This data contains general information about Pedestrian Network in Hong Kong. Pedestrian Network is a set of 3D line features derived from road features and road furniture from Lands Department and Transport Department. A number of attributes are associated with the pedestrian network such as spatially related street names. Besides, the pedestrian network includes information like wheelchair accessibility and obstacles to facilitate the digital inclusion for the needy. Please refer to this video to learn how to use 3D Pedestrian Network Dataset in ArcGIS Pro to facilitate your transportation analysis.The data was provided in the formats of JSON, GML and GDB by Lands Department and downloaded via GEODATA.GOV.HK website.
The original data files were processed and converted into an Esri file geodatabase. Wheelchair accessibility, escalator/lift, staircase walking speed and street gradient were used to create and build a network dataset in order to demonstrate basic functions for pedestrian network and routing analysis in ArcMap and ArcGIS Pro. There are other tables and feature classes in the file geodatabase but they are not included in the network dataset, users have to consider the use of information based on their requirements and make necessary configurations. The coordinate system of this dataset is Hong Kong 1980 Grid.
The objectives of uploading the network dataset to ArcGIS Online platform are to facilitate our Hong Kong ArcGIS users to utilize the data in a spatial ready format and save their data conversion effort.
For details about the schema and information about the content and relationship of the data, please refer to the data dictionary provided by Lands Department at https://geodata.gov.hk/gs/download-datadict/201eaaee-47d6-42d0-ac81-19a430f63952.
For details about the data, source format and terms of conditions of usage, please refer to the website of GEODATA STORE at https://geodata.gov.hk.Dataset last updated on: 2022 Oct
The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
*This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset offers a detailed inventory of road intersections and their corresponding suburbs within Cape Town, meticulously curated to highlight instances of high pedestrian crash counts observed in "high-high" cluster and "high-low" outlier fishnet grid cells across the years 2017, 2018, 2019, and 2021. To enhance its utility, the dataset meticulously colour-codes each month associated with elevated crash occurrences, providing a nuanced perspective. Furthermore, the dataset categorises road intersections based on their placement within "high-high" clusters (marked with pink tabs) or "high-low" outlier cells (indicated by red tabs). For ease of navigation, the intersections are further organised alphabetically by suburb name, ensuring accessibility and clarity.Data SpecificsData Type: Geospatial-temporal categorical data with numeric attributesFile Format: Word document (.docx)Size: 255 KBNumber of Files: The dataset contains a total of 264 road intersection records (68 "high-high" clusters and 196 "high-low" outliers)Date Created: 21st May 2024MethodologyData Collection Method: The descriptive road traffic crash data per crash victim involved in the crashes was obtained from the City of Cape Town Network InformationSoftware: ArcGIS Pro, Open Refine, Python, SQLProcessing Steps: The raw road traffic crash data underwent a comprehensive refining process using Python software to ensure its accuracy and consistency. Following this, duplicates were eliminated to retain only one entry per crash incident. Subsequently, the data underwent further refinement with Open Refine software, focusing specifically on isolating unique crash descriptions for subsequent geocoding in ArcGIS Pro. Notably, during this process, only the road intersection crashes were retained, as they were the only incidents with spatial definitions.Once geocoded, road intersection crashes that involved a pedestrian were extracted so that subsequent spatio-temporal analyses would focus on these crashes only. The spatio-temporal analysis methods by which the pedestrian crashes were analysed included spatial autocorrelation, hotspot analysis, and cluster and outlier analysis. Leveraging these methods, road intersections involving pedestrian crashes identified as either "high-high" clusters or "high-low" outliers were extracted for inclusion in the dataset.Geospatial InformationSpatial Coverage:West Bounding Coordinate: 18°20'EEast Bounding Coordinate: 19°05'ENorth Bounding Coordinate: 33°25'SSouth Bounding Coordinate: 34°25'SCoordinate System: South