100+ datasets found
  1. A

    Covid-19 Testing by Geography and Date

    • data.amerigeoss.org
    csv, json, rdf, xml
    Updated Jul 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). Covid-19 Testing by Geography and Date [Dataset]. https://data.amerigeoss.org/dataset/covid-19-testing-by-geography-and-date
    Explore at:
    csv, json, xml, rdfAvailable download formats
    Dataset updated
    Jul 27, 2022
    Dataset provided by
    United States
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Note: As of April 16, 2021, this dataset will update daily with a five-day data lag.

    A. SUMMARY This dataset includes COVID-19 tests by resident neighborhood and specimen collection date (the day the test was collected). Specifically, this dataset includes tests of San Francisco residents who listed a San Francisco home address at the time of testing. These resident addresses were then geo-located and mapped to neighborhoods. The resident address associated with each test is hand-entered and susceptible to errors, therefore neighborhood data should be interpreted as an approximation, not a precise nor comprehensive total.

    In recent months, about 5% of tests are missing addresses and therefore cannot be included in any neighborhood totals. In earlier months, more tests were missing address data. Because of this high percentage of tests missing resident address data, this neighborhood testing data for March, April, and May should be interpreted with caution (see below)

    Percentage of tests missing address information, by month in 2020 Mar - 33.6% Apr - 25.9% May - 11.1% Jun - 7.2% Jul - 5.8% Aug - 5.4% Sep - 5.1% Oct (Oct 1-12) - 5.1%

    To protect the privacy of residents, the City does not disclose the number of tests in neighborhoods with resident populations of fewer than 1,000 people. These neighborhoods are omitted from the data (they include Golden Gate Park, John McLaren Park, and Lands End).

    Tests for residents that listed a Skilled Nursing Facility as their home address are not included in this neighborhood-level testing data. Skilled Nursing Facilities have required and repeated testing of residents, which would change neighborhood trends and not reflect the broader neighborhood's testing data.

    This data was de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected).

    The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. During this investigation, some test results are found to be for persons living outside of San Francisco and some people in San Francisco may be tested multiple times (which is common). To see the number of new confirmed cases by neighborhood, reference this map: https://data.sfgov.org/stories/s/Map-of-Cumulative-Cases/adm5-wq8i#new-cases-map

    B. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information. All testing data is then geo-coded by resident address. Then data is aggregated by "https://data.sfgov.org/Geographic-Locations-and-Boundaries/Analysis-Neighborhoods/p5b7-5n3h ">analysis neighborhood and specimen collection date.

    Data are prepared by close of business Monday through Saturday for public display.

    C. UPDATE PROCESS Updates automatically at 05:00 Pacific Time each day. Redundant runs are scheduled at 07:00 and 09:00 in case of pipeline failure.

    D. HOW TO USE THIS DATASET Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.

    In order to track trends over time, a data user can analyze this data by "specimen_collection_date".

    Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of percent positive. Percent positivity indicates how widesprea

  2. a

    Neighborhood Age Demographics

    • data-cotgis.opendata.arcgis.com
    • gisdata.tucsonaz.gov
    • +3more
    Updated Nov 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2019). Neighborhood Age Demographics [Dataset]. https://data-cotgis.opendata.arcgis.com/datasets/neighborhood-age-demographics
    Explore at:
    Dataset updated
    Nov 20, 2019
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    This layer shows the age statistics in Tucson by neighborhood, aggregated from block level data, between 2010-2019. For questions, contact GIS_IT@tucsonaz.gov. The data shown is from Esri's 2019 Updated Demographic estimates.Esri's U.S. Updated Demographic (2019/2024) Data - Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2019/2024 Esri Updated DemographicsEssential demographic vocabularyPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.

  3. w

    Crime By Neighborhood

    • data.wu.ac.at
    csv, json, xml
    Updated Jan 10, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Police Department (2018). Crime By Neighborhood [Dataset]. https://data.wu.ac.at/schema/data_baltimorecity_gov/Z2s3ei1lOTU3
    Explore at:
    json, xml, csvAvailable download formats
    Dataset updated
    Jan 10, 2018
    Dataset provided by
    Baltimore Police Department
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    All BPD data on Open Baltimore is preliminary data and subject to change. The information presented through Open Baltimore represents Part I victim based crime data. The data do not represent statistics submitted to the FBI's Uniform Crime Report (UCR); therefore any comparisons are strictly prohibited. For further clarification of UCR data, please visit http://www.fbi.gov/about-us/cjis/ucr/ucr. Please note that this data is preliminary and subject to change. Prior month data is likely to show changes when it is refreshed on a monthly basis. All data is geocoded to the approximate latitude/longitude location of the incident and excludes those records for which an address could not be geocoded. Any attempt to match the approximate location of the incident to an exact address is strictly prohibited.

