https://www.icpsr.umich.edu/web/ICPSR/studies/38649/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38649/terms
This dataset contains county-level totals for the years 2002-2014 for eight types of crime: murder, rape, robbery, aggravated assault, burglary, larceny, motor vehicle theft, and arson. These crimes are classed as Part I criminal offenses by the United States Federal Bureau of Investigations (FBI) in their Uniform Crime Reporting (UCR) program. Each record in the dataset represents the total of each type of criminal offense reported in (or, in the case of missing data, attributed to) the county in a given year.
Toronto Neighbourhoods Boundary File includes Crime Data by Neighbourhood. Counts are available at the offence and/or victim level for Assault, Auto Theft, Bike Theft, Break and Enter, Robbery, Theft Over, Homicide, Shootings and Theft from Motor Vehicle. Data also includes crime rates per 100,000 people by neighbourhood based on each year's Projected Population by Environics Analytics.This data does not include occurrences that have been deemed unfounded. The definition of unfounded according to Statistics Canada is: “It has been determined through police investigation that the offence reported did not occur, nor was it attempted” (Statistics Canada, 2020).**The dataset is intended to provide communities with information regarding public safety and awareness. The data supplied to the Toronto Police Service by the reporting parties is preliminary and may not have been fully verified at the time of publishing the dataset. The location of crime occurrences have been deliberately offset to the nearest road intersection node to protect the privacy of parties involved in the occurrence. All location data must be considered as an approximate location of the occurrence and users are advised not to interpret any of these locations as related to a specific address or individual.NOTE: Due to the offset of occurrence location, the numbers by Division and Neighbourhood may not reflect the exact count of occurrences reported within these geographies. Therefore, the Toronto Police Service does not guarantee the accuracy, completeness, timeliness of the data and it should not be compared to any other source of crime data.By accessing these datasets, the user agrees to full acknowledgement of the Open Government Licence - Ontario..In accordance with the Municipal Freedom of Information and Protection of Privacy Act, the Toronto Police Service has taken the necessary measures to protect the privacy of individuals involved in the reported occurrences. No personal information related to any of the parties involved in the occurrence will be released as open data. ** Statistics Canada. 2020. Uniform Crime Reporting Manual. Surveys and Statistical Programs. Canadian Centre for Justice Statistics.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Recorded crime figures for CSP areas. Number of offences for the last two years, percentage change, and rates per 1,000 population for the latest year.
Serious violent crimes consist of Part 1 offenses as defined by the U.S. Department of Justice’s Uniform Reporting Statistics. These include murders, nonnegligent homicides, rapes (legacy and revised), robberies, and aggravated assaults. LAPD data were used for City of Los Angeles, LASD data were used for unincorporated areas and cities that contract with LASD for law enforcement services, and CA Attorney General data were used for all other cities with local police departments. This indicator is based on location of residence. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Neighborhood violence and crime can have a harmful impact on all members of a community. Living in communities with high rates of violence and crime not only exposes residents to a greater personal risk of injury or death, but it can also render individuals more susceptible to many adverse health outcomes. People who are regularly exposed to violence and crime are more likely to suffer from chronic stress, depression, anxiety, and other mental health conditions. They are also less likely to be able to use their parks and neighborhoods for recreation and physical activity.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Police recorded crime figures by Police Force Area and Community Safety Partnership areas (which equate in the majority of instances, to local authorities).
https://www.icpsr.umich.edu/web/ICPSR/studies/38483/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38483/terms
The primary purpose of the second wave of the National Neighborhood Crime Study (NNCS2) was to develop a panel dataset of serious reported crimes in urban neighborhoods circa two time points - 2000 and 2010. These data offer the opportunity to assess the sources and consequences of neighborhood crime change for "communities" of different ethno-racial and economic compositions across the United States. The study also sought to examine the role of a neighborhood's broader ecology on crime levels and crime change by integrating indicators of city and/or metropolitan conditions. The NNCS2 includes two datasets. The first dataset, the NNCS2-Panel file (NNCS2-P), contains information on the Federal Bureau of Investigation's (FBI) Part 1 Index crimes (except arson), socioeconomic and demographic characteristics, and a variety of other neighborhood and city level controls for circa 2000 and 2010 for tracts in 81 of the 91 cities in the NNCS, wave 1. The second dataset, the NNCS2-Cross-Sectional file (NNCS2-CS), allows for examination of the local and contextual sources of neighborhood crime inequality circa 2010. The NNCS2-CS incorporates parallel data for census tracts and cities as in the Panel file, but includes a few additional cities for which panel data could not be compiled, as well information on the metropolitan areas within which cities are located.
Incidence rates of crime in rural and urban areas.
