA2-4D63-BBD9-6116E0400568%7D.

  20. S

    A sample dataset of coastal land cover including mangroves in southern China...

    • scidb.cn
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhao Chuanpeng; Qin Chengzhi (2020). A sample dataset of coastal land cover including mangroves in southern China [Dataset]. http://doi.org/10.11922/sciencedb.00279
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 9, 2020
    Dataset provided by
    Science Data Bank
    Authors
    Zhao Chuanpeng; Qin Chengzhi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Sample can drive classification algorithms, thus is a prerequisite for accurate classification. Coastal areas are located in the transitional zone between land and sea, requiring more samples to describe diverse land covers. However, there are scarce studies sharing their sample datasets, leading to a repeat of the time-consuming and laborious sampling procedure. To alleviate the problem, we share a sample set with a total of 16,444 sample points derived from a study of mapping mangroves of China. The sample set contains a total of 10 categories, which are described as follows. 1) The mangroves refer to “true mangroves” (excluding the associate mangrove species). In sampling mangroves, we used the data from the China Mangrove Conservation Network (CMCN, http://www.china-mangrove.org/), a non-governmental organization aiming to promote mangrove ecosystems. The CMCN provides an interactive map that can be annotated by volunteers with text or photos to record mangrove status at a location. Although the locations were shifted due to coordinate system differences and positioning errors, mangroves could be found around the mangrove locations depicted by the CMCN’s map on Google Earth images. There is a total of 1887 mangrove samples. 2) The cropland is dominated by paddy rice. We collected a total 1383 points according to its neat arrangement based on Google Earth images. 3) Coastal forests neighboring mangroves are mostly salt-tolerant, such as Cocos nucifera Linn., Hibiscus tiliaceus Linn., and Cerbera manghas Linn. We collected a total 1158 samples according to their distance to the shoreline based on Google Earth images. 4) Terrestrial forests are forests far from the shoreline, and are intolerant to salt. By visual inspection on Google Earth, we sampled 1269 points based on their appearances and distances to the shoreline. 5) For the grass category, we collected 1282 samples by visual judgement on Google Earth. 6) Saltmarsh, dominated by Spartina alterniflora, covering large areas of tidal flats in China. We collected 2065 samples according to Google Earth images. 7) The tidal flats category was represented by 1517 samples, which were sampled using the most recent global tidal flat map for 2014–2016 and were visually corrected. 8) The “sand or rock” category refers to sandy and pebble beaches or rocky coasts exposed to air, which are not habitats of mangroves. We collected 1622 samples on Google Earth based on visual inspection. 9) For the permanent water category, samples were first randomly sampled from a threshold result of NDWI (> 0.2), and then were visually corrected. A total of 2056 samples were obtained. 10) As to the artificial impervious surfaces category, we randomly sampled from a threshold result corresponding to normal difference built-up index (NDBI) (> 0.1), and corrected them based on Google Earth. The artificial impervious surface category was represented by 2205 samples. This sample dataset covers the low-altitude coastal area of five Provinces (Hainan, Guangdong, Fujian, Zhejiang, and Taiwan), one Autonomous region (Guangxi), and two Special Administrative Regions (Macau and Hong Kong) (see “study_area.shp” in the zip for details). It can be used to train models for coastal land cover classification, and to evaluate classification results. In addition to mangroves, it can also be used in identifying tidal flats, mapping salt marsh, extracting water bodies, and other related applications.Compared with the V1 version, we added a validation dataset for mangrove maps (Mangrove map validation dataset.rar), and thus can evaluate mangrove maps under the same dataset, which benefit the comparison of different mangrove maps. The validation dataset contains 10 shp files, in which each shp file contains 600 mangrove samples (cls_new field = 1) and 600 non-mangrove samples (cls_new field = 0).Compared with the V2 version, we added two classes of forest near water and grass near water, in addition to suppress the prevalent misclassified patches due to the spectral similarity between mangroves and those classes.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kahan, Daniel; Konopliv, Alex S. (2001). NEAR Gravity Map Collection [Dataset]. https://arcnav.psi.edu/urn:nasa:pds:near_rss_derived:data_img
Organization logo

NEAR Gravity Map Collection

NEAR Gravity Map Collection

Explore at:
Dataset updated
Feb 12, 2001
Dataset provided by
NASAhttp://nasa.gov/
Authors
Kahan, Daniel; Konopliv, Alex S.
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

This collection contains a set of gravity maps of the asteroid Eros derived from data acquired from the Radio Science Subsystem on the Near Earth Asteroid Rendezvous mission. It was migrated from PDS3 to PDS4 in 2024 by the Radio Science Sub-Node. This bundle contains all the derived data from the PDS3 data set NEAR_A_RSS_5_EROS_GRAVITY_V1_0.

Search
Clear search
Close search
Google apps
Main menu