  4. d

    Google Address Data, Google Address API, Google location API, Google Map...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY, Google Address Data, Google Address API, Google location API, Google Map API, Business Location Data- 100 M Google Address Data Available [Dataset]. https://datarade.ai/data-products/google-address-data-google-address-api-google-location-api-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Moldova (Republic of), Estonia, Spain, Åland Islands, Luxembourg, Liechtenstein, China, Andorra, United Kingdom, Monaco
    Description

    Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.

    Key Features:

    Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.

    Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.

    Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.

    Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.

    Use Cases:

    Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.

    Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.

    E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.

    Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.

    Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.

    Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.

    Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.

    Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.

    Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.

    Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!

  5. d

    Basic Demographics Age and Gender - Seattle Neighborhoods

    • catalog.data.gov
    • data.seattle.gov
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Basic Demographics Age and Gender - Seattle Neighborhoods [Dataset]. https://catalog.data.gov/dataset/basic-demographics-age-and-gender-seattle-neighborhoods
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on age and gender related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B01001 Sex by Age, B01002 Median Age by Sex. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B01001, B01002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estima

  6. d

    Choice Neighborhoods

    • catalog.data.gov
    • demo.jkan.io
    • +2more
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Philadelphia (2025). Choice Neighborhoods [Dataset]. https://catalog.data.gov/dataset/choice-neighborhoods
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    City of Philadelphia
    Description

    The Choice Neighborhoods program is administered by the U.S. Department of Housing and Urban Development (HUD). It supports locally driven strategies to address struggling neighborhoods with distressed public or HUD-assisted housing through a comprehensive approach to neighborhood transformation.

  7. w

    shootings by neighborhood

    • data.wu.ac.at
    csv, json, xml
    Updated Jul 14, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Police Department (2015). shootings by neighborhood [Dataset]. https://data.wu.ac.at/schema/data_baltimorecity_gov/N2NteS0zdW5q
    Explore at:
    xml, json, csvAvailable download formats
    Dataset updated
    Jul 14, 2015
    Dataset provided by
    Baltimore Police Department
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    All BPD data on Open Baltimore is preliminary data and subject to change. The information presented through Open Baltimore represents Part I victim based crime data. The data do not represent statistics submitted to the FBI's Uniform Crime Report (UCR); therefore any comparisons are strictly prohibited. For further clarification of UCR data, please visit http://www.fbi.gov/about-us/cjis/ucr/ucr. Please note that this data is preliminary and subject to change. Prior month data is likely to show changes when it is refreshed on a monthly basis. All data is geocoded to the approximate latitude/longitude location of the incident and excludes those records for which an address could not be geocoded. Any attempt to match the approximate location of the incident to an exact address is strictly prohibited.

  8. American Community Survey Artist Extracts 5-year Data

    • icpsr.umich.edu
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2025). American Community Survey Artist Extracts 5-year Data [Dataset]. https://www.icpsr.umich.edu/web/NADAC/studies/39413
    Explore at:
    Dataset updated
    May 16, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/39413/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39413/terms

    Description

    The American Community Survey (ACS), conducted by the U.S. Census Bureau, replaced the long form of the decennial census in 2000. The ACS allows researchers, policy makers, and others access to timely information about the U.S. population to make decisions about infrastructure and distribution of federal funds. The monthly survey is sent to a sample of approximately 3.5 million U.S. addresses, including the District of Columbia and Puerto Rico. The ACS includes questions on topics not included in the decennial census, such as those about occupations and employment, education, and key areas of infrastructure like internet access and transportation. When studying large geographic areas, such as states, researchers can use a single year's worth of ACS data to create population-level estimates. However, the study of smaller groups of the population, such as those employed in arts-related fields, requires additional data for more accurate estimation. Specifically, researchers often use 5-year increments of ACS data to draw conclusions about smaller geographies or slices of the population. Note, the Census Bureau produced 3-year estimates between 2005 and 2013 (resulting in seven files: 2005-2007, 2006-2008, 2007-2009, . . . 2011-2013), which remain available but no additional 3-year estimate files have been created. Individuals wishing to describe people working in occupations related to the arts or culture should plan to use at least five years' worth of data to generate precise estimates. When selecting data from the U.S. Census Bureau or IPUMS USA, users should select data collected over 60 months, such as 2020-2024. NADAC's Guide to Creating Artist Extracts and Special Tabulations of Artists from the American Community Survey provides information about the occupation codes used to identify artists.