Indicators:
Data Source: ONS, Recorded crime data at Community Safety Partnership / Local Authority level
Coverage: England
Rural classification used: Local Authority Rural Urban Classification
Defra statistics: rural
Email mailto:rural.statistics@defra.gov.uk">rural.statistics@defra.gov.uk
<p class="govuk-body">You can also contact us via Twitter: <a href="https://twitter.com/DefraStats" class="govuk-link">https://twitter.com/DefraStats</a></p>
An interactive public crime mapping application providing DC residents and visitors easy-to-understand data visualizations of crime locations, types and trends across all eight wards. Crime Cards was created by the DC Metropolitan Police Department (MPD) and Office of the Chief Technology Officer (OCTO). Special thanks to the community members who participated in reviews with MPD Officers and IT staff, and those who joined us for the #SaferStrongerSmarterDC roundtable design review. All statistics presented in Crime Cards are based on preliminary DC Index crime data reported from 2009 to midnight of today’s date. They are compiled based on the date the offense was reported (Report Date) to MPD. The application displays two main crime categories: Violent Crime and Property Crime. Violent Crimes include homicide, sex abuse, assault with a dangerous weapon (ADW), and robbery. Violent crimes can be further searched by the weapon used. Property Crimes include burglary, motor vehicle theft, theft from vehicle, theft (other), and arson.CrimeCards collaboration between the Metropolitan Police Department (MPD), the Office of the Chief Technology Officer (OCTO), and community members who participated at the #SafterStrongerSmarterDC roundtable design review.
In 2023, the District of Columbia had the highest reported violent crime rate in the United States, with 1,150.9 violent crimes per 100,000 of the population. Maine had the lowest reported violent crime rate, with 102.5 offenses per 100,000 of the population. Life in the District The District of Columbia has seen a fluctuating population over the past few decades. Its population decreased throughout the 1990s, when its crime rate was at its peak, but has been steadily recovering since then. While unemployment in the District has also been falling, it still has had a high poverty rate in recent years. The gentrification of certain areas within Washington, D.C. over the past few years has made the contrast between rich and poor even greater and is also pushing crime out into the Maryland and Virginia suburbs around the District. Law enforcement in the U.S. Crime in the U.S. is trending downwards compared to years past, despite Americans feeling that crime is a problem in their country. In addition, the number of full-time law enforcement officers in the U.S. has increased recently, who, in keeping with the lower rate of crime, have also made fewer arrests than in years past.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In February 2019, we updated the neighborhood assignment with regards to the new police record system.
The data set is refreshed on the third day of the month at 8:45 AM. The website will reflect the last time the data set was updated and the total count of rows. The grid on the “Data” tab will display the up to date data. However, in certain situations there is a delay in the refresh of the downloadable data file. Sometimes the downloadable file does not reflect the updates to the data in the portal. After a delay (duration has been variable; up to 30 minutes), the file will be updated on the server and then downloads will include the updated data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update Frequency: Daily
Current year to date. The data included in this dataset has been reviewed and approved by a Milwaukee Police Department supervisor and the Milwaukee Police Department’s Records Management Division. This approval process can take a few weeks from the reported date of the crime. For preliminary crime data, please visit the Milwaukee Police Department’s Crime Maps and Statistics dashboard at https://city.milwaukee.gov/police/Information-Services/Crime-Maps-and-Statistics.
Wisconsin Incident Based Report (WIBR) Group A Offenses.
The Crime Data represents incident level data defined by Wisconsin Incident Based Reporting System (WIBRS) codes. WIBRS reporting is a crime reporting standard and can not be compared to any previous UCR report. Therefore, the Crime Data may reflect:
Neither the City of Milwaukee nor the Milwaukee Police Department guarantee (either express or implied) the accuracy, completeness, timeliness, or correct sequencing of the Crime Data. The City of Milwaukee and the Milwaukee Police Department shall have no liability for any error or omission, or for the use of, or the results obtained from the use of the Crime Data. In addition, the City of Milwaukee and the Milwaukee Police Department caution against using the Crime Data to make decisions/comparisons regarding the safety of or the amount of crime occurring in a particular area. When reviewing the Crime Data, the site user should consider that:
This data is not intended to represent a total number/sum of crimes, rather 1 = True and 0 = False.
The use of the Crime Data indicates the site user's unconditional acceptance of all risks associated with the use of the Crime Data.
To download XML and JSON files, click the CSV option below and click the down arrow next to the Download button in the upper right on its page. XY fields in data is in projection Wisconsin State Plane South NAD27 (WKID 32054).
In 2023, the violent crime rate in metropolitan areas in the United States stood at ***** cases per 100,000 inhabitants. For murder and nonnegligent manslaughter cases, this rate stood at *** cases per 100,000 people in metro areas.