African Reference System (Lo19) using the Universal Transverse Mercator projectionTemporal InformationTemporal Coverage:Start Date: 01/01/2017End Date: 31/12/2021 (2020 data omitted)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset offers a detailed inventory of road intersections and their corresponding suburbs within Cape Town, meticulously curated to highlight instances of high motorcycle (Motorcycle: Above 125cc, Motorcycle: 125cc and under, Quadru-cycle, Motor Tricycle) crash counts that resulted in injuries (slight, serious, fatalities) observed in "high-high" cluster and "high-low" outlier fishnet grid cells across the years 2017, 2018 and 2019. To enhance its utility, the dataset meticulously colour-codes each month associated with elevated crash occurrences, providing a nuanced perspective. Furthermore, the dataset categorises road intersections based on their placement within "high-high" clusters (marked with pink tabs) or "high-low" outlier cells (indicated by red tabs). For ease of navigation, the intersections are further organised alphabetically by suburb name, ensuring accessibility and clarity.Data SpecificsData Type: Geospatial-temporal categorical data with numeric attributesFile Format: Word document (.docx)Size: 157 KBNumber of Files: The dataset contains a total of 158 road intersection records (11 "high-high" clusters and 147 "high-low" outliers)Date Created: 22nd May 2024MethodologyData Collection Method: The descriptive road traffic crash data per crash victim involved in the crashes was obtained from the City of Cape Town Network InformationSoftware: ArcGIS Pro, Open Refine, Python, SQLProcessing Steps: The raw road traffic crash data underwent a comprehensive refining process using Python software to ensure its accuracy and consistency. Following this, duplicates were eliminated to retain only one entry per crash incident. Subsequently, the data underwent further refinement with Open Refine software, focusing specifically on isolating unique crash descriptions for subsequent geocoding in ArcGIS Pro. Notably, during this process, only the road intersection crashes were retained, as they were the only incidents with spatial definitions.Once geocoded, road intersection crashes that involved either a motor tricycle, motorcycle above 125cc, motorcycle below 125cc and quadru-cycles and that were additionally associated with a slight, severe or fatal injury type were extracted so that subsequent spatio-temporal analyses would focus on these crashes only. The spatio-temporal analysis methods by which these motorcycle crashes were analysed included spatial autocorrelation, hotspot analysis, and cluster and outlier analysis. Leveraging these methods, road intersections with motorcycle crashes identified as either "high-high" clusters or "high-low" outliers were extracted for inclusion in the dataset.Geospatial InformationSpatial Coverage:West Bounding Coordinate: 18°20'EEast Bounding Coordinate: 19°05'ENorth Bounding Coordinate: 33°25'SSouth Bounding Coordinate: 34°25'SCoordinate System: South African Reference System (Lo19) using the Universal Transverse Mercator projectionTemporal InformationTemporal Coverage:Start Date: 01/01/2017End Date: 31/12/2019
The Virginia Geographic Information Network (VGIN) has coordinated the development and maintenance of a statewide Parcels data layer in conjunction with local governments across the Commonwealth. The Virginia Parcel dataset is aggregated as part of the VGIN Local Government Data Call update cycle. Localities are encouraged to submit data bi-annually and are included into the parcel dataset with their most recent geography.Attributes for these Virginia parcels are limited to locality identification and parcel id. Tax parcel boundaries have not been edge-matched across municipal boundaries but they are associated by local government FIPS and locality name.The boundaries are intended for cartographic use and spatial analysis only, and not for use as legal descriptions or property surveys. Not all localities within the Commonwealth of Virginia have confirmed a digital record for parcel geography or submit data with a bi-annual frequency.GDB Version: ArcGIS Pro 3.3Additional Resources:Shapefile DownloadREST EndpointVirginia Parcels: Local Schema Tables