  9. c

    City Data Division: Population of Residents Per Division (2021)

    • data.cityofrochester.gov
    • hub.arcgis.com
    Updated May 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2023). City Data Division: Population of Residents Per Division (2021) [Dataset]. https://data.cityofrochester.gov/maps/663f5f5b93e9455ebd4776469ccd537d
    Explore at:
    Dataset updated
    May 24, 2023
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    This map symbolizes the relative population counts for the City's 12 Data Divisions, aggregating the tract-level estimates from the the Census Bureau's American Community Survey 2021 five-year samples. Please refer to the map's legend for context to the color shading -- darker hues indicate more population.If you click on each Data Division, you can view other Census demographic information about that Data Division in addition to the population count.About the Census Data:The data comes from the U.S. Census Bureau's American Community Survey's 2017-2021 five-year samples. The American Community Survey (ACS) is an ongoing survey conducted by the federal government that provides vital information annually about America and its population. Information from the survey generates data that help determine how more than $675 billion in federal and state funds are distributed each year.For more information about the Census Bureau's ACS data and process of constructing the survey, visit the ACS's About page.About the City's Data Divisions:As a planning analytic tool, an interdepartmental working group divided Rochester into 12 “data divisions.” These divisions are well-defined and static so they are positioned to be used by the City of Rochester for statistical and planning purposes. Census data is tied to these divisions and serves as the basis for analyses over time. As such, the data divisions are designed to follow census boundaries, while also recognizing natural and human-made boundaries, such as the River, rail lines, and highways. Historical neighborhood boundaries, while informative in the division process, did not drive the boundaries. Data divisions are distinct from the numerous neighborhoods in Rochester. Neighborhood boundaries, like quadrant boundaries, police precincts, and legislative districts often change, which makes statistical analysis challenging when looking at data over time. The data division boundaries, however, are intended to remain unchanged. It is hoped that over time, all City data analysts will adopt the data divisions for the purpose of measuring change over time throughout the city.

  10. A

    ‘1.05 Feeling of Safety in Your Neighborhood (summary)’ analyzed by...

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘1.05 Feeling of Safety in Your Neighborhood (summary)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-1-05-feeling-of-safety-in-your-neighborhood-summary-3892/latest
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘1.05 Feeling of Safety in Your Neighborhood (summary)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/54fe22ae-252d-4b53-a1c1-4bbe7db4082e on 11 February 2022.

    --- Dataset description provided by original source is as follows ---

    The mission of the Tempe Police Department is to reduce harm in our community, and an important component of this mission is to ensure citizens and visitors feel safe in Tempe. One of the Police Department’s five Key Initiatives is to address crime and fear of crime. This is achieved through responding to citizen calls for police service, addressing crime throughout the city, and working with the community to prevent crime. The Police Department uses data from the annual Community Survey and the Business Survey and other data sources to study crime trends and implement strategies to enhance safety and the feeling of safety in Tempe. Data for this performance measure is drawn from a monthly survey of Tempe residents conducted by Elucd.

    This data contains monthly survey results on residents feelings of safety in their neighborhood, ranging between 0 and 100.

    The performance measure page is available at 1.05 Feeling of Safety in Your Neighborhood.

    Additional Information

    Source: This measure comes from a question asked of residents in the monthly sentiment survey conducted by Elucd.