In 2023, the state with the highest crime rate in the United States per 100,000 inhabitants was New Mexico. That year, the crime rate was ******** crimes per 100,000 people. In comparison, New Hampshire had the lowest crime rate at ****** crimes per 100,000 people. Crime rate The crime rate in the United States has generally decreased over time. There are several factors attributed to the decrease in the crime rate across the United States. An increase in the number of police officers and an increase in income are some of the reasons for a decrease in the crime rate. Unfortunately, people of color have been disproportionately affected by crime rates, as they are more likely to be arrested for a crime versus a white person. Crime rates regionally The District of Columbia had the highest rate of reported violent crimes in the United States in 2023 per 100,000 inhabitants. The most common crime clearance type in metropolitan counties in the United States in 2020 was murder and non-negligent manslaughter. The second most dangerous city in the country in 2020 was Detroit. Detroit has faced severe levels of economic and demographic declines in the past years. Not only has the population decreased, the city has filed for bankruptcy. Despite the median household income increasing, the city still struggles financially.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset, curated by the Los Angeles Police Department (LAPD), provides detailed records of crime incidents reported across Los Angeles from 2020 to 2023. It reflects the LAPD’s commitment to transparency and public safety, offering insights into crime trends, enforcement actions, and neighborhood-specific challenges. The data serves as a critical resource for researchers, policymakers, and residents to understand urban safety dynamics.
🔗 Source
Directly sourced from the LAPD’s Public Data Portal on Data.gov.
💡 Inspiration
Public Accountability: Empower communities to track crime trends in their neighborhoods.
Policy & Prevention: Aid law enforcement and city planners in resource allocation and hotspot intervention.
Research: Enable academics to study socio-economic factors, seasonal patterns, and the impact of policing strategies.
🔍 Key Attributes
Temporal: Incident date/time (DATE OCC), report date (Date Rptd).
Geospatial: Latitude/longitude 🌐, cross streets, police precinct (AREA NAME).
Crime Details: Type (Crm Cd Desc), weapon used 🔫, premise (e.g., street, store 🏪).
Victim Data: Age, gender ♀️♂️, descent.
Case Status: Arrests 🚨, investigations 🕵️, court outcomes ⚖️.
These data are part of NACJD's Fast Track Release and are distributed as they there received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except of the removal of direct identifiers. Users should refer to the accompany readme file for a brief description of the files available with this collections and consult the investigator(s) if further information is needed. This study was a systematic assessment of the impacts of foreclosures and crime levels on each other, using sophisticated spatial analysis methods, informed by qualitative research on the topic. Using data on foreclosures and crime in District of Columbia and Miami-Dade County, Florida from 2003 to 2011, this study considered the effects of the two phenomena on each other through a dynamic systems approach.
For the latest data tables see ‘Police recorded crime and outcomes open data tables’.
These historic data tables contain figures up to September 2024 for:
There are counting rules for recorded crime to help to ensure that crimes are recorded consistently and accurately.
These tables are designed to have many uses. The Home Office would like to hear from any users who have developed applications for these data tables and any suggestions for future releases. Please contact the Crime Analysis team at crimeandpolicestats@homeoffice.gov.uk.
https://data.go.kr/ugs/selectPortalPolicyView.dohttps://data.go.kr/ugs/selectPortalPolicyView.do
This data is provided on a one-time basis from time to time, and is public data that provides crime statistics by region compiled by the National Police Agency as of 2023. Various crime types such as violent crimes, intelligent crimes, theft, and violence are subdivided into city/county/district levels, and for foreign criminals, crime occurrence figures by nationality (such as China, Vietnam, and Russia) are also included. This data can be used to analyze regional crime concentration, crime patterns related to foreigners, and spatial distribution by crime type. This data is used for establishing local security strategies by the police, crime prevention plans in areas with a high concentration of foreigners, space-based crime research by research institutes, and establishment of regional prevention measures by public institutions.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Recorded crime figures for Community Safety Partnerships which equates in the majority of instances to local authorities . The data are rolling 12 month totals, with data points shown at the end of each financial year between year ending March 2003 and year ending March 2007 and at the end of each quarter from June 2007. The data cover local authority boundaries from April 2009 onwards and local authority area names correspond to Community Safety Partnership areas.
The dataset contains a subset of locations and attributes of incidents reported in the ASAP (Analytical Services Application) crime report database by the District of Columbia Metropolitan Police Department (MPD). Visit crimecards.dc.gov for more information. This data is shared via an automated process where addresses are geocoded to the District's Master Address Repository and assigned to the appropriate street block. Block locations for some crime points could not be automatically assigned resulting in 0,0 for x,y coordinates. These can be interactively assigned using the MAR Geocoder.On February 1 2020, the methodology of geography assignments of crime data was modified to increase accuracy. From January 1 2020 going forward, all crime data will have Ward, ANC, SMD, BID, Neighborhood Cluster, Voting Precinct, Block Group and Census Tract values calculated prior to, rather than after, anonymization to the block level. This change impacts approximately one percent of Ward assignments.
https://www.icpsr.umich.edu/web/ICPSR/studies/38649/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38649/terms
This dataset contains county-level totals for the years 2002-2014 for eight types of crime: murder, rape, robbery, aggravated assault, burglary, larceny, motor vehicle theft, and arson. These crimes are classed as Part I criminal offenses by the United States Federal Bureau of Investigations (FBI) in their Uniform Crime Reporting (UCR) program. Each record in the dataset represents the total of each type of criminal offense reported in (or, in the case of missing data, attributed to) the county in a given year.