The Virginia Geographic Information Network (VGIN) has coordinated and manages the development of a consistent, seamless, statewide digital road centerline file with address, road name, and state route number attribution, as part of the Virginia Base Mapping Program (VBMP). The Road Centerline Program (RCL) leverages the Commonwealth"s investment in the VBMP digital orthophotography and is focused on creating a single statewide, consistent digital road file.The RCL data layer is a dynamic dataset supported and maintained by Virginia"s Local Governments, VDOT, and VGIN. VBMP RCL is extracted and provided back to local governments and state agencies in many geographic data sets every quarter.GDB Version: ArcGIS Pro 3.3Additional Resources:Routable RCL With Network Dataset GDB(ArcGIS Pro 3.2)Shapefile DownloadREST EndpointRoad Centerline Data StandardArcGIS LYR FileHistorical RCL & Ancillary Centerlines -Contact VGIN
Defra Network WMS server provided by the Environment Agency. See full dataset here.The Most Probable Overland Flow Pathway dataset is a polyline GIS vector dataset that describes the likely flow routes of water along with potential accumulations of diffuse pollution and soil erosion features over the land.It is a complete network for the entire country (England) produced from a hydro-enforced LIDAR 1-metre resolution digital terrain model (bare earth DTM) produced from the 2022 LIDAR Composite 1m Digital Terrain Model. Extensive processing on the data using auxiliary datasets (Selected OS Water Network, OS MasterMap features as well as some manual intervention) has resulted in a hydro-enforced DTM that significantly reduces the amount of non-real-world obstructions in the DTM. Although it does not consider infiltration potential of different land surfaces and soil types, it is instructive in broadly identifying potential problem areas in the landscape.The flow network is based upon theoretical one-hectare flow accumulations, meaning that any point along a network feature is likely to have a minimum of one-hectare of land potentially contributing to it. Each segment is attributed with an estimate of the mean slope along it.The product is comprised of 3 vector datasets; Probable Overland Flow Pathways, Detailed Watershed and Ponding and Errors. Where Flow Direction Grids have been derived, the D8 option was applied. All processing was carried out using ARCGIS Pro’s Spatial Analyst Hydrology tools. Outlined below is a description of each of the feature class.Probable Overland Flow Pathways The Probable Overland Flow Pathways layer is a polyline vector dataset that describes the probable locations accumulation of water over the Earth’s surface where it is assumed that there is no absorption of water through the soil. Every point along each of the features predicts an uphill contribution of a minimum of 1 hectare of land. The hydro-enforced LIDAR Digital Terrain Model 1-Metre Composite (2022) has been used to derive this data layer. Every effort has been used to digitally unblock real-world drainage features; however, some blockages remain (e.g. culverts and bridges. In these places the flow pathways should be disregarded. The Ponding field can be used to identify these erroneous pathways. They are flagged in the Ponding field with a “1”. Flow pathways are also attributed with a mean slope value which is calculated from the Length and the difference of the start and end point elevations. The maximum uphill flow accumulation area is also indicated for each flow pathway feature.Detailed Watersheds The Detailed Watersheds layer is a polygon vector dataset that describes theoretical catchment boundaries that have been derived from pour points extracted from every junction or node of a 1km2 Flow Accumulation dataset. The hydro-enforced LIDAR Digital Terrain Model 1-Metre Composite (2022) has been used to derive this data layer.Ponding Errors The Ponding and Errors layer is a polygon vector dataset that describes the presence of depressions in the landscape after the hydro-enforcing routine has been applied to the Digital Terrain Model. The Type field indicates whether the feature is Off-Line or On-Line. Off-Line is indicative of a feature that intersects with a watercourse and is likely to be an error in the Overland Flow pathways. On-line features do not intersect with watercourses and are more likely to be depressions in the landscape where standing water may accumulate. Only features of greater than 100m2 with a depth of greater than 20cm have been included. The layer was derived by filling the hydro-enforced DTM then subtracting the hydro-enforced DTM from the filled hydro-enforced DTM.Please use with caution in very flat areas and areas with highly modified drainage systems (e.g. fenlands of East Anglia and Somerset Levels). There will occasionally be errors associated with bridges, viaducts and culverts that were unable to be resolved with the hydro-enforcement process.