    Contact (author):

    Contact E-Mail (author):

    Contact (maintainer): Brooks Louton

    Contact E-Mail (maintainer): Brooks_Louton@tempe.gov

    Data Source Type: Excel

    Preparation Method: Manual

    Publish Frequency: Annually

    Publish Method: Manual

    --- Original source retains full ownership of the source dataset ---

  11. Pittsburgh Public Schools Enrollment by Neighborhood, School, and Feeder...

    • data.wprdc.org
    • datasets.ai
    • +1more
    csv
    Updated May 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pittsburgh Public Schools (2023). Pittsburgh Public Schools Enrollment by Neighborhood, School, and Feeder Pattern [Dataset]. https://data.wprdc.org/dataset/pittsburgh-public-schools-enrollment
    Explore at:
    csv(8872), csv(2355), csv(15069), csv(21195)Available download formats
    Dataset updated
    May 21, 2023
    Dataset provided by
    Pittsburgh School Districthttps://www.pghschools.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pittsburgh School District
    Description

    This dataset includes enrollment data for Pittsburgh Public Schools. Data is presented by school, feeder pattern / attendance boundary, and by neighborhood. A table also includes data on the number of students attending schools by neighborhood. Data includes preschool students through 12th grade.

    This data can be very useful in understanding neighborhood-level enrollment patterns, student demographics by neighborhood and school, and can also be used to inform school-community partnerships.

    Students attending charter, private and parochial schools are not included in this data. Only students enrolled in a Pittsburgh Public School are captured.

    Totals with fewer than 11 students have been redacted to adhere to School District privacy policies.

    Data was extracted from the Pittsburgh Public Schools data system in January, 2021. It captures the school where the student was enrolled on October 1st. The neighborhood school the student feeds into based on their address as of the beginning of the 2020-21 school year.

  12. d

    Community Services Statistics

    • digital.nhs.uk
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Community Services Statistics [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/community-services-statistics-for-children-young-people-and-adults
    Explore at:
    Dataset updated
    Oct 1, 2024
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jul 1, 2024 - Jul 31, 2024
    Description

    This is a monthly report on publicly funded community services for people of all ages using data from the Community Services Data Set (CSDS) reported in England for July 2024. It has been developed to help achieve better outcomes and provide data that will be used to commission services in a way that improves health, reduces inequalities, and supports service improvement and clinical quality. These statistics are classified as experimental and should be used with caution. Experimental statistics are new official statistics undergoing evaluation. More information about experimental statistics can be found on the UK Statistics Authority website (linked at the bottom of this page). A provisional data file for August 2024 is now included in this publication. Please note this is intended as an early view until providers submit a refresh of their data, which will be published next month.

  13. l

    2023 Population and Poverty by Split Tract

    • geohub.lacity.org
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    2023 Population and Poverty by Split Tract [Dataset]. https://geohub.lacity.org/items/1acee4bb0b0b42908ca95a5b9eae85f3
    Explore at:
    Dataset updated
    May 31, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2023 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries as of July 1, 2023. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/)released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Fields:CT20: 2020 Census tractFIP22: 2023 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2023) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP23CSA: 2020 census tract with 2023 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP23_AGE_0_4: 2023 population 0 to 4 years oldPOP23_AGE_5_9: 2023 population 5 to 9 years old POP23_AGE_10_14: 2023 population 10 to 14 years old POP23_AGE_15_17: 2022 population 15 to 17 years old POP23_AGE_18_19: 2023 population 18 to 19 years old POP23_AGE_20_44: 2023 population 20 to 24 years old POP23_AGE_25_29: 2023 population 25 to 29 years old POP23_AGE_30_34: 2023 population 30 to 34 years old POP23_AGE_35_44: 2023 population 35 to 44 years old POP23_AGE_45_54: 2023 population 45 to 54 years old POP23_AGE_55_64: 2023 population 55 to 64 years old POP23_AGE_65_74: 2023 population 65 to 74 years old POP23_AGE_75_84: 2023 population 75 to 84 years old POP23_AGE_85_100: 2023 population 85 years and older POP23_WHITE: 2023 Non-Hispanic White POP23_BLACK: 2023 Non-Hispanic African AmericanPOP23_AIAN: 2023 Non-Hispanic American Indian or Alaska NativePOP23_ASIAN: 2023 Non-Hispanic Asian POP23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific IslanderPOP23_HISPANIC: 2023 HispanicPOP23_MALE: 2023 Male POP23_FEMALE: 2023 Female POV23_WHITE: 2023 Non-Hispanic White below 100% Federal Poverty Level POV23_BLACK: 2023 Non-Hispanic African American below 100% Federal Poverty Level POV23_AIAN: 2023 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV23_ASIAN: 2023 Non-Hispanic Asian below 100% Federal Poverty Level POV23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV23_HISPANIC: 2023 Hispanic below 100% Federal Poverty Level POV23_TOTAL: 2023 Total population below 100% Federal Poverty Level POP23_TOTAL: 2023 Total PopulationAREA_SQMil: Area in square mile.POP23_DENSITY: 2023 Population per square mile.POV23_PERCENT: 2023 Poverty rate/percentage.How this data created?Population by age groups, ethnic groups and gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Notes:1. Population and poverty data estimated as of July 1, 2023. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundaries are as of July 1, 2023.

  14. t

    City of Tempe 2022 Community Survey Data

    • data-academy.tempe.gov
    • data.tempe.gov
    • +8more
    Updated Feb 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2023). City of Tempe 2022 Community Survey Data [Dataset]. https://data-academy.tempe.gov/maps/city-of-tempe-2022-community-survey-data
    Explore at:
    Dataset updated
    Feb 3, 2023
    Dataset authored and provided by
    City of Tempe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Description and PurposeThese data include the individual responses for the City of Tempe Annual Community Survey conducted by ETC Institute. These data help determine priorities for the community as part of the City's on-going strategic planning process. Averaged Community Survey results are used as indicators for several city performance measures. The summary data for each performance measure is provided as an open dataset for that measure (separate from this dataset). The performance measures with indicators from the survey include the following (as of 2022):1. Safe and Secure Communities1.04 Fire Services Satisfaction1.06 Crime Reporting1.07 Police Services Satisfaction1.09 Victim of Crime1.10 Worry About Being a Victim1.11 Feeling Safe in City Facilities1.23 Feeling of Safety in Parks2. Strong Community Connections2.02 Customer Service Satisfaction2.04 City Website Satisfaction2.05 Online Services Satisfaction Rate2.15 Feeling Invited to Participate in City Decisions2.21 Satisfaction with Availability of City Information3. Quality of Life3.16 City Recreation, Arts, and Cultural Centers3.17 Community Services Programs3.19 Value of Special Events3.23 Right of Way Landscape Maintenance3.36 Quality of City Services4. Sustainable Growth & DevelopmentNo Performance Measures in this category presently relate directly to the Community Survey5. Financial Stability & VitalityNo Performance Measures in this category presently relate directly to the Community SurveyMethodsThe survey is mailed to a random sample of households in the City of Tempe. Follow up emails and texts are also sent to encourage participation. A link to the survey is provided with each communication. To prevent people who do not live in Tempe or who were not selected as part of the random sample from completing the survey, everyone who completed the survey was required to provide their address. These addresses were then matched to those used for the random representative sample. If the respondent’s address did not match, the response was not used. To better understand how services are being delivered across the city, individual results were mapped to determine overall distribution across the city. Additionally, demographic data were used to monitor the distribution of responses to ensure the responding population of each survey is representative of city population. Processing and LimitationsThe location data in this dataset is generalized to the block level to protect privacy. This means that only the first two digits of an address are used to map the location. When they data are shared with the city only the latitude/longitude of the block level address points are provided. This results in points that overlap. In order to better visualize the data, overlapping points were randomly dispersed to remove overlap. The result of these two adjustments ensure that they are not related to a specific address, but are still close enough to allow insights about service delivery in different areas of the city. This data is the weighted data provided by the ETC Institute, which is used in the final published PDF report.The 2022 Annual Community Survey report is available on data.tempe.gov. The individual survey questions as well as the definition of the response scale (for example, 1 means “very dissatisfied” and 5 means “very satisfied”) are provided in the data dictionary.Additional InformationSource: Community Attitude SurveyContact (author): Wydale HolmesContact E-Mail (author): wydale_holmes@tempe.govContact (maintainer): Wydale HolmesContact E-Mail (maintainer): wydale_holmes@tempe.govData Source Type: Excel tablePreparation Method: Data received from vendor after report is completedPublish Frequency: AnnualPublish Method: ManualData Dictionary

  15. o

    National Neighborhood Data Archive (NaNDA): Health Care Services by Census...