This dataset provides topographic indices derived from 1 m resolution DEMs for sequoia groves in both Sequoia-Kings Canyon and Yosemite National Parks. All mapped sequoia groves in Sequoia-Kings Canyon National Park and two groves from Yosemite National Park, Merced and Mariposa, are included. For each grove, aspect, slope, the stream network, height above nearest drainage (HAND), depth to water (DTW), maximum elevation deviation (DEVmax), and heat load index (HLI) are calculated. These indices were chosen because of their relevance in determining soil moisture across a landscape. Derived topographic parameters were calculated using 1 m DEMs generated in 2016 resampled to 3 m and a combination of ArcGIS Pro Tools, ArcPy Scripts, Whitebox GAT tools, and R scripts. The stream networks, which are further used in the calculation of HAND and DTW, were determined using a flow accumulation threshold of 2000 meters squared based on a literature-accepted range, chosen specifically based on knowledge of the areas of interest. The neighborhood size range for DEVmax was chosen on two scales, allowing for the identification of both local and more global minima and maxima: squares centered at each pixel ranging from 9 to 303 meters and 9 to 1203 meters wide. The neighborhood size chosen by the algorithm at each pixel maximizes the deviation from the average. Files that include the neighborhood size chosen are included for reference. All files are included as GeoTIFF files.
The Long-Term Agroecosystem Research Network, consisting of 18+ research locations, is conducting research on the sustainable intensification of agroecosystems. To enable coordinated network level research, a spatial framework is required to facilitate analysis. However, no suitable spatial framework currently exists to meet the needs for the LTAR Network. To develop a framework for analysis the LTAR Network initiated the Regionalization Project. Goals also included providing a standardized spatial footprint for LTAR cross-site investigations, estimating the confidence with which results from research plots and fields could reasonably be extrapolated to "represented regions", informing decisions about where additional research sites should be prioritized and facilitating public outreach of the LTAR Network. To address these goals a workshop was held in 2018 resulting in the production of three sets of regional boundaries in a geographic information system (GIS). These GIS datasets are intended to be used for mapping the network and for summarizing spatial data relevant to domains of sustainable intensification corresponding with agricultural production, environmental impact, and rural prosperity. This resulted in a geodatabase of three new maps describing regional boundaries for the LTAR Network titled "Long-Term Agroecosystem Research Network regions, 2018 version", archived in the USDA National Agricultural Library's Ag Data Commons repository. Resources in this dataset:Resource Title: LTAR_Regions_v2018. File Name: LTAR_Regionsv2018.gdb.zipResource Description: Geodatabase of the regions pertaining to the Long-Term Agroecosystem Research Network. There are three data layers describing regions associated with indicators of sustainable intensification corresponding with agricultural production (LTAR_Production_v2018), environmental impacts (LTAR_Environment_v2018), and rural prosperity (LTAR_RuralProsp_v2018). These date were produced by the LTAR Regionalization Project as an outcome from the 2018 LTAR Regionalization Project workshop held in March 2018, Tifton, GA.Resource Software Recommended: ArcGIS Pro,url: www.esri.com
SSURGO-QA ArcGIS Pro Toolbox1. SetupDownload SSURGO by Areasymbol - Use Soil Data Access and Web Soil Survey download page to get SSURGO datasets. User can a wildcard to query the database by Areasymbol or by age.Download SSURGO by Region - Downloads SSURGO Soil Survey Areas that are owned by a specific region including an approximiate 2 soil survey area buffer.Generate Regional Transactional Geodatabase - Used to create the Regional Transactional Spatial Database (RTSD) for SSURGO.Generate SSO SSURGO Datasets - Create a SSURGO file geodatabase for a selected MLRA Soil Survey Office.Import SSURGO Datasets in FGDB - This tooll will import SSURGO spatial and tabular datasets within a given location into a File Geodatabase and establish the necessary table and feature class relationships to interact with the dataset.Insert NATSYM and MUNAME Value - This tool adds the National Mapunit Symbol (NATMUSYM) and the Mapunit Name (MUNAME) values to the corresponding MUKEY. An MUKEY field is required to execute. A network connection is required in order to submit a query to SDacess.RTSD - Check SDJR Project Out - Designed to work with the RTSD to manage SDJR projects and export data for those projects to be sent to the MLRA SSO.
The Virginia Geographic Information Network (VGIN) has coordinated the development and maintenance of a statewide Parcels data layer in conjunction with local governments across the Commonwealth. The Virginia Parcel dataset is aggregated as part of the VGIN Local Government Data Call update cycle. Localities are encouraged to submit data bi-annually and are included into the parcel dataset with their most recent geography.These tables are to be used in conjunction with theVirginia Parcel Datasetmost recent download to receive additional attribution beyond Map Number and Parcel ID. They are joined to the Parcel geography using the VGIN_QPID attribute on the Parcel feature class and local schema table. Attributes differ from locality to locality and what is provided in the geodatabase is a tabular representation of the geospatial attributes provided from the jurisdiction to VGIN with bi-annual data calls. Locality tables have the last received and processed date appended to the table name.If you have questions about attributes and usability of each schema set, please contact the jurisdiction"s GIS coordinator at theLocal GIS Contacts Page.GDB Version: ArcGIS Pro 3.3Additional Resources:Statewide Parcel Dataset
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset offers a detailed inventory of road intersections and their corresponding suburbs within Cape Town, meticulously curated to highlight instances of high public transport (Bus, Bus-train, Combi/minibus, Midibus) crash counts observed in "high-high" cluster and "high-low" outlier fishnet grid cells across the years 2017, 2018, 2019, and 2021. To enhance its utility, the dataset meticulously colour-codes each month associated with elevated crash occurrences, providing a nuanced perspective. Furthermore, the dataset categorises road intersections based on their placement within "high-high" clusters (marked with pink tabs) or "high-low" outlier cells (indicated by red tabs). For ease of navigation, the intersections are further organised alphabetically by suburb name, ensuring accessibility and clarity.Data SpecificsData Type: Geospatial-temporal categorical data with numeric attributesFile Format: Word document (.docx)Size: 49,0 KBNumber of Files: The dataset contains a total of 40 road intersection records (28 "high-high" clusters and 12 "high-low" outliers)Date Created: 21st May 2024MethodologyData Collection Method: The descriptive road traffic crash data per crash victim involved in the crashes was obtained from the City of Cape Town Network InformationSoftware: ArcGIS Pro, Open Refine, Python, SQLProcessing Steps: The raw road traffic crash data underwent a comprehensive refining process using Python software to ensure its accuracy and consistency. Following this, duplicates were eliminated to retain only one entry per crash incident. Subsequently, the data underwent further refinement with Open Refine software, focusing specifically on isolating unique crash descriptions for subsequent geocoding in ArcGIS Pro. Notably, during this process, only the road intersection crashes were retained, as they were the only incidents with spatial definitions.Once geocoded, road intersection crashes that involved either a bus, a bus/train, combi/minibus and midibuses were extracted so that subsequent spatio-temporal analyses would focus on these crashes only. The spatio-temporal analysis methods by which the public transport crashes were analysed included spatial autocorrelation, hotspot analysis, and cluster and outlier analysis. Leveraging these methods, road intersections with public transport crashes identified as either "high-high" clusters or "high-low" outliers were extracted for inclusion in the dataset.Geospatial InformationSpatial Coverage:West Bounding Coordinate: 18°20'EEast Bounding Coordinate: 19°05'ENorth Bounding Coordinate: 33°25'SSouth Bounding Coordinate: 34°25'SCoordinate System: South African Reference System (Lo19) using the Universal Transverse Mercator projectionTemporal InformationTemporal Coverage:Start Date: 01/01/2017End Date: 31/12/2021 (2020 data omitted)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides comprehensive information on road intersection crashes recognised as "high-low" outliers within the City of Cape Town. It includes detailed records of all intersection crashes and their corresponding crash attribute combinations, which were prevalent in at least 5% of the total "high-low" outlier road intersection crashes for the years 2017, 2018, 2019, and 2021. The dataset is meticulously organised