    • openicpsr.org
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Melendez; Jessica Finlay; Philippa Clarke; Grace Noppert; Lindsay Gypin; Ellis Dyke (2024). National Neighborhood Data Archive (NaNDA): Health Care Services by Census Tract and ZCTA, United States, 1990-2021 [Dataset]. http://doi.org/10.3886/E209050V1
    Explore at:
    Dataset updated
    Sep 10, 2024
    Dataset provided by
    University of Michigan. Institute for Social Research
    University of Colorado-Boulder. Department of Geography and Institute of Behavioral Science
    Authors
    Robert Melendez; Jessica Finlay; Philippa Clarke; Grace Noppert; Lindsay Gypin; Ellis Dyke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, Tennessee, Hawaii, Texas, Pennsylvania, Massachusetts, Mississippi, Minnesota, Nebraska, New York (state)
    Description

    This dataset contains measures of the number and density of health care services per United States Census Tract or ZIP Code Tabulation Area (ZCTA) from 1990 through 2021. The dataset includes four separate files for four different geographic areas (GIS shapefiles from the United States Census Bureau). The four geographies include:● Census Tract 2010 ● Census Tract 2020● ZIP Code Tabulation Area (ZCTA) 2010 ● ZIP Code Tabulation Area (ZCTA) 2020Information about which dataset to use can be found in the Usage Notes section of this document.

  16. A

    Urban Heat Island Effect Actions - Neighborhood Data

    • data.amerigeoss.org
    • data.wu.ac.at
    csv
    Updated Feb 7, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2017). Urban Heat Island Effect Actions - Neighborhood Data [Dataset]. https://data.amerigeoss.org/en/dataset/urban-heat-island-effect-actions-neighborhood-data
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 7, 2017
    Dataset provided by
    United States
    Description

    The urban heat island effect — defined as the difference in temperature between the core of Louisville and its suburbs — contributes to heat-related illnesses and deaths and leads to higher air-conditioning bills for residents, according to a study released in April 2016. The urban core heat island effect in Louisville is rising at one of the fastest rates in the country. There are specific actions residents can take to help reduce the heat island effect. Here, residents can search to find the specific number to actions, such as the number of trees planted or cool roofs installed, recommended in their neighborhoods to address the urban heat island effect.

    The columns represent the number of each action recommended per neighborhood to help reduce the urban heat island effect.

    https://louisvilleky.gov/government/sustainability/urban-heat-island-pro...

  17. d

    Crime Incidents in 2024

    • catalog.data.gov
    • opendata.dc.gov
    • +4more
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metropolitan Police Department (2025). Crime Incidents in 2024 [Dataset]. https://catalog.data.gov/dataset/crime-incidents-in-2024
    Explore at:
    Dataset updated
    Apr 2, 2025
    Dataset provided by
    Metropolitan Police Department
    Description

    The dataset contains a subset of locations and attributes of incidents reported in the ASAP (Analytical Services Application) crime report database by the District of Columbia Metropolitan Police Department (MPD). Visit crimecards.dc.gov for more information. This data is shared via an automated process where addresses are geocoded to the District's Master Address Repository and assigned to the appropriate street block. Block locations for some crime points could not be automatically assigned resulting in 0,0 for x,y coordinates. These can be interactively assigned using the MAR Geocoder.On February 1 2020, the methodology of geography assignments of crime data was modified to increase accuracy. From January 1 2020 going forward, all crime data will have Ward, ANC, SMD, BID, Neighborhood Cluster, Voting Precinct, Block Group and Census Tract values calculated prior to, rather than after, anonymization to the block level. This change impacts approximately one percent of Ward assignments.

  18. A

    ‘New York City Population By Neighborhood Tabulation Areas’ analyzed by...

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘New York City Population By Neighborhood Tabulation Areas’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-new-york-city-population-by-neighborhood-tabulation-areas-a930/b011aa06/?iid=003-172&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    Analysis of ‘New York City Population By Neighborhood Tabulation Areas’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/903f4a4a-0402-4ff8-b8bd-f1d6ad856d0c on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Population Numbers By New York City Neighborhood Tabulation Areas

    The data was collected from Census Bureaus' Decennial data dissemination (SF1). Neighborhood Tabulation Areas (NTAs), are aggregations of census tracts that are subsets of New York City's 55 Public Use Microdata Areas (PUMAs). Primarily due to these constraints, NTA boundaries and their associated names may not definitively represent neighborhoods. This report shows change in population from 2000 to 2010 for each NTA. Compiled by the Population Division – New York City Department of City Planning.

    --- Original source retains full ownership of the source dataset ---

  19. g

    Data from: Median Household Income

    • gotopeka.com
    • ingersoll.ca
    • +78more
    Updated Jan 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Median Household Income [Dataset]. https://www.gotopeka.com/demographics/
    Explore at:
    Dataset updated
    Jan 10, 2023
    Description

    The median income indicates the income bracket separating the income earners into two halves of equal size.

  20. D

    Neighborhood Statistical Area

    • data.nola.gov
    • s.cnmilf.com
    • +2more
    Updated Mar 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Neighborhood Statistical Area [Dataset]. https://data.nola.gov/dataset/Neighborhood-Statistical-Area/exvn-jeh2
    Explore at:
    tsv, kmz, application/rssxml, application/rdfxml, csv, xml, kml, application/geo+jsonAvailable download formats
    Dataset updated
    Mar 17, 2025
    Description

    In 1980 the New Orleans City Planning Commission, for planning and decision-making purposes, divided the city into Census Tract based 'neighborhoods'. Additional neighborhoods were created after the 1990 and 2000 Censuses. Following Hurricane Katrina the Greater New Orleans Community Data Center (GNOCDC) settled on these boundaries to facilitate the use of local data in decision-making. These neighborhoods underwent further change during the 2010 Census due to modifications (consolidation and/or splitting) of Census Tracts. The resulting boundaries were renamed as 'Neighborhood Statistical Areas' to reflect their actual function. Census Tracts are small, relatively permanent statistical subdivisions of a county or statistically equivalent entity delineated by local participants as part of the U.S. Census Bureau's Participant Statistical Areas Program. The primary purpose of Census Tracts is to provide a stable set of geographic units for the presentation of decennial census data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
United States (2022). Covid-19 Testing by Geography and Date [Dataset]. https://data.amerigeoss.org/dataset/covid-19-testing-by-geography-and-date

Covid-19 Testing by Geography and Date

Explore at:
csv, json, xml, rdfAvailable download formats
Dataset updated
Jul 27, 2022
Dataset provided by
United States
License

ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically

Description

Note: As of April 16, 2021, this dataset will update daily with a five-day data lag.

A. SUMMARY This dataset includes COVID-19 tests by resident neighborhood and specimen collection date (the day the test was collected). Specifically, this dataset includes tests of San Francisco residents who listed a San Francisco home address at the time of testing. These resident addresses were then geo-located and mapped to neighborhoods. The resident address associated with each test is hand-entered and susceptible to errors, therefore neighborhood data should be interpreted as an approximation, not a precise nor comprehensive total.

In recent months, about 5% of tests are missing addresses and therefore cannot be included in any neighborhood totals. In earlier months, more tests were missing address data. Because of this high percentage of tests missing resident address data, this neighborhood testing data for March, April, and May should be interpreted with caution (see below)

Percentage of tests missing address information, by month in 2020 Mar - 33.6% Apr - 25.9% May - 11.1% Jun - 7.2% Jul - 5.8% Aug - 5.4% Sep - 5.1% Oct (Oct 1-12) - 5.1%

To protect the privacy of residents, the City does not disclose the number of tests in neighborhoods with resident populations of fewer than 1,000 people. These neighborhoods are omitted from the data (they include Golden Gate Park, John McLaren Park, and Lands End).

Tests for residents that listed a Skilled Nursing Facility as their home address are not included in this neighborhood-level testing data. Skilled Nursing Facilities have required and repeated testing of residents, which would change neighborhood trends and not reflect the broader neighborhood's testing data.

This data was de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected).

The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. During this investigation, some test results are found to be for persons living outside of San Francisco and some people in San Francisco may be tested multiple times (which is common). To see the number of new confirmed cases by neighborhood, reference this map: https://data.sfgov.org/stories/s/Map-of-Cumulative-Cases/adm5-wq8i#new-cases-map

B. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information. All testing data is then geo-coded by resident address. Then data is aggregated by "https://data.sfgov.org/Geographic-Locations-and-Boundaries/Analysis-Neighborhoods/p5b7-5n3h ">analysis neighborhood and specimen collection date.

Data are prepared by close of business Monday through Saturday for public display.

C. UPDATE PROCESS Updates automatically at 05:00 Pacific Time each day. Redundant runs are scheduled at 07:00 and 09:00 in case of pipeline failure.

D. HOW TO USE THIS DATASET Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.

In order to track trends over time, a data user can analyze this data by "specimen_collection_date".

Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of percent positive. Percent positivity indicates how widesprea

Search
Clear search
Close search
Google apps
Main menu