according to support metric values, ranging from 0,05 to 0,0278, with entries presented in descending order.Data SpecificsData Type: Geospatial-temporal categorical dataFile Format: Excel document (.xlsx)Size: 675 KBNumber of Files: The dataset contains a total of 10212 association rulesDate Created: 23rd May 2024MethodologyData Collection Method: The descriptive road traffic crash data per crash victim involved in the crashes was obtained from the City of Cape Town Network InformationSoftware: ArcGIS Pro, PythonProcessing Steps: Following the spatio-temporal analyses and the derivation of "high-low" outlier fishnet grid cells from a cluster and outlier analysis, all the road intersection crashes that occurred within the "high-low" outlier fishnet grid cells were extracted to be processed by association analysis. The association analysis of these crashes was processed using Python software and involved the use of a 0,05 support metric value. Consequently, commonly occurring crash attributes among at least 5% of the "high-low" outlier road intersection crashes were extracted for inclusion in this dataset.Geospatial InformationSpatial Coverage:West Bounding Coordinate: 18°20'EEast Bounding Coordinate: 19°05'ENorth Bounding Coordinate: 33°25'SSouth Bounding Coordinate: 34°25'SCoordinate System: South African Reference System (Lo19) using the Universal Transverse Mercator projectionTemporal InformationTemporal Coverage:Start Date: 01/01/2017End Date: 31/12/2021 (2020 data omitted)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset offers a detailed inventory of road intersections and their corresponding suburbs within Cape Town, meticulously curated to highlight instances of high crash counts observed in "high-high" cluster and "high-low" outlier fishnet grid cells across the years 2017, 2018, 2019, and 2021. To enhance its utility, the dataset meticulously colour-codes each month associated with elevated crash occurrences, providing a nuanced perspective. Furthermore, the dataset categorises road intersections based on their placement within "high-high" clusters (marked with pink tabs) or "high-low" outlier cells (indicated by red tabs). For ease of navigation, the intersections are further organised alphabetically by suburb name, ensuring accessibility and clarity.Data SpecificsData Type: Geospatial-temporal categorical data with numeric attributesFile Format: Word document (.docx)Size: 602 KBNumber of Files: The dataset contains a total of 625 road intersection records (606 "high-high" cluster and 19 "high-low" outliers)Date Created: 21st May 2024MethodologyData Collection Method: The descriptive road traffic crash data per crash victim involved in the crashes was obtained from the City of Cape Town Network InformationSoftware: ArcGIS Pro, Open Refine, Python, SQLProcessing Steps: The raw road traffic crash data underwent a comprehensive refining process using Python software. Following this, duplicate crash records were eliminated to retain only one entry per crash. Subsequently, the data underwent further refinement with Open Refine software, focusing specifically on isolating unique crash descriptions for subsequent geocoding in ArcGIS Pro. Notably, during this process, only the road intersection crashes were retained, as they were the only crashes that were able to be spatially defined.Once geocoded, the road traffic crash data underwent rigorous spatio-temporal analyses, encompassing spatial autocorrelation, hotspot analysis, and cluster and outlier analysis. Leveraging these methods, road intersections identified as either "high-high" clusters or "high-low" outliers were extracted for inclusion in the dataset.Geospatial InformationSpatial Coverage:West Bounding Coordinate: 18°20'EEast Bounding Coordinate: 19°05'ENorth Bounding Coordinate: 33°25'SSouth Bounding Coordinate: 34°25'SCoordinate System: South African Reference System (Lo19) using the Universal Transverse Mercator projectionTemporal InformationTemporal Coverage:Start Date: 01/01/2017End Date: 31/12/2021 (2020 data omitted)
This is a collection of maps, layers, apps and dashboards that show population access to essential retail locations, such as grocery stores. Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point.Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes
Example extract, transform, and load (ETL) framework with comments and print statements to develop a script using the "run tools in Pro and copy script to a file" method to assist in NG911 transition by transforming and loading local addresses and road centerlines into the NENA Next Generation 9-1-1 GIS Data Model Schema. Created on 20220915 as a supplement to a "Supporting Extract, Transform, and Load Development for Next Generation 9-1-1" presentation delivered at GIS Pro 2022. Originally developed by Matt Gerike, Virginia Geographic Information Network, September 2022.Parity logic contributed by Charles Grant, City of Salem, Virginia, March 2021.See here for resources and context about using the NG9-1-1 GIS data model templates.Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides comprehensive information on road intersection crashes involving public transport (Bus, Bus-train, Combi/minibusses, midibusses) recognised as "high-high" clusters within the City of Cape Town. It includes detailed records of all intersection crashes and their corresponding crash attribute combinations, which were prevalent in at least 10% of the total "high-high" cluster public transport road intersection crashes for the years 2017, 2018, 2019, and 2021.The dataset is meticulously organised according to support metric values, ranging from 0,10 to 0,171, with entries presented in descending order.Data SpecificsData Type: Geospatial-temporal categorical dataFile Format: Excel document (.xlsx)Size: 160 KBNumber of Files: The dataset contains a total of 1620 association rulesDate Created: 23rd May 2024MethodologyData Collection Method: The descriptive road traffic crash data per crash victim involved in the crashes was obtained from the City of Cape Town Network InformationSoftware: ArcGIS Pro, PythonProcessing Steps: Following the spatio-temporal analyses and the derivation of "high-high" cluster fishnet grid cells from a cluster and outlier analysis, all the road intersection crashes involving public transport that occurred within the "high-high" cluster fishnet grid cells were extracted to be processed by association analysis. The association analysis of these crashes was processed using Python software and involved the use of a 0,10 support metric value. Consequently, commonly occurring crash attributes among at least 10% of the "high-high" cluster road intersection public transport crashes were extracted for inclusion in this dataset.Geospatial InformationSpatial Coverage:West Bounding Coordinate: 18°20'EEast Bounding Coordinate: 19°05'ENorth Bounding Coordinate: 33°25'SSouth Bounding Coordinate: 34°25'SCoordinate System: South African Reference System (Lo19) using the Universal Transverse Mercator projectionTemporal InformationTemporal Coverage:Start Date: 01/01/2017End Date: 31/12/2021 (2020 data omitted)
This data contains general information about Pedestrian Network in Hong Kong. Pedestrian Network is a set of 3D line features derived from road features and road furniture from Lands Department and Transport Department. A number of attributes are associated with the pedestrian network such as spatially related street names. Besides, the pedestrian network includes information like wheelchair accessibility and obstacles to facilitate the digital inclusion for the needy. Please refer to this video to learn how to use 3D Pedestrian Network Dataset in ArcGIS Pro to facilitate your transportation analysis.The data was provided in the formats of JSON, GML and GDB by Lands Department and downloaded via GEODATA.GOV.HK website.
The original data files were processed and converted into an Esri file geodatabase. Wheelchair accessibility, escalator/lift, staircase walking speed and street gradient were used to create and build a network dataset in order to demonstrate basic functions for pedestrian network and routing analysis in ArcMap and ArcGIS Pro. There are other tables and feature classes in the file geodatabase but they are not included in the network dataset, users have to consider the use of information based on their requirements and make necessary configurations. The coordinate system of this dataset is Hong Kong 1980 Grid.
The objectives of uploading the network dataset to ArcGIS Online platform are to facilitate our Hong Kong ArcGIS users to utilize the data in a spatial ready format and save their data conversion effort.
For details about the schema and information about the content and relationship of the data, please refer to the data dictionary provided by Lands Department at https://geodata.gov.hk/gs/download-datadict/201eaaee-47d6-42d0-ac81-19a430f63952.
For details about the data, source format and terms of conditions of usage, please refer to the website of GEODATA STORE at https://geodata.gov.hk.Dataset last updated on: 2022 Oct